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ABSTRACT 

Design requirements for a small satellite (NPSAT-1) Attitude Determination and 

Control Subsystem (ADCS) is a three-axis stabilized spacecraft which requires a control 

attitude of +/- 1.0 degrees and knowledge attitude of +/- 0.1 degree.  Several design 

aspects are considered in development of attitude control systems for a small satellite, 

such as: spacecraft dynamics, space environment, disturbance torques, orbit type, and 

spacecraft complexity.  The ideal spacecraft's attitude sensor is a rate gyroscope, which 

provides rate information to the attitude control system.  In the case of NPSAT-1, due to 

budget constraints alternative sensors will be utilized, such as: a three-axis 

magnetometer, earth sensors, and a Global Positioning System (GPS).  A small satellite 

designed to have a three-axis stabilized, biased momentum system, must have a robust 

control system, and requires a momentum wheel to provide stiffness to maintain attitude, 

and magnetic torque rods on each axis.  The current design of NPSAT-1 uses all of these 

sensors to provide rate information for damping and stability to the control system that 

requires a complicated attitude control design.  The purpose of this attitude control design 

simulation is to investigate and propose a control law utilizing a single pitch momentum 

wheel and three magnetic torque rods.  A further proposal is to utilize a constant speed 

momentum wheel to avoid momentum damping and over speed, replace the pitch control 

with magnetic torquers, and develop a Kalman filter estimator to provide all the required 

angular rates. 
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DISCLAIMER 

The reader is cautioned that computer programs developed in this simulation may 

not have been exercised for all cases of interest.  While every effort has been made, 

within the time available, to ensure that the programs are free of computational and logic 

errors, they cannot be considered completely validated.  Any application of these 

programs without additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

Design requirements for a small satellite (NPSAT-1) Attitude Determination and 

Control Subsystem (ADCS) is a three-axis stabilized spacecraft that requires a control 

attitude of +/- 1.0 degrees and knowledge attitude of +/- 0.1 degree.  Several design 

aspects are considered in development of attitude control systems for a small satellite:  

spacecraft dynamics, space environment, disturbance torques, orbit type, and spacecraft 

complexity.  The ideal spacecraft's attitude sensor is a rate gyroscope, which provides 

rate information to the attitude control system.  In the case of NPSAT-1, due to budget 

constraints alternative sensors will be utilized: a three-axis magnetometer, earth sensors, 

and a Global Positioning System (GPS).  A small satellite designed to have a three-axis 

stabilized, biased momentum system must have a robust control system and requires a 

momentum wheel to provide stiffness to maintain attitude and magnetic torque rods on 

each axis.  The current design of NPSAT-1 uses all of these sensors to provide rate 

information for damping and stability to the control system that requires a complicated 

attitude control design.  The purpose of this attitude control design simulation is to 

investigate and propose a control law utilizing a single pitch momentum wheel and three 

magnetic torque rods.  A further proposal is to utilize a constant speed momentum wheel 

to avoid momentum damping and over speed, replace the pitch control with magnetic 

torquers, and develop a Kalman filter estimator to provide all the required angular rates. 

Specific to problems targeted by the simulations, external disturbance moments 

will cause errors in the spacecraft's attitude.  These errors will be kept within the required 

pointing limits if the attitude control system is properly designed.  The five major 

disturbance moments worth consideration are 1) Solar Pressure, 2) Gravity Gradient, 3) 
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Magnetic Moment, 4) Aerodynamic, and 5) Internal Inertia and Torque.  For the purposes 

of this paper, both magnetic and aerodynamic moments will be discounted.  For design 

simplicity, it will be assumed that the solar pressure moment can be modeled as a 

constant torque about each body axis. 

General design of the NPSAT-1 will be a three-axis stabilized, biased momentum 

system implementing four sensors and two actuators.  Because the spacecraft will be 

Earth oriented in a polar orbit, attitude control about all three axes is determined to be 

within one degree (+/-1.0º).  The attitude knowledge, however, must be within 0.1 

degrees (+/-0.1º) with jitter minimized to less than one milli-radian at 1-kHz.  Navigation 

will be accomplished onboard via a GPS receiver, and external spacecraft guidance is not 

anticipated. 

NPSAT-1 is designed with four information-gathering sensors and two actuators 

to guide and control its movement.  These sensors are: 3-axis magnetometer, 3-axis star 

sensor, earth sensors, and a GPS receiver.  These four sensors are defined to gather 

information to feed the information stream supporting the Kalman filter and the ADCS. 

