Award Number: DAMD17-02-1-0357

TITLE: Early Life Factors and Breast Cancer Risk

PRINCIPAL INVESTIGATOR: Mary Beth Terry, Ph.D.

CONTRACTING ORGANIZATION: Columbia University
New York, NY 10032

REPORT DATE: August 2003

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Early life Factors and Breast Cancer Risk

Authors
Mary Beth Terry, Ph.D.

Performing Organization
Columbia University
New York, NY 10032

E-Mail: Mt146@columbia.edu

Sponsoring Monitoring AGENCY
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Supplementary Notes

Distribution/Availability Statement
Approved for Public Release; Distribution Unlimited

Abstract
Breast development and structure is influenced most during the following stages of life - intrauterine, menarche, and pregnancy and lactation. Much of breast cancer risk is still unexplained perhaps because many investigations focus on exposures after critical breast development periods. In particular, studies examining the intrauterine period and later breast cancer risk are scant. In utero exposures may increase breast cancer risk by increasing the number of mammary cells and rate of cell division, increasing the number of in utero mutations, and/or through imprinting the fetal ovary. This study is a prospective follow-up study of children who were part of a perinatal prospective cohort recruited during 1959-1963 in New York City. We are examining associations between maternal exposures during fetal development, fetal growth and childhood growth with the following factors known to be important to breast cancer risk -- age at menarche, insulin-like growth factors, and mammographic density in a sample of 200 Hispanic, African American and white, premenopausal women aged 38 to 42. After the first year of work, we have collected questionnaire information on 137 women. We are currently collecting blood and mammogram information and study recruitment is ongoing.

Subject Terms
Breast cancer, Epidemiology, in utero exposures, childhood growth, Age at menarche, IGF1, mammographic density

Number of Pages
13

Price Code
Unlimited
Table of Contents

Cover...1
SF 298...2
Table of Contents..3
Introduction..4
Body...5
Key Research Accomplishments..7
Reportable Outcomes...8
Conclusions..9
References..10
Appendices...11
Introduction

Breast development and structure is influenced most during the following stages of life – intrauterine, menarche, and pregnancy and lactation. The success of traditional breast cancer epidemiology has been to uncover the relationship of factors such as menarche, parity, and menopause on breast cancer risk. However, much of breast cancer risk is still unexplained perhaps because many investigations focus on exposures after critical breast development periods. In particular, studies examining the intrauterine period and later breast cancer risk are scant. In utero exposures may increase breast cancer risk by increasing the number of mammary cells and rate of cell division, increasing the number of in utero mutations, and/or through imprinting the fetal ovary. We hypothesize that early life factors are important to breast cancer risk, particularly premenopausal breast cancer, and also that they may help to explain the higher breast cancer risk in African Americans as compared to whites in the premenopausal period. This study is a prospective follow-up study of children who were part of a perinatal prospective cohort recruited during 1959-1963 in New York City. Specifically, we are examining associations between maternal exposures during fetal development, fetal growth and childhood growth with the following factors known to be important to breast cancer risk -- age at menarche, insulin-like growth factors, and mammographic density in a sample of 200 Hispanic, African American and white, premenopausal women aged 38 to 42. After the first year of work, we have collected questionnaire information on 137 women. We are currently collecting blood and mammogram information and study recruitment is ongoing.
Body:

We have just completed the first year of a three year grant. The status of our progress is listed by task following our approved statement of work

Task 1: To complete interviewing of 265 women using a mailed health questionnaire.
 a. Continue to trace women, efforts began in May 2001 as part of National Cancer Institute K-07 grant. We expect 40% of cohort will be traced by start of this project in Feb 2002. After start of Army grant, we will be able to trace full-time so we expect to trace the remaining cohort within 9 months (Months 1-9).
 b. Continue to send out mailed interviews, efforts will begin in July 2001 as part of National K-07 grant. (Months 1-12)
 c. Enter data from mailed questionnaires; ongoing as questionnaires are received (Months 1-15)

- As of June 30, 2003, we have completed interviewing 137/265 women using a mailed health questionnaire. 41% (318/784) of mothers have been traced successfully. This group includes women that have provided information on their daughter, are deceased or refused participation. 33% (262/784) of daughters have been traced. This group includes those women who are willing to participate, deceased, too ill to participate and those who have refused to participate.

