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                                                 Summary 
 
SUNYIT Institute of Technology, Utica, NY, in collaboration with SUNY College at Oneonta, 
NY, conducted an exploratory investigation of the viability of a Bio Computing and Information 
System, based on the available and up to date published scientific and technological information. 
The following four areas were identified for this investigation: 
 
1) DNA Computing 
2) Membrane Computing 
3) Quantum aspects relevant to Bio Computing 
4) The system aspects relevant to Bio Computing and Information System. 
 
The study involved an extensive review of the current literature in the areas of interest mentioned 
above, critical analysis of the published results and their relevance to a future Bio System. 
 
The outcome of this research has been presented in the following, in three segments 
corresponding to parts I, II, and III as mentioned in the Table of Contents. 
 

 
 

PART I: Molecular Computation using Biological Cells: A Hybrid Approach 
 
  

1.1 Introduction  
Cells provide an isolated, controlled environment for carrying out complex chemical reactions. 
Moreover, they reproduce themselves, allowing the creation of many copies with little 
manufacturing effort. The ability to control cellular function will provide important capabilities 
in computation, materials manufacturing, sensing, effecting, and fabrication at the molecular 
scale. One particular short-term goal is to engineer chemical mechanisms which can be used to 
implement the digital abstraction--the notion that chemical signals can represent logical true and 
false (or zero and one) values.  
 
Like any good abstraction, the digital abstraction allows us to ignore the fine details of a 
complex phenomenon, and concentrate on the essentials of the control process.  The essential 
features of any digital logic implementation include the ability to distinguish and maintain two 
distinct values of some physical representation of a signal. This requires the presence of adequate 
noise margins--an ability to produce outputs whose physical values more perfectly represent a 
given logical value than the physical representation of their input. Adequate noise margins allow 
noise and imperfections in a digital system to be reduced, rather than amplified, during complex 
information processing.  
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What follows is a brief description of how this research effort should attempt to define a series of 
biologically plausible chemical reactions, which can be defined using a digital abstraction. A 
digital technology conventionally starts with Boolean logic gates, devices that operate on signals 
with two possible values, such as true and false, 1 and 0. An AND gate has two or more inputs 
and one output; the output is true only if all the inputs are true. An OR gate is similar except that 
the output is true if any of the inputs are true. The simplest of all gates is the NOT gate, which 
takes a single input signal and produces the opposite value as output: true becomes false, and 
false becomes true. 
 

1.2 Building on Available Biological Mechanisms 
In electronic circuits, a NOT gate can be made from a single transistor, wired so that a high 
voltage at the input produces a low voltage at the output, and vice versa. When the gate switches 
between its two states, it does so abruptly, like a snap-action light switch. It is this sudden, 
nonlinear response that gives digital devices their resistance to noise and error. Because a gate is 
either fully on or totally off, a signal can pass through a long chain of gates without degradation. 
 
There are many biochemical equivalents to transistor gates. Perhaps the most interesting among 
them are the mechanisms of genetic control, which switch genes on and off. The archetypal 
example of genetic regulation in bacteria is the lac operon of E. coli, first studied in the 1950s by 
Jacques Monod and François Jacob. The lac operon is a set of genes and regulatory sequences 
involved in the metabolism of the disaccharide lactose. The bacterium's preferred nutrient is the 
simple sugar glucose, but when glucose is scarce, the cell can utilize lactose. The enzymes for 
digesting lactose are manufactured in quantity only when they are needed—specifically when 
lactose is present and glucose is absent. 
 

  
Figure 1 Synthesis of the lactose metabollic enzymes (Stage I)  

  
Synthesis of the lactose metabolic enzymes is a two-stage process. First, the DNA is transcribed 
into messenger RNA by the enzyme RNA polymerase; then messenger RNA is translated into 
protein by ribosomes. The process is controlled at the transcriptional level. Before the genes can 
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be transcribed, RNA polymerase must bind to the DNA at a specific site called a promoter, just 
"upstream" of the genes. Then RNA polymerase must travel along one strand of the double helix, 
reading off the sequence of nucleotides and assembling a complementary strand of messenger 
RNA. One mechanism of control prevents transcription by physically blocking the progress of 
the RNA polymerase molecule. This control is carried out by the lac repressor protein, which 
binds to the DNA downstream of the promoter region and blocks RNA polymerase action. 
 
When lactose enters the bacterial cell, the lac operon is released from this restraint. A metabolite 
of lactose (an inducer) binds to the lac repressor, changing the protein's shape and thereby 
causing it to loosen its grip on the DNA. As the repressor protein drifts away, the polymerase is 
free to transcribe the operon. 
 

  
Figure 2 Synthesis of the lactose metabollic enzymes (Stage II)  

  
The repressor system is only half of the lac control strategy. Even in the presence of  
lactose, the lac enzymes are synthesized only in trace amounts if glucose is also available in the 
cell. The reason, it turns out, is that the lac promoter site is a feeble one, which does a poor job of 
attracting RNA polymerase. To work effectively, the promoter requires an auxiliary molecule 
called catabolite activator protein, which clamps onto the DNA and makes it more receptive. 
Glucose causes the activator to fall away from the DNA just as lactose causes the repressor to let 
go—but the ultimate effect is the opposite. Without the activator, the lac operon lies dormant. All 
these tangled interactions of activators and repressors can be simplified by viewing the control 
elements of the operon as a logic gate. The inputs to the gate are the concentrations of lactose 
and glucose in the cell's environment. The output of the gate is the production rate of the three 
lac enzymes. The gate computes the logical function: (lactose and (not glucose)). 
 
One of the questions that one needs to answer is whether these biochemical control mechanisms 
can exhibit the on-off, all-or-nothing character of digital circuits. Even if the transition between 
states is not perfect, the digital approximation must be satisfactory to be judged reliable. An 
underlying factor that tends to complicate matters is the cooperative action of multiple subunits 
in the regulatory proteins. The lac repressor consists of four subunits, and the catabolite activator 
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protein has two. Although the first subunit may be slow in binding to the DNA, subsequent 
subunits interact with one another as well as with the DNA, so the binding goes faster. We will 
need to make certain that the threshold for repression or activation is stable. 
 
The analogy between metabolic regulators and digital logic was already observed over 40 years 
ago. In 1961 Monod and Jacob wrote about genetic circuits and switching networks, and they 
described how activator and repressor proteins could be organized into systems that would 
function as memory elements and oscillators. Other researchers soon began exploring the 
connection between molecular biology and digital computing in greater depth and detail; for 
several years the theme was a frequent one in the Journal of Theoretical Biology and the Bulletin 
of Mathematical Biophysics. 
 
The main focus of these early studies was on using digital models as a way of understanding 
events in the living cell. The Boolean approximation was a way of avoiding an unwieldy analysis 
of a complex chemical web. To follow all those molecular interactions in complete detail would 
have required tracking the concentrations of innumerable molecular species, measuring the rates 
of chemical reactions, and solving hundreds of coupled differential equations. By representing 
every gene as either being on or off reduced the problem to a simpler digital abstraction. 
 