In addition to the four sensors, NPSAT-1 is designed with two actuators to guide 

and control its movement.  These are the Pitch Momentum Wheel and the Magnetic 

Torquers.  A single momentum wheel will be placed along the pitch axis of the NPSAT-

1.  Angular momentum generated by the spinning wheel will provide gyroscopic stability 

to the spacecraft about the roll and yaw axes.  Pitch will be controlled by spinning the 

wheel up or down.  Roll and yaw as well as momentum dumping is to be controlled by 

the torque rods via control laws.  A set of three torquers, one on each axis, will be 
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employed to initially orient the NPSAT-1.  They also are to be used to spin up the pitch 

momentum wheel for momentum dumping and to control roll and yaw via control laws. 

The results obtained in this thesis are quite extraordinary.  The controller uses a 

magnetic torque actuator to create the required torques.  The linear principle of 

superposition allowed removal of wheel speed changing, creating a constant speed wheel.  

The system was well behaved.  The orbit inclination is also a concern.  This approach 

will probably have problems with equatorial or polar orbits. 

This thesis shows that a properly designed optimal rate estimator Kalman filter is 

effective and able to estimate body rate from a single star sensor.  In addition, the initial 

results prove that a single sensor coupled with a proper rate estimator design can be used 

as a backup, or even primary, attitude determination process. 

For NPSAT-1, a single star sensor estimator will be an addition to the control 

system.  This approach is necessary, especially during the initial launch, where after 

initial launch the spacecraft will be tumbling at some pitch, roll, and yaw rates.  The 

magnetometer and the magnetic torquers control, but would require, an additional vector 

which the star sensor can provide. 
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I. INTRODUCTION 

The micro-satellite space industry has grown at an alarming rate over the last 

decade and will continue to develop into an advanced and sophisticated space 

marketplace.  The majority of small satellites in orbit or under development were 

designed and manufactured by universities in collaboration with Aerospace Corporation. 

To maximize revenue, today's satellites are designed to have extended lifetimes 

and precise attitude control systems.  The majority of satellites in orbit is exceeding their 

life cycles and operating beyond their designed lifetime.  However, some of the satellite 

components are developing problems directly related to the degradation of their critical 

components, such as the gyroscopic rate sensors.  These rate sensors are a critical element 

that is vital to overall functioning and provides an attitude determination and control 

system (ADCS) to the spacecraft.  To counter this problem, rate estimator development is 

needed from different sensor sources that fuse multiple data streams together for use as 

an attitude determination and control system.   

Many factors can shorten the lifetime of a satellite, such as: space environment, 

disturbance torques, orbit type, and spacecraft complexity.  A spacecraft becomes 

complex when deployment mechanisms and moving parts are incorporated into its 

design.  A rate gyroscope, for example, is a constantly spinning piece of equipment, 

which provides rate information to the attitude determination and control system.  By 

way of example, if a satellite is designed to have an operational life of 15 years, the 

reliability of its rate gyroscope decreases over the operational lifetime, more so than a 

non-moving or solid-state piece of hardware.  Rate information provides robustness, 
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damping, and stability to a control system.  If this stability is lost, a secular disturbance 

torque could conceivably destabilize the satellite [1]. 

In the project that this paper is based on, students at the Naval Postgraduate 

School designed a micro-satellite functioning as a space-borne platform for multi-spectral 

imaging.  NPS Space Systems Engineering students designed the satellite for the Naval 

Postgraduate Satellite program (NPSAT-1) as a research, design, fabrication, testing, 

integration, launch, and on-orbit implementation of a Low Earth Orbiting (LEO) satellite.  

The satellite’s mission was conceptualized in support of a science payload dedicated to 

multi-spectral imaging of the earth's Aurora. 

This paper will discuss in some detail the design of two of the main components 

of the NPSAT-1, namely, the Attitude Dynamics Control System and Kalman Filter Rate 

Estimator.  The discussion of these components will include their conceptualization, 

theoretical origins, tests and simulations, a presentation of the results, conclusions drawn 

from the results and how they apply to the final design of NPSAT-1, and, suggestions for 

future research. 

A. SATELLITE FAILURE ISSUES AND IN-TIME SOLUTIONS 

Many satellites have been developed since Explorer I was launched in 1959, 

which perform a multitude of missions.  Mission possibilities include: communications, 

mapping, and weather observation.  Some of these satellites are spin-stabilized, dual spin-

stabilized, and three-axis stabilized.  Due to the growing need for power, most of today's 

spacecraft are three-axis stabilized and will be the type of spacecraft considered in this 

study.  Typically, communication satellites are in a near geo-stationary orbit for middle-

to-low latitude coverage, and in a Molniya orbit for high latitude coverage. 
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As we move into the 21st century, we become increasingly dependent on satellites.  