- As of June 30, 2003, 226 health questionnaires have been mailed out at least 1 time to the daughter participants. We have received 140 completed questionnaires, however we are only able to use 137, due to missing questionnaire consent forms.

- As of June 30, 2003, 137 have been entered in to the questionnaire database.

We are continuing this task in Year 2.

Task 2: To collect blood samples from 212 women and perform genotyping and IGF-1 assays.
 a. Send out blood collection kits; send after collection of questionnaire data as women are enrolled. (Months 1-20)
 b. Aliquot and send samples to Nichols for IGF-1 and IGFBP-3 testing (Months 22-25)
 c. Perform genotyping in Dr. Santella’s laboratory for the following 3 genes – AIB1, IGF1, CYP3A4; after genotyping assay is validated using 96-well plates and the Florescence Polarization method (Months 21-29)

- As of June 30, 2003, we have received blood collection consent forms for 29 daughter participants. We have sent out 26 blood collection kits.
Body (continued):

Task 3: To collect mammograms from 150 women and scan the mammograms for mammographic density measures.
 a. Attend training on use of density scanning software in Toronto with Drs. Boyd and Yaffe (June 2001, as part of program project work on mammographic density)
 b. Collect mammograms (Months 13-25)
 c. Scan mammograms as they come in and perform density readings (Months 13-29)

This task is currently being accomplished in year 2.

Task 4: To analyze the data using the methods described in the body of the proposal.
 a. Cleaning and editing the data (Month 30-31)
 b. Performing analyses as described for the 3 aims (Months 32-35)
 c. Manuscript preparation (Months 35-36)

This task will start in the third year.
Key Research Accomplishments. After one year of work, our key accomplishments are:

- We have trained our research staff on our protocol.

- We have developed and tested all study instruments.

- As of June 30, 2003, we have completed interviewing 137/265 women using a mailed health questionnaire. 41% (318/784) of mothers have been traced successfully. This group includes women that have provided information on their daughter, are deceased or refused participation. 33% (262/784) of daughters have been traced. This group includes those women who are willing to participate, deceased, too ill to participate and those who have refused to participate.

- As of June 30, 2003, 226 health questionnaires have been mailed out at least 1 time to the daughter participants. We have received 140 completed questionnaires, however we are only able to use 137, due to missing questionnaire consent forms.

- As of June 30, 2003, 137 have been entered in to the questionnaire database.

- As of June 30, 2003, we have received blood collection consent forms form 29 daughter participants. We have sent out 26 blood collection kits.
Reportable Outcomes

In the past year, we have presented preliminary data at the Second World Congress on Fetal Origins of Adult Disease. The conference goal was to bring new insights into pathogenesis of adult disease including cancer, coronary heart disease, hypertension, diabetes, osteoporosis and some neurological disorders. Views from various disciplines were presented, ranging from epidemiology to molecular biology.

We presented 2 posters at the conference in Brighton, England. One poster was entitled, "Validity of Self-Report of Birthweight"; the other "Early Life Growth and its Influence on Age at Menarche and Adult Body Size." (To view to posters, please see appendices.)
Conclusions

We have had a very busy and productive first year. We have recruited and received questionnaires on 137 study subjects and are in the process of recruiting more subjects. We have started collecting blood and are now set up to retrieve the mammograms which will be collected this year. We presented two posters at an international meeting summarizing some preliminary findings (see Appendix).
References
N/A
Appendices

2. Poster – “Early Life Growth and its Influence on Age at Menarche and Adult Body Size.”
Validity of Self-Report of Birthweight

MB Terry, P Tehranifar, D Shah*, E Susser
Columbia University, Department of Epidemiology. New York, NY

Background
Accumulating evidence suggests that birthweight is associated with a number of adult health outcomes, including breast cancer.

In many counties it is difficult to obtain birth record data retrospectively so investigators must rely on self-report of birthweight.

Research Question
Can birthweight be reliably assessed to justify the use of self-reported birthweight in epidemiological studies?

Subjects
The subjects are daughters of the former participants of the New York site of the National Collaborative Postnatal Project (NCPP). NCPP was initiated over 40 years ago to learn about pregnancy, childbirth and childhood growth.

13 university affiliated medical centers participated in NCPP and over 55,000 pregnant women were enrolled and followed through pregnancy, labor and delivery.