The biological computing model requires an antithetical approach to classical computing. Instead 
of constructing a computational model of biochemistry, one can exploit quasi-Boolean 
biochemistry to perform computation. This notion also has a history. In the 1970s Otto Rössler 
analyzed various coupled systems of chemical reactions that could implement the abstract 
computers called finite automata. More recently, other groups have looked at schemes of 
computing based on the catalytic activities of enzymes. 
 
The most novel plan for biologically inspired computing was conceived by Leonard M. Adleman 
of the University of Southern California. His basic idea was to use the complementary base-
pairing of DNA as a pattern-matching engine. Adleman himself and others have demonstrated 
the feasibility of this idea in experiments where vials of DNA carry out computational tasks in 
number theory and combinatorics. 
 
All of the molecular computing methods mentioned above envision that the computation will be 
done in vitro. Although the molecules are of biological origin, they are extracted from the cell, 
and the reaction takes place in laboratory glassware.  As a point of departure this research project 
is interested in exploring this from a different perspective- in vivo by turning the organism itself 
into a cellular logic gate, which in turn can be powered by its own metabolism.  
 

1.3 A Biologically Plausible Gate 
The first major goal of this research project is to develop design rules and a parts catalogue for 
biological logic gates, analogous to the comparable tools that facilitate design of electronic 
integrated circuits. An engineer planning the layout of a silicon chip does not have to define the 
geometry of each transistor individually; those details are specified in a library of functional 
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units, so that the designer can think in terms of higher-level abstractions such as logic gates and 
registers. A similar design discipline will be needed before biocomputing can become practical. 
 
The elements of this research project's bio computing design library will likely consist of 
repressor proteins and their target DNA binding sites. The logic "family" might be named RRL, 
for repressor-repressor logic, in analogy to the long-established TTL, which stands for transistor-
transistor logic. The basic NOT gate in RRL will be a gene encoding some repressor protein (call 
it Y), with transcription of the Y gene regulated in turn by a different repressor (call it X). Thus 
whenever X is present in the cell, it binds near the promoter for Y and blocks the progress of 
RNA polymerase. When X is absent, transcription of Y proceeds normally. Because the Y 
protein is itself a repressor, it can serve as the input to some other logic gate, controlling the 
production of yet another repressor protein, say Z. In this way gates can be linked together in a 
chain or cascade.  Transcriptional output can be measured as levels of a reporter protein, such as 
green fluorescent protein (GFP) or as activity from reporter enzymes, such as luciferase or β-
galactosidase; these would comprise additional modular elements of the logic gates.   
 
 

 
 

Figure 3 Concepts of Biological Switches  
 
 
Genetic engineering tools such as polymerase chain reaction (PCR) amplification of particular 
repressor or reporter genes, chemical synthesis of oligonucleotides encoding regulatory elements 
or adapter regions, and ligation into plasmid vectors, can be used to experimentally assemble the 
components. Additional flexibility in the design and execution of molecular logic gates comes 
from the ability to introduce plasmids with various genetic elements into bacteria via 
transformation or electroporation.  Gates can be sequentially controlled by introducing 
components on separate plasmids with compatible replicons.  Further control of bacterial logic 
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gates is facilitated by small molecular inducers (for example IPTG for the lactose repressor) or 
temperature sensitive forms of some repressors.  Well characterized E. coli bacterial strains, with 
suitable genetic and physiological properties to serve as hosts for biocomputing, are readily 
available. 
 
Going beyond the NOT gate to other logical operations is inherently more complex. Inserting 
binding sites for two repressor proteins (A and B) upstream of a gene for protein C creates a 
NAND gate, which computes the logical function “NOT AND”.   
 
With the dual repressor sites in place, the C gene is transcribed only if both A and B are absent 
from the cell; if either one of them should rise above a threshold level, production of C stops. It 
is a well-known result in mathematical logic that with enough NAND and NOT gates, it is 
possible to generate any Boolean function required. For example, the function (A or B) is 
equivalent to (not (A nand B)), while (A and B) is ((not A) NAND (not B)). The NOT gate itself 
can be viewed as just a degenerate NAND with only one input. Thus with just a collection of 
NAND gates, it is possible to construct any logical network. 
 
Pairs of NAND gates can also be coupled together to form the computer memory element  
known as a flip-flop, or latch. Implementing this concept in RRL calls for two copies of the  
genes coding for two repressor proteins, M and N. These could be introduced into the same cell 
by transformation or electroporation of plasmid vectors with compatible replicons. One copy of 
the M gene is controlled by a different repressor, R, and likewise one copy of the N gene is 
regulated by repressor S. The part comes in the control arrangements for the second pair of 
genes: Here the repressor of M is protein N, and symmetrically the repressor of N is M. In other 
words, each of these proteins inhibits the other's synthesis. The flip-flop can be envisioned as 
follows: assume initially that both R and S are present in the cell, shutting down both of the 
genes in the first pair; but protein M is being made at high levels by the M gene in the second 
pair. Through the cross-coupling of the second pair, M suppresses the output of N, with the 
collateral result that M's own repressor site remains vacant, so that production of M can continue. 
But now imagine that the S protein momentarily falls below threshold levels, perhaps by binding 
to an inducer molecule. This event briefly relieves the repression of the N gene in the first pair. 
The resulting pulse of N protein represses the M gene in the second pair, lowering the 
concentration of protein M, which allows a little more N to be manufactured by the second N 
gene, which further inhibits the second M gene, and so on. Thus a momentary change in S 
switches the system from steady production of M to steady production of N. Likewise a brief 
change in R would switch it back again. (S and R stand for "set" and "reset.") 
 
Some of the possible complexities of molecular gates can be seen in the modular regulatory 
networks developed by Guet and coworkers.  Using vectors containing modular repressors and 
their target control regions driving a green fluorescent protein reporter, they have developed 
bacterial strains that parallel the logic functions of NOR, NAND, and NOT IF in response to 
simple molecular signals. 
 
One conclusion to be drawn from this synopsis of a few RRL devices is that a computer based on 
genetic circuits will need a sizable repertory of different repressor proteins. Each logic gate 
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inside a cell must have a distinct repressor assigned to it, or else the gates would interfere with 
one another. In this respect, a bio molecular computer is very different from an electronic one, 
where all signals are carried by the same medium—an electric current. The reason for the 
difference is that electronic signals are steered by the pattern of conductors on the surface of the 
chip, so that they reach only their intended target. The biological computer is a wireless device, 
where signals are broadcast throughout the cell. The need to find a separate repressor for every 
signal complicates the designer's task, but there is also a compensating benefit. On electronic 
chips, communication pathways claim a major share of the space. In a biochemical computer, 
communication comes without such an overhead cost.   
 

1.4 Implementation Issues  
Any new digital logic family has important characteristics and limitations, which must be 
understood in order to effectively design with them. In this section, we have attempted to predict 
some of these issues, but inevitably there will be many which we will overlook until real 
implementation of these gates is underway.  
 