If a spacecraft fails before its design life runs out, the resulting loss in revenue can be 

staggering.  Although many factors can contribute to spacecraft failure, the most common 

limiting factors are fuel, batteries, and solar cell degradation.  This, of course, is highly 

dependent upon the altitude and mission of the satellite.  For long duration missions, it is 

not uncommon for a rate gyroscope to fail.  This can be a critical failure if the satellite's 

attitude control laws require inputs from this device. 

Operational information and data received from a satellite are generally ignored 

until a critical outage occurs.  As an example, the unexpected and premature failure of the 

Galaxy IV spacecraft temporarily left millions of people without pager service.  This 

failure translates into a multi-million dollar loss of financial revenue for businesses 

highly dependent on this technology.  That is why when a satellite fails and its life 

expectancy is threatened, every effort will be made to save it. 

Recently, the SOHO spacecraft lost its orientation after suffering from multiple 

gyroscope failures.  With that, engineers were forced to create a software package that 

would override the failed hardware.  It took nearly six months to write and test the code 

before the control system of the billion-dollar satellite was restored as a successful 

uplink.  SOHO is now able to autonomously maintain proper attitude relative to the sun 

using its star tracker as the primary control sensor.  SOHO is testimony that after a 

certain hardware failure there will be a great need to develop software upgrades to current 

systems on orbit in order to extend its life cycle. 

A part of this research is to devise a reliable method of obtaining angular rates 

from a star tracker in the event of a gyroscope failure.  Since star sensors only measure 



4 

errors in angle, rates will have to be derived based on these measurements.  At first 

glance, it might seem reasonable to simply take the derivative of the angles to get the 

required rate information, but doing so would only amplify the noise effects of the sensor.  

Pseudo-rate modulators can be used to derive rates, but the accuracy of these modulators 

is strictly a function of sensor noise.  A Kalman filter however, can determine angular 

rates as well as reduce noise, which is inherent in any sensor. 

Spacecraft attitude determination algorithms traditionally relied only on rate 

gyros.  These gyros are highly reliable but deteriorate over time and degrade system 

performance dramatically as evident in the complete replacement of the gyros onboard 

the Hubble Space Telescope.  Recent advances in star trackers have allowed several 

research projects to develop Kalman filter algorithm simulations.  Such research utilizes 

the single most accurate instrument on spacecraft thus far, the star sensor. 

B. OVERVIEW OF NPSAT-1 ATTITUDE DYNAMICS CONTROL SYSTEM 
DESIGN 

The design of the Attitude Control System for NPSAT-1 was developed by 

students during the preliminary design phase of AA4871 Spacecraft Design II 

Engineering, with the assistance of Professor Barry Leonard.  During this phase, certain 

design criteria were specified based on the mission requirements of the spacecraft.  The 

proposed control law, modeling, and simulation using MATLAB were developed during 

AA3818 Spacecraft Attitude, Dynamics, and Controls, as a design project with the 

assistance of Professor Barry Leonard.  The proposed MATLAB's SIMULINK block 

diagram of the attitude control system is shown below in Figure 1. 
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Figure 1: Attitude Control System (Systems Design Diagram) 

The goal of the project described in this paper required the proposal of a control 

law that can substitute magnetic torquers that use the Earth’s magnetic field in place of 

reaction jets. 

The following steps were required: 

• Add the magnetic field in orbital coordinates to the simulation. 

• Translate the field components into body coordinates. 

• Assume “ideal” magnetic torquers mx, my, and mz followed by a saturation 
characteristic. 

• Form the cross product of m = (mx, my, mz)T with the B body coordinates 
to generate the control torques Mc = (Mxc, Myc, Mzc)T. 

• Disconnect the reaction jet control torques from the spacecraft and replace 
it with the magnetic control torques. 

• Derive the magnetic torquers with the following control laws: 

o mx = 0 

o my = 0 

o mz = 0 
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• Remove the disturbance torques M = (Mdx, Mdy, Mdz)T and demonstrate 
acquisition from θ = 5°, φ = 5°, ψ = 5°.  If possible, acquisitions from 
large angles and perturbation torques should be performed. 

C. DESIGN OF KALMAN FILTER RATE ESTIMATOR 

In 1960, R. E. Kalman published his famous paper describing a recursive solution 

to the discrete-data linear filtering problem.  Since that time, due in large part to advances 

in digital computing, the Kalman filter has been the subject of extensive research and 

application, particularly in the area of autonomous or assisted navigation. 

In this paper, the Kalman filter will be applied to a rate estimator that is integral to 

controlling a small satellite.  The Kalman filter is an important component in satellite 

navigation because it has the potential to determine angular rates as well as reduce noise, 

which is inherent in any sensor.  A major part of this project, and as demonstrated in this 

paper, is the simulation of the Kalman filter and its interaction with the navigational 

components of the small satellite [2]. 