809 daughters from the New York site, born between 1959 and 1968, were followed until the age of 7 and are currently being recruited into a follow-up study of adult health.

To date, we have adult questionnaire data on 130 daughters from the NCPP.

Data
Self-reported birthweight was obtained from 111 subjects after 36-43 years, via a postal questionnaire.

Subjects reported their birthweight using the following categories:
- < 5.5 lbs.
- 5.5 - 6.9 lbs.
- 7.0 - 8.4 lbs.
- 8.5 - 9.9 lbs.
- 10 lbs. and over

True birthweight was measured and recorded at delivery and is available in the NCPP database.

Self-reported birthweights were compared to birthweight recorded at delivery.

All weights were converted to grams.

Statistical Analyses
Kappa as a measure of agreement.

Kappa = % Agreement - % Chance

Sensitivity by birthweight category.

Sensitivity (by birthweight category) = Self-Reported Weight / Recorded Weight

Results

Histogram of Sample birthweights (g)

Table 1
Sample Description
Birthweight (g)
Mean = 3128.3
SD = 448.2
Median = 3146.5
Min-Max = 2155.0 - 3967.0

Race/ethnicity
White = 30%
African American = 28%
Hispanic = 24%
Multiracial = 16%
Other = 2%

Current Educational Attainment
High school graduate or less = 10%
Technical or some college = 27%
College graduate or more = 42%

Table 2
Self-Reported Birthweight vs. Recorded Birthweight (g)

Self-Reported Birthweight (g)
< 2500 2500 - 3199 3200 - 3899 > 3900 Total
< 2500 7 4 0 1 12
2500-3199 3 33 9 1 46
3200-3899 0 7 34 6 47
> 3900 0 0 0 6 6
Total 10 44 43 14 111

Weighted Kappa = 0.64, 95% CI (0.52 - 0.75)

Table 3
Measurement of agreement between self-reported birthweight and recorded birthweight records for total sample and by educational level

<table>
<thead>
<tr>
<th></th>
<th>Total sample N=111</th>
<th>Less than college N=84</th>
<th>College graduate N=27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman correlation</td>
<td>0.71</td>
<td>0.63</td>
<td>0.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th><2500</th>
<th>2500-3199</th>
<th>3200-3899</th>
<th>>3900</th>
</tr>
</thead>
<tbody>
<tr>
<td><2500</td>
<td>7/12 = 58%</td>
<td>3/7 = 43%</td>
<td>2/8 = 25%</td>
<td>1/4 = 25%</td>
</tr>
<tr>
<td>2500-3199</td>
<td>33/46 = 72%</td>
<td>17/25 = 68%</td>
<td>12/20 = 60%</td>
<td>12/20 = 60%</td>
</tr>
<tr>
<td>3200-3899</td>
<td>34/47 = 72%</td>
<td>22/25 = 88%</td>
<td>17/20 = 85%</td>
<td>17/20 = 85%</td>
</tr>
<tr>
<td>>3900</td>
<td>6/6 = 100%</td>
<td>1/1 = 100%</td>
<td>1/1 = 100%</td>
<td>1/1 = 100%</td>
</tr>
</tbody>
</table>

Sensitivity of 0.64, 95% CI (0.52 - 0.75), however, sensitivity varied by birthweight category and increased with increasing birthweight.

Overall Kappa is 0.64, 95% CI (0.52 - 0.75), however, sensitivity varied by birthweight category and increased with increasing birthweight.

Within educational status, sensitivity also increased with increasing birthweight.

Conclusion
Results suggest that self-reported birthweight is measured with error. The magnitude of the error depends on the initial birthweight and also varies by educational status.

This amount of measurement error is of concern as many associations between birthweight and adult health outcomes are modest (r < 0.40).

Further, because these data suggest differences in accuracy by initial birthweight as well as educational status, use of self-reported birthweight may create biases in associations between birthweight and adult outcomes.

Studies using self-reported birthweight should consider the impact of this type of measurement error on their findings and the direction of expected bias.

Acknowledgements
This study was supported through the National Cancer Institute's K07 career development award and through a U.S. Army Breast Cancer Research Program Idea Grant.