Perhaps the most dramatic difference between our biological gates and conventional logic gates 
is the difference in speed. Electrical gates now function with delays of tens of picoseconds. 
Biological gates constructed using this methodology will have delays governed by the speed of 
protein manufacturing--perhaps many minutes. Roughly speaking, we should think of this logic 
family as functioning at frequencies measured in millihertz, rather than at rates measured in 
Megahertz. While other biological mechanisms might be constructed which could optimistically 
function at kilohertz rates, such structures will require a degree of engineering design which we 
believe will not be available in the short term.  
 
A critical resource in the design of complex logic circuits within a cell is the availability of a 
sufficient number of distinct DNA binding proteins. Not only must many such proteins be found, 
but the set employed must not be used elsewhere within the host cell control mechanisms. In E. 
coli, numerous possible repressors could be tested.  Pérez-Rueda and Collago-Vides used 
bioinformatic analysis of the E. coli genome to estimate that about 314 different DNA-binding 
transcriptional regulators exist; of these 42% (about 135) are expected to act as repressors and 
are potentially adaptable as components of molecular logic gates.  About a dozen bacterial 
repressor proteins have been characterized in atomic detail and these would serve as the initial 
repertoire of molecular components. 
 
Protein design, and, especially, protein-complex design, required for such high-speed gates, is 
not sufficiently well understood at the present time. Yet another limitation comes from the 
requirement of finite concentrations of these proteins within the cell. Cells have finite volume, 
and the requirement that many copies of a protein are needed to have an effect, together with the 
complexity requirement for many distinct proteins, leads to an upper limit on the logic 
complexity which can be performed within a single cell. We are confident, however, that logic 
circuits of an interesting level of complexity can be constructed.  
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Another potential problem is the repressor molecules taking part in the computation must also be 
distinct from those involved in the normal metabolism of the cell. Otherwise, a physiological 
upset could lead to a wrong answer; or, conversely, a computation might well “poison” the cell 
in which it is running. A toxic instruction might actually be useful—any multitasking computer 
must occasionally "kill" a process—but unintended events of this kind would be involve 
extensive and perhaps an unacceptable amount of debugging. Unlike the silicon computer, it is 
not possible to just “reboot” a dead bacterium. Yet we can see that nature faces the same 
problem: A multitude of metabolic pathways have to be kept under control without unwanted 
crosstalk. As a result, cells have evolved thousands of distinct regulatory proteins. Moreover, the 
biocomputing engineer will be able to mix and match among molecules and binding sites that 
may never occur together in the natural world. The aim of the RRL design rules is to identify a 
set of genes and proteins that can be encapsulated as black-box components, to be plugged in as 
needed. 
 
The research project should use a design simulator, which allows a device to be tested without 
the substantial effort of building a prototype. The world of electronics has long relied on a 
simulator called Spice, which models the physics of transistors and other electronic components. 
The research project may use the BioSpice simulator, which can be used to model the dynamics 
of genetic circuits in a similar way. It is important to note, however, that this research project 
will not solely base its design work on such simulations, but will also include some "wet" 
experiments. For example this may include experimenting with a free-running genetic oscillator 
by arranging repressor genes so that they act on one another. If we can find periodic fluctuations 
in gene expression, with a frequency independent of the cell's reproductive cycle it would allow 
for a "genetic toggle switch" much like the flip-flop described above, with two cross-coupled 
promoters and repressors. The eventual aim of the project is the construction of "genetic 
applets"—self-contained program modules that could be "downloaded" into organisms.  
 
It is understood that designing "cell gates" which are necessary to perform useful computations is 
not a trivial undertaking. The overriding objective is to produce cells working in concert on the 
same task. From the biological point of view, mass producing bacteria is extraordinarily easy and 
it does not require a multimillion dollar "fab line" to manufacture them. The difficult part is 
organizing a population of cells so that they work toward some specified goal. Here again 
electronic and biological technologies diverge.  
 
On a silicon chip, every circuit element has an assigned place and function, but living cells are 
squishy and motile and not easily confined to a rigid grid. The project should plan to take another 
cue from biology by experimenting with large-scale structures which emerge from natural 
phenomena, such as cell to cell signalling. Bacteria might be organized into higher order 
structures by means of short-range communications between neighboring cells and the diffusion 
of chemical signals over larger distances. Thus it might be possible to fabricate a molecular chip 
consisting of independent microorganisms that work as a functional computing unit. 
 
The study of large arrays of simple processing elements is a classical topic in computer science, 
but for the most part the arrays have been geometrically regular, and the processors have 
operated in strict synchrony. The research project should try to apply the new paradigm of 
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"amorphous computing" which has been used successfully to design spatially irregular and 
unsynchronized arrays. It is interesting to note that from the results generated so far these arrays 
have a distinctly botanical look to them, and yet they also resemble the design drawings for a 
silicon integrated circuit. 
 
 

 
Figure 4 Spatially irregular and unsynchronized arrays  

 
 

1.5 Applications  

Cellular computing opens a new frontier of engineering that will dominate the technology of the 
next century. Employing information technology, the future holds promise for the development 
of means to organize and control biological processes that are just as effective as our current 
mastery of electrical processes.  

In particular, biological cells are self-reproducing chemical factories that are controlled by a 
program written in the genetic code. Current progress in biology will soon provide us with an 
understanding of how the code of existing organisms produces their characteristic structure and 
behavior. As engineers we can take control of this process by inventing codes (and more 
importantly, by developing automated means for aiding the understanding, construction, and 
debugging of such codes) to make novel organisms with particular desired properties.  

Besides the obvious application of control of biological processes to medicine, we will be able to 
co-opt biological processes to manufacture novel materials and structures at a molecular scale. 
The biological world already provides us with a variety of useful and effective mechanisms, such 
as flagellar motors. If we could co-opt cells to build organized arrays of such motors, with 
accessible interfaces for power and control, we could see how this could be of engineering 
significance. Common, biologically available conjugated polymers, such as carotene, can 
conduct electricity, and can be assembled into active components. If we, as engineers, can 
acquire mastery of mechanisms of biological differentiation, morphogenesis, and pattern 
formation, we can use biological entities of our own design as construction agents for building 
and maintaining complex ultramicroscopic electronic systems. Such systems will have better 
performance and reliability then technologies based on less precisely controlled chemical 
processes. Of course, one of the most important products of mass-produced molecular-scale 
engineering will be extremely compact, efficient, and effective computing mechanisms.  

Thus, in spite of the long gate delays in cellular computing mechanisms, the fact that cells can 
reproduce and organize into precisely arranged and differentiated tissues means that we can use 
them as the (very slow) agents of molecular-scale manufacturing of macroscopic objects. It is the 
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resulting objects that we desire--they may contain electrical circuitry with picosecond cycle 
times. The biological systems are our fabrication assembly, with proteins as the building block, 
and with DNA as our programming mechanism (see Figure 5).  
 