D. LITERATURE REFERENCE NOTE 

The primary literature source for this paper is the “NPSAT-1 Preliminary Design 

Report” dated September 15, 1999 [1] and noted in the list of references at the end of this 

paper.  Because of the pervasive use of this document throughout the project, the author 

does not explicitly cite each reference to this report. 
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II. SPACE ENVIRONMENT 

The space environment consists of all things related to being in space, such as 

radiation, the effects of the sun, and degradation of the satellite system itself.  A 

combination of the satellite’s mission and the space environment itself aid in determining 

the satellite’s orbit type.  Key factors in selecting a satellite’s orbit type is its altitude 

selection based on the satellite’s radiation environment and mission purpose.  More 

precisely, the satellite’s radiation environment undergoes a substantial change at about 

1000 kilometers.  Below this altitude, the atmosphere will quickly clear out charges 

particles so the radiation density is relatively low.  Above this altitude are the Van Allen 

belts of trapped radiation that can significantly reduce the lifetime of components. 

Mission orbits can therefore be separated into two types:  low earth orbits (LEO) 

below 1000 km. and geosynchronous orbits (GEO) that are above 1000 km.  Because the 

NPSAT-1 is designed to study the Earth’s aurora, a low earth orbit appears to be the most 

practical choice. 

Orbit selection is a trading process balancing the satellite’s mission assignment 

against such factors as payload size and weight, launch cost, and design lifetime.  Once 

we have selected the LEO orbit category as being the most reasonable, the orbit itself can 

be refined further.  There are two possibilities in orbit style that may be attractive:  a 

standard LEO that is almost circular, and a Molniya orbit that is semi-synchronous and 

eccentric.  The advantage of an eccentric orbit is that at apogee the satellite’s velocity is 

lower and offers more time at apogee.  Since we are studying the Earth’s aurora, this 

might be an attractive solution, as the satellite would have more time to record data if 
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positioned at apogee above the geographical area of the aurora.  These are the two orbit 

solutions covered in this research.  For purposes of clarity, both orbits are earth 

referenced. 

A. DISTURBANCE TORQUES 

External disturbance moments will cause errors in the spacecraft's attitude.  These 

errors will be kept within the required pointing limits if the attitude control system is 

properly designed.  The five major disturbance moments worth consideration are 1) Solar 

Pressure, 2) Gravity Gradient, 3) Magnetic Moment, 4) Aerodynamic, and 5) Internal 

Inertia and Torque.  For the purposes of this paper, both magnetic and aerodynamic 

moments will be discounted.  For design simplicity, it will be assumed that the solar 

pressure moment can be modeled as a constant torque about each body axis.  These 

moments were found to be [2], 

 ( )yzggx IIT −Ω= φ23 ,  
 ( )xzggy IIT −Ω= θ23 , (1) 
 0=ggzT .  

Note that the symbols in Equation (1) as well as all other symbols used in this 

paper are defined in the section LIST OF SYMBOLS detailed in the front-matter of this 

paper. 

1. Modeling Disturbance Torques 

The following disturbance torques was estimated using SMAD.  The total worst-

case disturbance torque was used to size the actuator components.  Additionally, a 

MATLAB and SIMULINK model of the ADCS sub-system that was generated took into 

account all of the disturbances discussed in the following subsections. 
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a) Magnetic 

The Magnetic Disturbance Torque is cyclic throughout orbit.  The 

magnetic torque is altitude dependent with higher torque at lower altitudes.  The torque 

can be estimated using the following equation, 

 ( )3
2

R
MDDBTm == , (2) 

where, 

D = Residual Dipole of the Spacecraft  = 2 A-m2 
B = Earth’s Magnetic Field ~ 2M/R3 (for a near-polar orbit) 
M = Earth’s Magnetic Moment = 9.00 x 1015 Tesla-m3 
R = Radius of Orbit = 6878 x 103 m (Altitude = 500 km) 

The worst-case Magnetic Field Torque was calculated to be 1.11 x 10-4 N-m. 

b) Aerodynamic 

The Aerodynamic Torque can be estimated using the following equation.  

This torque is altitude dependent and is at its worst for lower altitudes, 

 Ta = 0.5ρCdΑV2(Cpa - Cm),  (3) 

where, 

ρ = Atmospheric Density = 2.8 x 10-12 kg/m3 

Cd = Coefficient of Drag = 2.5 
A = Surface Area of Spacecraft = 1.0 m2 
V = Spacecraft Velocity = 7613 m/s 
(Cpa – Cm) = Center of Aerodynamic Pressure/Mass offset = 0.2 m 

The worst-case Aerodynamic Torque was calculated to be 1.52 x 10-5 N-m. 

c) Solar Radiation 

Solar Radiation Torque is a cyclic torque that varies throughout the orbit.  