We would like to thank the participants of the New York NCPP cohort for their continued support.
Early Life Growth and its Influence on Age at Menarche and Adult Body Size

MB Terry, P Tehranifar, D Shah*, E Susser
Columbia University, Department of Epidemiology, New York, NY

Background
Accumulating evidence suggests that birthweight is positively associated with breast cancer. Birthweight has also been associated with age at menarche and adult body size, both known risk factors for breast cancer.

Several studies suggest that the association between birthweight and age at menarche is influenced by other childhood growth measures, however, the results are not consistent and few studies have examined populations that are racially and ethnically diverse.

Purpose
To determine if birthweight is associated with age at menarche and adult body size after accounting for potential mediation by childhood growth measures.

Subjects
The subjects are daughters of the former participants of the New York site of the National Cohort Study on the National Health and Nutrition Examination Survey (NHANES).

NCPP was initiated over 40 years ago to learn about pregnancy, childbirth, and childhood growth.

12 university affiliated medical centers participated in NCPP and over 50,000 pregnant women were enrolled and followed through pregnancy, delivery, and delivery of

800 offspring from the New York site, born between 1970 and 1976, were followed prospectively until the age of 7 and are currently being recontacted in a lifetime study of adult health.

Of these 800 offspring, 26% are white, 43% are black and 21% are Puerto Rican, according to the population classification used in the original NCPP cohort.

To date, we have collected adult questionnaire data on 120 daughters from the NCPP.

Data
Height and weight were measured prospectively from birth through childhood until the age of 7.

The age of menarche and adult height and weight are self-reported from the adult follow-up questionnaire.

Body mass index (BMI) was calculated using information on weight and height (kg/m²).

Statistical Approach
Univariate statistics and analysis of variance (ANOVA) were used to compare means for continuous variables.

Multivariable modeling was used to examine mediation between birthweight and menarche and adult BMI.

Age at Menarche
Polynomial logistic regression with 3 groups:

Early (less than or equal to 11 years)
Average (12 to 14 years)
Late (equal to or more than 14 years)

Adult Body Size
We used birth weight to analyze adult height and weight as continuous variables and logistic regression to analyze body mass index categorized into tertiles.

Birthweight (kg)

Weight at 1 year (kg)

Weight at 7 years (kg)

Univariate Statistics

Age at Menarche (years)

Race

Education

Height at age 7

College graduate or more

Birthweight (kg)

Weight at 7 years (kg)

Birthweight and weight at 7 years

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult height at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult weight at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult height at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult weight at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult height at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult weight at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult height at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Association with adult weight at 7 years (in kg)

BMI at 1 year

BMI at 7 years

BMI at age 50

BMI at 60

Conclusion
Preliminary analyses suggest that birthweight by itself is not associated with age at menarche and adult body size but that measures of childhood growth including birthweight at age 1 and 7 years are associated with adult body size.

Birthweight in combination with weight at 7 years associated with age at menarche and adult body size in univariate analyses.

Multivariable analyses suggest that both birthweight and weight at 7 years are statistically significantly associated with adult body size.

After adjustment for age, birth weight and BMI at 7, the association between age at menarche and BMI at 1 remains directionally and is modestly related to adult size.

Height at age 1 and age 7 are both positively related to height at age 30, but the effect of birth length on adult height is fully mediated by weight at age 1 and age 7.

These results suggest the importance of considering potential mediation and interaction by early child growth measures when examining the impact of birthweight on adult health.

Next steps
Continue to recruit subjects into the adult follow-up study.

Examine differences in the weight and childhood data between those participating in the adult follow-up and those not participating.

Also data collection is complete, conducted growth analyses, and perform statistical interaction testing by other childhood growth measures in multivariate models.

Acknowledgements
This study was supported through the National Cancer Institute K07 cancer development award and through A-US Army Breast Cancer Research Program Idea Grant. I would like to thank the participants of the New York NCPP cohort for their continued support.

Mary Beth Terry, Ph.D.
Assistant Professor of Public Health (Epidemiology)

Columbia University Mailman School of Public Health
416 West 168th Street, 11th Floor, New York, NY 10032

The Joseph L. Mailman School of Public Health
Columbia University
Division of Epidemiology

Gates Hall 601 601 West 120th Street New York, NY 10027

The Joseph L. Mailman School of Public Health
Columbia University
Division of Epidemiology

Gates Hall 601 601 West 120th Street New York, NY 10027