 
  Figure 5 DNA Computing for Network Optimization 

 
 

1.6 Quantum Aspects of Bio-systems 
 
As described above, the physical processes occurring in classical electronic systems and bio-
systems exhibit, in their computational characteristics, a significant degree of analogy even 
though the processes are completely different.  The gate and switch functions that shape the 
world of computation are realizable in both systems, showing that bio-computers are as feasible 
as the silicon computers so inseparably tied to our technology-driven life style. 
 
Parallel to the development of the computational ability of bio-systems such as DNA and 
Membrane systems, the search for the ultimate security and speed of information dissemination 
has led to the vigorous research on quantum information that we see around us today. 
 
The classical bits 0 and 1 used in classical computation are two distinct states analogous to the 
two sides of a coin.  A quantum bit or “qubit” on the other hand can exist in a “continuum” of 
states between |0〉 and |1〉, which collapses to 0 or 1 when measured. To state more specifically, it 
can be in a state such as  (1/√2) |0〉 +(1/√2) |1〉 with a 50% probability (1/√2)2 of giving the result 
0 and  50% probability (1/√2)2  of giving the result 1.  This “impossible to witness, but available 
to compute 0 and 1 in many different ways” existence for qubits enables the computing process 
to have much greater options. Practical examples include the spin states of the atom, the 
polarization states of the photon, the orbital angular momentum states of the photon. The 
biological bits, for the time being, seem to have equivalence with the classical situation in that 
the processes involved therein enable the ability to distinguish and maintain two distinct values 
of some physical representation of a signal as required for digital abstraction.  Does the 
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biological process exhibit any of the continuum effect observed in the quantum information 
process?  
 
Gates and switches are the building blocks of computers and those need to be investigated for the 
biological processes.  The simplest NOT gate is feasible in all three cases.  A comparison shows 
only one possibility for classical systems, whereas there are many possibilities for a quantum 
NOT gate.  It can be summed up very nicely with the statement “Any unitary matrix specifies a 
valid quantum gate” which means that, contrary to the existence of only one non-trivial single bit 
classical gate (0→1 or 1→0), there exist many non-trivial single qubit gates such as the Z-gate  
 
                            Z ≡ │    1    0   │ 
                                  │    0   -1   │        which leaves |0〉 unchanged and flips the sign of |1〉 
to yield -|1〉, and, 
 
the Hadamard Gate H  
 
                             H  ≡  (1/√2) │   1    0  │ 
                                                 │  0   -1   │ 
 
which turns a |0〉 into  (|0〉 + |1〉)/√2 (first column of H), halfway between |0〉  and |1〉, and turns 
|1〉 into(|0〉 - |1〉)/√2 (second column of H), which is also halfway between |0〉  and |1〉. Applying 
H twice does not change the state at all, so H2 is not a NOT gate. 
 
How does the biological NOT gate fit into this picture?  Do we look for greater versatility in it 
than what the classical gate offers? Is a hybrid system likely to exhibit some of the qualities 
expected of a quantum system? 
 
The reversible nature of the quantum phenomena (until measured?) has led to the Controlled 
NOT (CNOT) gate, such as the Toffoli and Fredkin reversible gates, for quantum computation 
using multiple qubits to perform in the roles of all the classical gates AND, OR, XOR, NAND, 
and NOR gates. 
 
Fault tolerance is another issue in both classical and quantum information; a host of error-
correction techniques have been designed.  How do biological circuits perform in a noisy 
environment?   

 

1.7 Architectures for mixed bio/quantum computing based on QCA model:  
 
The research project proposes a mixed methods approach, which includes biological/quantum 
computation and is based on the Quantum Cellular Automata (QCA) model (see Figure 6).  The 
concept of mixed biological/quantum architecture relies on the possibility of implementing 
Boolean logic as well as quantum logic by using cells.  An example of an expectation from such 
a process would be coupling of the quantum registers with a biological network consisting of 
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cells. The quantum/biological coupling being equivalent to a measurement, it must be controlled 
to ensure that the presence of the biological network is non-invasive while the quantum 
operations are being performed and efficient enough after their completion.  
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Figure 6:  An overview of the devices based on quantum effects 
 
Since any form of computing is basically a physical process which needs the laws of the nano-
world for clear explanation, it is obvious that any attempt on a bio-computer or a hybrid thereof 
will ultimately need some sort of quantum analysis.  This has been the driving factor behind the 
inclusion of the study of the quantum aspects of bio-systems. 
 
The proposed research should endeavor to find answers to the host of questions yet to be 
addressed, especially regarding a hybrid computing and information system. 
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Part II: The Bio-SAFE Architecture 

2.1 Introduction 
It is not difficult to imagine a future where billions of people regularly access applications 
running inside the global network as part of their daily lives.  To make this future a reality, 
network applications must overcome three critical challenges.  First, they must scale to handle 
the enormous demand placed upon them.  Second, they must adapt to dynamic user demand and 
network conditions.  Finally, network applications must survive partial failures and remain 
available to their users yet be secure enough to prevent outside attacks from hackers and 
crackers. 
  
Over millions of years of evolution, large scale biological systems, such as the bee or ant colony, 
have developed mechanisms that allow them to scale, adapt, and survive.  Consider the bee 
colony [17].  Bee colonies scale to a large number of bees because all activities of the hive are 
carried out without centralized control.  Bees act autonomously, influenced by local conditions 
and local interactions with other bees.  When building the hive, bees are guided only by the 
structure of the partially completed hexagonal cells around them.  There is no master bee that 
controls the building of the hive.  The bee colony also adapts to dynamic conditions, often to 
optimize its food gain relative to energy expenditure.  When the amount of honey in the hive is 
low, a large number of food gathering bees leave the hive to gather nectar from the flowers in the 
area.  When the hive is nearly full of honey, most bees remain in the hive and rest.  The bee 
colony is survivable because it is not dependent on any single bee, not even the queen bee.  
Therefore, the colony can still survive after a predator kills a number of bees.  In fact, the 
desirable characteristics of the bee colony, scalability, adaptability, and survivability, are not 
present in any single bee.  Rather, they emerge from the collective actions and interactions of all 
the bees in the colony.  
  
We believe that the challenges faced by future network applications have already been overcome 
in large-scale biological systems and that future network applications will benefit by adopting 
key biological principles and mechanisms.  Our initial effort at applying classical network 
principles and mechanisms to the design and implementation of highly secure, distributed 
network applications has produced the Secure Architecture for Extensible Mobile Internet 
Transport Systems (SAFEMITS) Architecture.  The SAFEMITS Architecture is essentially a 
“blueprint” as well as middleware for the design and implementation of highly secure, scalable, 
adaptive, and survivable/available network applications.  We are proposing extending the 
concept of SAFEMITS to using a biological system design which we have termed the Bio-SAFE 
Architecture.  The Bio-SAFE Architecture will be based on the principles and mechanisms that 
allow biological systems to scale, adapt, and survive.  The research objective is too provide a 
general model that guides the design of scalable, adaptive, and survivable/available network 
applications.  The middleware of the SAFEMITS Architecture consists of software components 
that aid the implementation of network applications.  The middleware implements critical 
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aspects of the paradigm so that applications implemented using the middleware will conform to 
the paradigm of the Bio-SAFE Architecture.     
 