This torque, however, was not dependent on altitude.  It was estimated using the 

following equation, 
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 ( ) ( )( )mpss
s CCiqA

c
F

Tsp −+







= cos1 , (4) 

where, 

Fs = Solar Constant = 1399 W/m2 
c = Speed of Light = 3 x 108 m/s 
As = Spacecraft Surface Area = 1.0 m2 

q = Reflectance Factor  = 0.7 
i = Angle of Incidence of Sun = 0 (worst case) 
(Cps – Cm) = Center of Solar Pressure/Mass offset = 0.2 m 

Using the worst-case values above, we obtain the Solar Radiation Torque to be a 

maximum of 1.59 x 10-6 N-m. 

d) Gravity Gradient 

In a Molniya orbit, gravity gradient moments will be greatest at perigee.  

The Gravity Gradient Torque is given by, 

 dmaxrT ggg ∫=
rrr

. (5) 

The gravitational acceleration is, 

 
3

rR

rRGMag rr

rr
r

+

+
−= ⊕

. (6) 

R
r

 is the distance to the center of mass of the satellite measured from the center of the 

Earth and it is given by, 

 3ôRRo =
r

. (7) 

Equation (7) expressed in body coordinates is, 

 o
ob

b RCR
rr

= . (8) 

For now, bR
r

will be written as, 

 321
ˆˆˆ bZbYbXRb ++=

r
. (9) 

Taking the cross product, we obtain 
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 321
ˆ)(ˆ)(ˆ)( byXxYbxZzXbzYyZRxr −+−+−=

rr . (10) 

From the binomial theorem, the following expression is obtained 

 
53

3
31

R
zZyYxX

R
rR ++

−=+
−rr . (11) 

It can be shown that the orbital angular velocity is just 

 
3R

GM ⊕=Ω . (12) 

Equations (9), (10), and (11) can be substituted into Equation (12) to get the following 

expression 

 ])([3 2
yzxyzyggx IIIIT −−−Ω−= θφ , 

 ])([3 2
xzxyzxggy IIIIT ++−Ω−= φθ , (13) 

 )(3 2
yzxzggz IIT θφ +Ω= . 

These three equations were derived using small angle approximations and ignoring 

second order terms. 

B. ATTITUDE DYNAMICS CONTROL SYSTEM (ADCS) GUIDANCE AND 
CONTROL CONCEPT 

The NPS Aurora Satellite (NPSAT-1) requires a scheme to sense disturbances and 

a method of reacting to disturbance.  This section discusses the general design concept 

for the ADCS. 

1. General 

The NPSAT-1 will be a three-axis stabilized, biased momentum system 

implementing four sensors and two actuators.  Because the spacecraft will be Earth 

oriented in a polar orbit, attitude control about all three axes is determined to be within 

one degree (+/-1.0º).  The attitude knowledge, however, must be within 0.1 degrees (+/-

0.1º), with jitter minimized to less than one milli-radian at 1-kHz.  Navigation will be 
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accomplished onboard via a GPS receiver, and external spacecraft guidance is not 

anticipated. 

2. Total Worst-Case Disturbance 

The worst-case external disturbance torque is calculated as the sum of the above 

external disturbance torques.  While this method may result in an over design of the 

ADCS, it accounts for the low probability event of all worst-case external torques 

occurring simultaneously and in the same direction.  Therefore, the total worst-case 

disturbance torque for NPSAT-1 is, 

 Td  = Tm + Ta + Tsp = 1.04 x 10-4 N-m.  (14) 

C. COMPONENTS 

NPSAT-1 is designed with four, information-gathering sensors and two actuators 

to guide and control its movement.  This section discusses each of the components 

required by the design concept for information gathering and control.  

1. Sensors 

There are four sensors defined to gather information for the NPSAT-1.  These are 

the Magnetometer, Star Sensor, Earth Sensors, and a GPS Receiver. 

a) 3-Axis Magnetometer 

A three-axis magnetometer will be used to detect Earth’s magnetic field to 

determine the NPSAT-1’s attitude to approximately 5-10 degrees accuracy.  Output 

magnetometer sensor will be used as the primary method of attitude determination after 

separation from the launch vehicle and initially orient the NPSAT-1.  Once initial 

orientation is completed, the Earth sensors will take over for final attitude acquisition.  