 
 

                                      Figure 7. SAFEMITS Architecture Diagram 
 
Using the SAFEMITS Architecture, we have successfully demonstrated a distribution 
application called Battle Space and simulated its performance.  We believe it is possible to 
extend the potential for SAFEMITS through the use of the biologically inspired approach.  We 
continue to simulate, design, and implement other applications using the SAFEMITS 
Architecture in order to increase our understanding of the power and limitations of this approach.   
   

2.2  Bio-SAFE Architecture 
The Bio-SAFE architecture is a paradigm as well as middleware for the design and 
implementation of scalable, adaptive, and survivable/available network applications.  The 
paradigm is based on the principles and mechanisms that allow biological systems to scale, 
adapt, and survive.  While the paradigm guides the design of a network application, the 
middleware aids the implementation of the application by providing software components, 
namely mobile entities or ME’s and Bio-SAFE platforms.  Mobile-entities are autonomous 
mobile agents that are used to implement network applications.  Bio-SAFE platforms provide 
execution environments and support services for the mobile-entities.  Section 2.3 describes the 
key biological principles and mechanisms that are the basis for the paradigm of the Bio-SAFE 
Architecture.  Section 2.4 describes the middleware of the Bio-SAFE architecture.   
 
2.3  A biological paradigm 
After surveying different types of large-scale biological systems [4],  [5],  [7],  [8],  [16],  [17], 
we have extracted a number of principles and mechanisms that enable them to scale, adapt, and 
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survive1.  In the paragraphs below, we describe these biological principles and mechanisms and 
show that they are the basis for the paradigm of the Bio-SAFE Architecture. 
   
Emergence.  Many desirable characteristics of large-scale biological systems, including 
scalability, adaptability, and survivability, are not present in any single biological entity.  Instead, 
desirable characteristics emerge from a group of interacting biological entities.  Therefore, in the 
Bio-SAFE Architecture, applications are implemented using a collection of autonomous mobile 
agents, called mobile-entities (described in Section2.2.2).  The desirable characteristics of 
applications, such as scalability, adaptability, and survivability/availability, emerge from the 
collective actions and interactions of their constituent mobile-entities. 
   

Standard mobile nodes

“Super” mobile nodes

EXTERIOR CONTROL, 
MANAGEMENT, AND 
REPORTING NODE

ADHOC  “ARRAY”
Wireless 
communications

Point-to-point (or wireless) 
communications

 
Figure 8: Distributed mobile network architecture 

 
 
Autonomous actions based on local information and local interactions.  Individual biological 
entities in large-scale biological systems act autonomously.  They may be influenced by 
conditions in their local environment or by interactions with a limited number of other biological 
entities; however, there is no “master” entity that collects information and controls the actions of 
others.  In the Bio-SAFE paradigm, mobile-entities also act autonomously based on local 
information and local interactions with other mobile-entities.  In the Bio-SAFE paradigm, “local” 
is defined as both spatially adjacent and numerically limited.  For example, a Mobile-entity may 
obtain information regarding the Bio-SAFE platforms that are adjacent to the Bio-SAFE 
platform it is currently on (spatially adjacent locality) and information regarding a limited 
number of other Bio-SAFE platforms that may be in distant parts of the network (numerically 
limited locality).  Similarly, a Mobile-entity can interact with other mobile-entities on the same 
Bio-SAFE platform as itself (spatially adjacent locality) and with a limited number of other 
                                                           
1 We are continuing our study of large scale biological systems in order to find other principles and mechanisms.  However, we 
believe the biological principles and mechanisms that we have extracted thus far provide an adequate basis for our initial work. 
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mobile-entities on possibly distant Bio-SAFE platforms (numerically limited locality).  We 
believe that autonomous mobile-entities using local information and local interactions greatly 
enhance the scalability of an application because they may be replicated throughout the network.   
 
Birth and death as expected events.  Biological entities regularly die from various causes, e.g. 
starvation, old age, or predation.  However, the biological system survives because the death of 
biological entities is compensated by the birth of new biological entities.  In the Bio-SAFE 
Architecture, applications are also survivable because they are implemented using multiple 
mobile-entities that can replace each other.  When a Mobile-entity crashes or dies, other mobile-
entities may reproduce to maintain the Mobile-entity population.  As a result, the application 
remains available to users. 
   
Energy and adaptation.  In the biological world, biological entities adapt their actions to 
maximize their energy gain while minimizing their energy expenditure.  Biological entities that 
cannot collect enough energy to support their normal life functions will die of starvation.  
Biological entities that are able to collect and store an abundance of energy are more likely to 
reproduce.  In the Bio-SAFE Architecture, mobile-entities collect energy2 from human users or 
other mobile-entities.  They must also give energy to Bio-SAFE platforms (described in Section 
2.4.1) in order to execute.  Like biological entities, mobile-entities also try to maximize their 
energy gain while minimizing energy expenditure.  If a mobile-entity exhausts its energy units, it 
will not be allowed to execute by the Bio-SAFE platform, i.e. it dies of starvation.  Mobile-
entities with an abundance of stored energy are also more likely to reproduce.  Because energy 
plays an important role in the lifecycle of mobile-entities, mobile-entities (and hence, the 
applications that they form) are forced by energy considerations to adapt to user demand and the 
network environment. 
   
Natural selection and evolution.  In the biological world, evolution occurs as a result of genetic 
diversity (created by crossover and mutation) and natural selection.  Crossover, mutation, natural 
selection, and evolution are also present in the Bio-SAFE Architecture.  When a Mobile-entity 
reproduces with another Mobile-entity, their behaviors (described in Section 2.4.2.2) randomly 
recombine (crossover) to form the child’s behaviors.  The child’s behaviors may also contain 
mutations.  Natural selection occurs because mobile-entities that exhaust their energy units are 
not allowed to execute (they die), and mobile-entities with an abundance of energy units are 
more likely to reproduce.  Therefore, if a mobile-entity’s behaviors enable it to collect and store 
more energy than other mobile-entities (implying that it is more useful and/or efficient), it will 
live longer and give birth to more mobile-entities similar to itself.  Over time, the mobile-entities 
that comprise an application will evolve to behaviors that are more useful and/or efficient.3  
   

                                                           
2  In the Bio-SAFE Architecture, energy is equivalent to money.  However, the Bio-SAFE Architecture does not depend on a 
heavy weight electronic cash system to handle the energy/money or to prevent cheating.  There are light weight techniques that 
reduce the incentive to cheat or reduce the risk of fraud.  For example, energy units can be made almost worthless (e.g. 1 energy 
unit = 1/10000 of a cent).  Strong security measures are used on large transactions only.  Energy units can also represent 
something valuable (e.g. frequent flyer miles, access to services or resources) and yet be not redeemable for money.  A complete 
discussion of light weight techniques to handle energy/money in the Bio-SAFE Architecture is beyond the scope of this research.   
3  Because random crossover and mutation may require a long period of time to “discover” useful/efficient behaviors, human 
designers may insert mobile-entities with new, useful/efficient behaviors into the network to increase the speed of evolution.   
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2.4 The biological middleware 
The previous subsection described the biological principles and mechanisms that are the basis for 
the paradigm of the Bio-SAFE Architecture.  This subsection describes the middleware which 
we are interested in developing for the Bio-SAFE Architecture.  The Bio-SAFE middleware is 
necessary to implement critical aspects of the paradigm so that network applications 
implemented using the middleware will conform to the paradigm of the Bio-SAFE Architecture.  
The middleware as envisioned will consist of two components, the Bio-SAFE platform and the 
mobile-entity, which are described below. 
   