The magnetometer will also contain inputs to the magnetic torquers, to be discussed later. 
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b) 3-Axis Star Sensor 

A star camera will be used to automatically determine the NPSAT-1’s 

attitude in three axes.  This will be used as a backup method of initial acquisition.  The 

star sensor is limited to operate only when pointed at space without interference from the 

Sun, Earth, Moon, or other objects.  Accuracy of the star sensor is well above the 

requirement of 0.1 degrees and provides yaw information not available from the Earth 

sensors.  The star sensor could provide attitude knowledge a majority of the time, in and 

out of eclipse, while a sun sensor would not operate. 

c) Earth Sensors 

Two sets of static infrared horizon sensors will provide the primary 

control input to the NPSAT-1’s actuators.  The first set will be ‘coarse’ sensors with a 

field of view of 20°.  This set will be used the for Earth horizon acquisition following 

initial orientation guidance from the magnetometers.  The second set of horizon sensors 

are ‘fine’ sensors and will be used for the primary control of the NPSAT-1’s attitude.  

Both sets of horizon sensors provide roll and pitch knowledge.  The coarse sensors are set 

to within 1.15°, while the fine sensors are set to within 0.15° accuracy. 

d) GPS Receiver 

A GPS receiver is to be used for obtaining NPSAT-1 location information.  

The receiver would aid the user in locating the satellite, and hence, the observables from 

the payloads.  The altitude of the NPSAT-1 is low enough that GPS satellites will be 

accessible to the GPS receiver.  Signals from this system will give ground controllers 

exact position and velocity of the satellite, thus providing accurate orbital information.  If 

GPS technology allows, it might be possible to gain backup attitude information from 

differential GPS through judicious placement of 4 to 5 GPS antennas.  For example, an 
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antenna could be placed on the zenith face and on each tip of the unfolding solar array.  

Theoretically, this would provide the necessary spacing for spacecraft attitude to be 

calculated. 

2. Actuators 

In addition to the four sensors, NPSAT-1 is designed with two actuators to guide 

and control its movement.  These are the Pitch Momentum Wheel and the Magnetic 

Torquers.  A discussion of these actuators is the topic of this section. 

a) Pitch Momentum Wheel 

A single momentum wheel will be placed along the pitch axis of the 

NPSAT-1.  Angular momentum generated by the spinning wheel will provide gyroscopic 

stability to the spacecraft about the roll and yaw axes.  Pitch will be controlled by 

spinning the wheel up or down.  Roll and yaw as well as momentum dumping is to be 

controlled by the torque rods via control laws. 

b) Magnetic Torquers (Torque Rods) 

A set of three torquers, one on each axis, will be employed to initially 

orient the NPSAT-1.  They also are to be used to spin up the pitch momentum wheel, for 

momentum dumping, and to control roll and yaw via control laws.  The torque rods are to 

be double wound for redundancy. 

D. ATTITUDE CONTROL SYSTEM DESIGN SPECIFICATIONS 

The development of Spacecraft Attitude, Dynamics, and Controls design is to 

build a suitable attitude control law.  The attitude control system will be designed 

according to the following parameters.   

1. Satellite Specifications 

o LEO orbit 
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o Two earth sensors aligned with the body axes 

o One star sensor  

o Three-axis magnetometer 

o Global Positioning System (GPS) 

o Roll inertia, Ixx=24.67 kg-m2 

o Pitch inertia, Iyy=22.63 kg-m2  

o Yaw inertia, Izz=11 kg-m2 

o 550 km altitude, circular orbit 

o Kalman filter rate estimator (future development) 

2. Other Specifications 

o Nadir pointing to within +/- 1°  

o 4 arc-second noise level for each sensor 

o Three-axis stabilized 

o 1-year design life 

3. Assumptions 

o Small and large angle (up to 10 r/s) approximations 

o Orbital angular velocity and acceleration known for each sensor 
measurement 

o Constant solar pressure moments 

o No slewing requirement 

o Satellite is modeled as a rigid body 

4. Attitude Control System Design Considerations 

In order to achieve 1.0° pointing accuracy, a constant speed momentum wheel, 

and three magnetic torquers whose momentum vectors coincide with the body axes will 
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be employed.  As disturbance moments cause errors in attitude, off-axis components of 

reaction wheel angular momentum will cause internal torques that must be accounted for. 
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III. MODELING AND SIMULATION 

Many types of kinematical transformation methods are in use in various types of 

research, but the most popular are: direction cosine matrices (DCM), Euler angles, and 

quaternion.  Quaternion is popular since it involves only a single rotation about an Eigen-

axis.  On the other hand, making small angle approximations and setting second order 

terms to zero, DCM's are easily employed and are used in this analysis.  Transformations 

from one frame to another are performed to facilitate calculations.  For example, the 

latitude and longitude of stars in the star catalog have all been programmed within a 

celestial frame, but measurements will be made in the body frame.  Therefore, proper 

attitude determination relies on a simple transformation [3]. 

In the field of attitude control, it is often required to express an inertial quantity as 

a body frame quantity.  For example, the inertial angular velocity derived from the Euler 

moment equations must be expressed in body coordinates, and then integrated to get the 

Euler angles.  The body frame, orbital frame, and inertial frame are the three reference 

frames are used in the derivation of equations of motion:.  The origin of these three 

frames will all be located at the spacecraft's center of mass.  In the right-hand set, the 

orbital reference frame, the Z-axis points at the center of the Earth, the X-axis points in 

the satellite's direction of motion, and the Y-axis is normal to the orbital plane, 

completing.  In the left-hand set, the body reference frame is attached to the spacecraft; 

therefore, the Euler angles represent the deviation of the body reference frame from the 

orbital reference frame.  On-board sensors measure these Euler angles.  The inertial 

frame remains fixed in Earth space such that the inertial Y-axis coincides with the orbital 
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Y-axis.  The celestial frame is an additional reference frame alluded to earlier.  The Z-

axis of this frame points north and the X-axis points in the direction of the vernal 

equinox.  Although the X-axis precesses (albeit very slowly), the assumption is that it is 

fixed in space. 

A. STAR SENSOR CHARACTERISTICS 

The star sensor model used in this simulation was designed in accordance with the 

specifications outlined in Chapter II.  Table 1 summarizes the characteristics of the star 

sensor and, for completeness; additional assumptions have been made that will be 

consistent with current technology. 

Technology Charged Coupled Device (CCD) 
FOV 10° x 10° 

Accuracy ~10 arcsec 
# Stars in Catalog 4000 

Sampling Rate 0.1 Hz (current technology is faster) 
Noise 4 arcsec (magnitude=6) 

Solar Exclusion Angle 30° w/sun shade 

Table 1: Star Tracker Characteristics. 

The noise level shown in Table 1 is inherent to the star tracker itself and it is treated as a 

zero-mean Gaussian white sequence. 

B. GPS SYSTEMS 

Three-axis attitude determination requires two separate line-of-sights (LOS) with 

angular separation near 90° for increased accuracy.  In this simulation, the optical axis of 

each star sensor will be aligned with the body axes, and at each discrete time step a star 

sensor will be selected at random for attitude determination.  Although this sequence of 

events permits only one LOS per time step, attitude is readily determined over 

consecutive time steps.  Since only one star will be in the sensor FOV at any particular 

time, measurements can only be made about two axes. 
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C. REFERENCE FRAMES 

The simulation discussed in this section makes use of three previously discussed 

frames of reference; the body frame, the inertial frame, and the orbital (LVLH) frame.  A 

fourth frame of reference, the earth frame, is introduced to complete the simulation.  

Orientation of the frames is as follows; the body frame is fixed to the spacecraft and 

aligned with the satellite's principal moments of inertia, the inertial frame is celestially 

fixed, while the angular velocities of the orbit and earth frames with respect to the inertial 

frame, respectively, are given by [5] 

 iω
r o= -[bCo]Ωo 2ô , 

  (15) 
 iω

r e= [bCe]Ωe 3ê . 

The angular velocity of the body frame with respect to the orbital frame is given by 

 oω
r b= [ ] [ ] 321 ˆˆˆ oCnCb obnb ψθφ &r&r&r ++ , (16) 

where n is just an intermediate frame.  Since on-board sensors make measurements with 

respect to the body-frame, all of the above rotation rates will be transformed to the body-

frame.  As can be seen from Equations (15) and (16), the C matrices (DCM), perform this 

transformation.  For example, the DCM that transforms the orbital frame to the body 

frame is given by the following 3-2-1 rotations 

 bCo=
















+−+
++−

−

φθψθφψφψθφψφ
θφψθφψφψθφψφ

θψθψθ

ccssccscscss
csssscccsssc

ssccc
. (17) 

Expanding Equation (16) and getting rid of 2nd order terms, 

 o ω
r b= ( ) ( ) ( ) 321

ˆˆˆ bsccbcscbs φθψθψθφψφθθψφ &&&&& −+++− . (18) 

From Equation (18), the Euler rates can now be determined, 
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 φθωφθωωφ costansintan 321 ++=& , 
 φωφωθ sincos 32 −=& , (19) 

 
θ

φωφωψ
cos

cossin 32 +
=& . 