2.4.1 Bio-SAFE platform 
Bio-SAFE platforms will provide execution environments and support services for mobile-
entities.  Our definition of a Bio-SAFE platform is any networked hardware device that provides 
a virtual machine interface (e.g. the Java Virtual Machine) and will run the Bio-SAFE platform 
software.  The Bio-SAFE platform software will contain functionality and services not present in 
the virtual machine.  These functionality and services are described below.   
 
Resource Control: The Bio-SAFE platform software will provide resources, e.g. CPU time, 
memory, disk space, network bandwidth, to mobile-entities in exchange for energy units.  When 
a Mobile-entity is created/born, it is given energy units by the system administrator who created 
it or by its parent mobile-entities.  As explained in Section 2.3, a Mobile-entity may receive 
additional energy units from users or other mobile-entities during its lifetime.  Mobile-entities 
use their energy units to secure resources from the Bio-SAFE platform.  If a Mobile-entity 
exhausts its energy units, it will not be allowed to execute on the platform and the disk and 
memory resources that contain its code and data will be freed, i.e. the Mobile-entity dies of 
starvation.  By “killing” mobile-entities when they exhaust their energy units, the platform 
software contributes to the process of natural selection in the network environment, which is a 
critical aspect in the paradigm of the Bio-SAFE Architecture. 
   
Mobile-entity Scheduling: Assuming that a Mobile-entity has purchased sufficient resources, 
the platform software schedules the Mobile-entity for execution when an event of interest to the 
Mobile-entity occurs.  For example, the Mobile-entity will be scheduled for execution when a 
message for the Mobile-entity arrives.  If the Mobile-entity set a timer using the timer system 
service, then the Mobile-entity will be scheduled for execution when the timer expires. 
  
System Services: The platform software will provide system level services that mobile-entities 
cannot perform directly, for example, migration, reproduction, and event notification.  Since 
these services consume CPU, memory, and/or network resources, mobile-entities must pay 
additional energy units to the platform software to receive these services.  
  
Information Services: The platform software will also provide information regarding the local 
environment to all mobile-entities on the platform.  Some examples the information provided by 
the platform software will be the location of the platform, a list of mobile-entities on the 
platform, and a list of neighboring Bio-SAFE platforms to which the Mobile-entity can migrate.  
Consistent with the paradigm of the Bio-SAFE Architecture, the platform software will not 
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provide global information, such as a list of all other mobile-entities in the network or the 
locations of all other Bio-SAFE platforms.   
 
2.4.2 Mobile-entity 
The mobile-entity is an autonomous mobile agent, analogous to an individual bee in a bee 
colony.  In the Bio-SAFE Architecture, multiple interacting mobile-entities are used to 
implement an application.  The Mobile-entity can be logically organized into attributes, 
behaviors, and body.  These three parts are described below.  
  
2.4.2.1 Attributes 
Attributes are variables that describe the Mobile-entity.  Some examples are ownerName, 
uniqueID, timeBorn, and energyLevel.  These variables have remotely accessible interfaces that 
allow human users or other mobile-entities to read their values.  OwnerName, uniqueID, 
timeBorn, and energyLevel are a very small sample of the attributes that a Mobile-entity may 
have.  We believe that creating a rich set of attributes is critical to enabling and promoting 
interesting interactions among mobile-entities.  
  
2.4.2.2 Behaviors 
Mobile-entity behaviors consist of executable code that implement the functionality of a Mobile-
entity and control its autonomous actions.  Mobile-entities may have arbitrary numbers of 
behaviors.  In this subsection, we first describe some possible Mobile-entity behaviors.  We then 
describe the internal structure of Mobile-entity behaviors and explain how this structure allows 
mobile-entities to adapt and evolve in the network environment.  We conclude this subsection 
with an extended example of a Mobile-entity behavior.   
 
Below are descriptions of some possible Mobile-entity behaviors.  It is entirely possible that 
upon experimentation we will discover that Mobile-entities may have behaviors different from 
those described below.  
  
Receive Event: The Bio-SAFE platform software will invoke this Mobile-entity behavior when 
an event of interest to a Mobile-entity occurs.  The Receive event behavior then invokes other 
Mobile-entity behaviors to process the event.  For example, if the event is “received message”, 
then the Receive event behavior invokes the Receive message behavior (described below) to do 
further processing of the message.  If the event is “timer expired”, then this behavior invokes the 
set timer, expend energy, migration, reproduction, relationship, and death behaviors.  
  
Set Timer: This behavior enables a Mobile-entity to request a timer event notification from the 
Bio-SAFE platform software.  This behavior ensures that mobile-entities will execute on a 
periodic basis so that they may decide whether they want to perform certain actions, such as 
migration or reproduction. 
  
Expend Energy: This behavior enables a Mobile-entity to use its energy units to buy resources 
from the Bio-SAFE platform software. 
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Migration:  This behavior enables a Mobile-entity to determine whether it should migrate and 
which Bio-SAFE platform to migrate to.  When a Mobile-entity decides to migrate to another 
Bio-SAFE platform, it invokes the migration service of the Bio-SAFE platform to perform the 
actual migration. 
  
Reproduction:  Mobile-entities can reproduce sexually or asexually.  This behavior enables a 
Mobile-entity to determine whether it should reproduce, and in the case of sexual reproduction, 
which Mobile-entity to reproduce with.  When a Mobile-entity decides to reproduce, it invokes 
the reproduction service of the Bio-SAFE platform software to perform the actual reproduction.  
In both sexual and asexual reproduction, the parent or parents give some of their energy units to 
the child.  Note that energy is conserved during reproduction, i.e. no energy is created as a result 
of reproduction. 
   
Receive Message: This behavior is invoked by receive event behavior when a message for the 
Mobile-entity arrives.  The Receive message behavior determines the message type and then 
invokes the appropriate behavior (e.g. relationships or service, described below) to process the 
message. 
  
Send Message: This behavior is invoked by other Mobile-entity behaviors to send a message to 
a user or other Mobile-entity.  
  
Relationships:  This behavior enables a Mobile-entity to establish and maintain a limited 
number of relationships with other mobile-entities.  Mobile-entities establish relationships under 
various circumstances.  When a Mobile-entity detects another Mobile-entity on its Bio-SAFE 
platform, it can send a message requesting the establishment of a relationship to that Mobile-
entity.  Two mobile-entities can be introduced to each other by a third Mobile-entity, and parent 
mobile-entities establish relationships with their child Mobile-entity when it is born.  Once a 
relationship is established between two mobile-entities, periodic relationship maintenance 
messages are exchanged.  These messages contain information about the sender, such as its 
current location, energy level, age, and number of relationships it has.  Mobile-entities use their 
relationships for a variety of purposes.  For example, a Mobile-entity can detect the death of 
another Mobile-entity when it fails to respond to a certain number of relationship maintenance 
messages.  A Mobile-entity can also gain information about the mobile-entities that it has 
relationships with because the relationship maintenance messages contain information about the 
sender.  Consistent with the principle of local interactions described in Section 2.3, mobile-
entities have a limited number of relationships and therefore can only interact with a limited 
number of other mobile-entities.  
  
Service:  This behavior enables a Mobile-entity to perform a service for human users or other 
mobile-entities.  The recipient of the service must pay the Mobile-entity that performed the 
service with energy units.  One possible service behavior is accepting requests for web pages and 
then delivering the web pages using the HTTP protocol.  This service behavior is used by Aphid 
mobile-entities, described in Section 2.5.  
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Death:  In Section 2.4.1, we stated that the resource control function of the Bio-SAFE platform 
kills mobile-entities when their energy units are exhausted.  However, the death behavior enables 
a Mobile-entity to determine whether it should die before it exhausts its energy units. 
 
.   

Figure 9a: Simple tree structure   Figure 9b: More complex tree structure 
 
 
For example, a Mobile-entity may choose to die because of old age or lack of use by human 
users. 
 
Having described some possible Mobile-entity behaviors, we now describe the internal structure 
of Mobile-entity behaviors.  Mobile-entity behaviors may contain blocks of executable code, 
numerical values, arithmetic operators, and control flow operators arranged in a tree structure.  
This tree structure is described by Koza in [11].  When a behavior is invoked, the tree is 
evaluated in depth first order.  A tree structure allows executable code, numerical values, 
arithmetic operators, and control flow operators to be arranged in an infinite variety of ways to 
implement arbitrary functions.  One simple arrangement is shown in Figure 9a.  The node 
labeled “Action” is a block of executable code.  Behaviors implemented with the arrangement 
shown in Figure 7 will execute its action code block whenever it is invoked.   
 
A more complex arrangement is shown in Figure 9b.  In Figure 9b, the nodes labeled “Factor” 
are blocks of executable code that return a numerical value based on local information or local 
interactions.  Nodes labeled “Weight” are numerical values.  The weight nodes derive their name 
from the fact that their values are multiplied with the return values of their associated factors.  
The node labeled “Threshold” is also a numerical value.  A behavior implemented with the 
arrangement shown in Figure 9b will execute its action code block only if the sum of the 
products of the weighs and factors are greater than the threshold.  
  
Implementing Mobile-entity behaviors using tree structures allows them to be easily modified in 
two ways.  First, designers can modify a Mobile-entity behavior by adding factors, removing 
factors, or by changing the values of the weights and threshold.  Second, the platform software 
can perform (automatic) crossover and mutation when mobile-entities reproduce.  Crossover is 
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implemented by grafting the tree structures of the parents’ behaviors onto each other at random 
points to form the child’s behaviors.  Mutation is implemented by copying the weights and 
thresholds from the parents’ behaviors with random changes to the child’s behaviors.  Since 
Mobile-entity behaviors are easily modified (by humans and automatically by the platform 
software), it is possible for applications to consist of mobile-entities with different or diverse 
behaviors.  We believe that this diversity of behaviors, coupled with the natural selection process 
in the Bio-SAFE Architecture, will cause Mobile-entity behaviors to become more useful and/or 
efficient through evolution.  

 
Figure 10: Example reproduction 
behavior 
 

 
 
 
 
 
 
 
 
 
 

Factor Name/ 
Threshold 

Weight/ 
Threshold 
Value 

Reproduction Request Rate 1.0 
Reproduction Stored Energy 0.8 
Reproduction Threshold 9.9 
 
Table 1: Factors, weights, and thresholds 
of example reproduction

We conclude this subsection with an extended example of a Mobile-entity behavior.  Figure 10 
depicts a possible mobile-entity reproduction behavior and its tree structure.   The behavior 
consists of a reproduction request rate factor with a weight of 1, a reproduction stored energy 
factor with a weight of 0.8, and a reproduction threshold of 9.9.  The factors, weights, and 
threshold of the example reproduction behavior are summarized in  
Table 1.  Even though the tree structure in Figure 10 more fully describes a behavior, we will use 
the table format in the remainder of the section because it is more compact.  When the 
reproduction behavior is invoked, the reproduction request rate factor is first evaluated (recall 
the tree is evaluated in depth first order).  The reproduction request rate factor returns a value 
from 0 to 20 based on the Mobile-entity’s request rate.  The return value of this factor is 
multiplied by its weight (1).  The reproduction stored energy factor, which returns a value 
between –100 and 0 based on the Mobile-entity’s energy level4, is then evaluated.  The return 
value of this factor is multiplied by its weight (0.8).  The products are summed, and if the sum is 
greater than the reproduction threshold (9.9), the reproduction behavior will request the 
reproduction service from the platform software.  Because the reproduction request rate factor 

                                                           
4  The return values of the factors and the values of the weights and threshold were arrived at through ad-hoc calculations and 
experimentation.  After gaining more experience with the Bio-SAFE Architecture, we hope to provide basic guidelines for the 
design of mobile-entity behaviors.   
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returns positive values, this factor encourages the reproduction behavior.  Conversely, because 
the reproduction stored energy factor returns negative values, it inhibits the reproduction 
behavior.  A factor may also return both positive and negative values. 
   
2.4.2.3 Body 
The body of the Mobile-entity will contain data.  The data stored in the body of a Mobile-entity 
is related to the service behavior of that Mobile-entity.  For example, if the service behavior of a 
Mobile-entity is to serve web pages, its body will contain web pages.  When a Mobile-entity 
reproduces, the offspring is an exact copy of the parent’s body.  When two mobile-entities 
reproduce, the offspring may contain an exact copy of either parent’s bodies or both parents’ 
bodies.  
 

2.5 Related Work 
Researchers in the fields of Artificial Life [2][13][15] and Complexity [9][20] have studied 
large-scale biological systems and the behaviors of simple entities within those systems.  That 
work has been concentrated in imitating life in a computer and understanding the basic 
processes.  The Bio-SAFE Architecture applies the findings of those researchers in a new 
domain: the design and implementation of scalable, adaptive, and survivable/available network 
applications.   
 
This project will not be the first to use biological principles in the design of network 
applications.  [3] [10] used the immune system as a model for network security and intrusion 
detection.  [1] [6] draws inspiration from the biological world in the design of scalable sensor 
networks.  While those works parallel this project, the Bio-SAFE Architecture addresses a 
broader range of applications.  It is also more open because the biological middleware (Bio-
SAFE platforms and mobile-entities) allow other researchers to design and implement novel 
applications.   
 
While there are similarities between the Bio-SAFE Architecture and active networks [18], they 
are different because they operate at different levels in the protocol stack.  In active networks, 
executable code is injected into the network to modify behaviors of network elements at or 
below the transport layer.  In the Bio-SAFE Architecture, mobile-entities containing executable 
code are also introduced into the network; however, mobile-entities act at the application layer 
and do not modify network layer behaviors.   
 
Although the Bio-SAFE Architecture will make use of mobile agent middleware, it is different 
from the current mobile agent middleware systems [12] [14] [19] because it includes a paradigm 
based on biological principles and mechanisms.  Network applications that conform to the 
paradigm of the Bio-SAFE Architecture will be able to scale, adapt to dynamic user demands 
and network conditions, survive failures, and remain available.   
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2.6 Future Work 
This part describes our concept for applying biological principles and mechanisms to the design 
and implementation of distributed network applications.  Although we do not have a complete 
understanding of the power and limitations of this biologically inspired approach, we believe that 
the biological extension to the previous research will prove to be a fertile area for many 
applications both military and non-military. It is proposed that large-scale biological systems 
should be studied, paying particular attention to how differentiated entities self-organize to form 
groups and/or hierarchies.  We believe there are principles and mechanisms at work in this 
process that has relevance for the design of network applications.  One needs to experiment, 
analyze and refine existing Mobile-entity behaviors by simulating conditions under different 
scenarios.  In so doing one should design and document additional Mobile-entity behaviors that 
allow mobile-entities to create a rich web of relationships that span the global network.  This 
web of Mobile-entity relationships can used to create a completely decentralized Mobile-entity 
directory system.   
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PART III: Development of a P System with Active Membranes for 

Application in a Bio Computing and Information System. 
                                                                                                                           

 3.1 Introduction 
 
The P system is a general distributed model, highly parallel, based on the notion of a Membrane 
Structure. Such a structure consists of several Cell-like membranes recurrently placed inside a 
unique “Skin” membrane. In the regions delimited by the membranes there are placed Objects. 
The objects can be transformed into other objects, can pass through a membrane or can dissolve 
the membrane in which it is placed. The P systems could be of different types, such as with 
Labeled membranes, Polarized membranes or Active membranes.  
 
In the P System (21,22), we start with a certain number of objects in certain membranes and let 
the system evolve; if it will halt (no object can further evolve), then the computation is finished, 
with the result given as the number of objects in a specified membrane. If the development of the 
system goes for ever, then the computation fails to have an output. The system utilizes a Priority 
relation between evolution rules. 
To enhance the parallelism of the P system, splicing of the membrane can be considered. The 
technique was originally presented by T. Head (23). This approach is very useful from the point 
of view of computational complexity. For example the Satisfiability problem for propositional 
formulas (in short the SAT problem) can be solved in linear time in such a frame-work. 
 

3.2 The P Systems 
 
The P system described above can be of different forms, such as:  
 

1) P systems with Labeled Membranes 
2) P systems with Polarized Membranes 
3) P Systems with Active Membrane 

 
 
A brief description of the different types of P systems mentioned above is given below:  
 
3.2.1 P Systems with Labeled Membranes 
 
The basis of this model is the fact that the parts of a biological system are well delimited by 
various types of “membranes”, in the broad sense of the term, starting from the membranes 
which delimit the various intra-cell components, going to the cell membrane, and then to the skin 
of organisms, and ending with more or less virtual “membranes” which delimit, for instance, 
parts of an eco-system.  
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3.2.2 P Systems with polarized Membranes 
 
This P System uses a more realistic approach compared to the P System described in the 
previous section. In real cells, the molecules can pass through membranes mainly because of 
concentration difference in neighboring regions, or by means of electrical charges (ions can be 
transported in spaces of opposite polarization). This last variant is a much more restricted 
possibility as compared with the specification of the target membrane by its label: we only have 
two labels, + and -, associated in a non-injective way with the membranes. However, we know 
from the point of view of computational completeness that systems with three membranes 
suffice. Three membranes means a skin membrane and two inner membranes which can be 
labeled with + and -. Consequently using only polarized membranes we can still obtain 
computational completeness  
                                                                      
3.2.3 P Systems with Active Membranes 
 
In the P Systems described in the previous sections, it is assumed that the number of membranes 
can only decrease during a computation, by dissolving membranes as a result of applying 
evolution rules to the objects present in the system. 
 
A natural possibility is to let the number of membranes also to increase during a computation, for 
instance, by division, as it is well known in biology. Actually from bio-chemical point of view, 
the membranes are not at all passive, like the membranes considered in the models discussed 
earlier. For example, the passing of a chemical compound through a membrane is often done by 
a direct interaction with the membrane itself (with the so-called protein channels or protein 
gates present in the membrane); during this interaction, the chemical compound, which passes 
through the membrane, can be modified while the membrane itself can in this way be modified 
(at least locally). 
 
In P Systems with Active Membranes (24,25) the observation mentioned above, is used and the 
membranes play the central role in the computation. In this type of system, the evolution rules 
are associated both with the objects and the membranes, while the communication through the 
membranes is performed with the direct participation of the membranes; moreover the 
membranes can not only be dissolved, but they also can multiply by division. An elementary 
membrane can be divided by means of an interaction with an object from that membrane. Each 
membrane is supposed to have an “electrical polarization”, one of the three possible: positive, 
negative, or neutral. If, in a membrane, we have two immediately lower membranes of opposite 
polarizations, one positive and one negative, then that membrane can also divide in such a way 
that the two membranes of opposite charge are separated; all membranes of neutral charge and 
all objects are duplicated and a copy of each of them is introduced in each of the two new 
membranes. The skin is never divided. 
 
In this way, the number of membranes can grow, even exponentially. As expected, by making 
use of this increased parallelism we can compute faster .For example, the SAT problem can be 
solved in this framework in linear time. 
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3.3 Future Work 
 
The future research work on P system with Active Membranes should address the following: 
1) Develop the scientific and mathematical basis of the model. 
2) Develop the algorithms and the codes for the model. 
3) Identify the Bio-Chemical experiments necessary for the implementation of the developed 

model in practice. 
 
 
Conclusions 
 
In conclusion the research has shown that the viability of a Bio Computing and Information 
System depends upon further research into the following areas: 
  
      1) Molecular Computation using Biological Cells: A Hybrid Approach . 
 
       2) The Bio-Safe Architecture: A Biologically inspired approach to the design of  
            secure, scalable, adaptive and survivable Distributed Network Applications. 
 
       3) Development of a P- System with Active Membranes. 
 
Therefore it is recommended that research be pursued in those areas. 
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