These rates can be integrated to give the Euler angles.  These angles represent the 

deviation of the body frame with respect to the orbit frame.  The fine horizon sensor will 

detect these errors and feed them to the momentum wheel that, in turn, will act as an 

actuator to correct this error.  The magnetometer and the star sensor will act in a similar 

fashion; however, the star sensor will not be part of the control loop.  Instead, its attitude 

information will be sent down to the Alaska ground station for attitude knowledge.  The 

operational purpose of this attitude control system is to keep the body frame aligned with 

the orbital frame.  The following table lists the characteristics of this 3-axis stabilized 

micro-satellite. 

Altitude 550 km 
Period 5677.0 s 

Ωo 0.0011068 rad/s 
Ixx 22.222 kg-m2 
Iyy 21.387 kg-m2 
Izz 17.056 kg-m2 

Pointing Knowledge .1° all axes 
Pointing Accuracy 1° all axes 

Table 2: Satellite Properties 

D. SATELLITE DYNAMICS 

Since it is assumed that the spacecraft rotates about its principal moments of 

inertia, the spacecraft's angular momentum is given by [6] 

 bi

zz

yy

xx

I

I
I

H ω
rr

















=

00

00
00

. (20) 
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Notice that to use Equation (20), the angular velocity must be inertial and it must be 

expressed in body coordinates; using small angle approximations, it can be determined by 

adding Equation (15) and (18) 

 ( ) ( ) ( ) 321
ˆˆ bbb ooo

bi
r

&&&r
φψθψφω Ω++Ω−+Ω−= . (21) 

It is also important to note that H, in Equation (20), is the total angular momentum of the 

satellite in expressed in body coordinates, including the momentum wheel.  It can be 

broken up as follows 

 w
b hHH

rrr
+= . (22) 

Each angular momentum component rotates about its own center of mass, and the 

momentum wheel only rotates about the negative pitch axis, so that 2b̂hhw −=
r

.  The 

inertial rate of change of angular momentum is just equal to the external moment 

 HH
dt
dH

dt
dM bi

bi rrrrr
×+== ω . (23) 

The external moment, M, in Equation (23) represents the sum of all of the external 

moments, including gravity gradient, aerodynamic, solar radiation pressure, magnetic 

control, and pitch wheel control.  The gravity gradient moment is given as Equation (16) 

 ( ) 2
2

1
2 ˆ3ˆ)(3 bIIbIIM xxzzoyyzzogg −Ω+−Ω= θφ

r
. (24) 

The other moments will be derived later.  Substituting Equations (21), (22), and (24) into 

Equation (23), the following results are obtained 

 ( )[ ] ( )[ ]ψφφ &&& hIIIhIIIM zzyyxxooyyzzoxxdx ++−Ω−+Ω+−Ω−+= 24 , 
 ( ) hIIIM xxzzoyydy

&&& +−Ω−= θθ 23 , (25) 
 ( )[ ] ( )[ ]φψψ &&& hIIIhIIIM zzyyxxooxxyyozzdz −+−Ω+Ω+−Ω+= 2 . 

As can be seen from Equation (20), the pitch moment equation is independent of roll and 

yaw.  These moment equations are in agreement with Equation (15). 
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E. PITCH CONTROL 

The solution to Equation (25) is oscillatory, if h& =0, i.e. no wheel control, the 

following occurs 

 

Figure 2: Pitch response with no damping. 

The response in Figure 2 can be dampened out by controlling the momentum wheel, h& , 

according to the following control law 

 θθτ θθθ kkh += && . (26) 
Substituting Equation (26) into Equation (25) and taking the Laplace transform, the 

following transfer function is derived 

 ( )
( ) ( )

yy

zzxxo

yy

yy

dy

I
IIks

I
ks

I
sM

s
−Ω+

++
=

Θ
2

2 3

1

θθθτ
. (27) 

The plot in Figure 2 assumes an initial condition of θ = 5°, but Equation (27) is based on 

the initial conditions being zero.  It is of no consequence, however, since the initial 

conditions will not affect the characteristic equation.  The steady state error can be 
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determined for a step input disturbance torque using the final value theorem 

Equation (19) and it can be shown that 

 2
θω

θ
yy

dy
ss I

M
= . (28) 

The allowable steady state error given by the requirements in Table 2 is ±1°, but .8° will 

be chosen as the design margin.  In addition, the constants in Equation (41) will be 

determined based on a critically damped system.  The following table lists the pitch 

control properties. 

steady state error, θss ±.8° 
worse case pitch disturbance moment, Mdy -.0001 N-m 

damping ratio,ξ 1 
natural frequency, ωθ 0.0182995 rad/s 
pitch time constant, τθ 109.0031 s 

pitch auto-pilot gain, kθ 0.00718096 N-m/rad 

Table 3: Pitch Controller Properties 

Using the controller gains given in Table 3, the following response is obtained 

 

Figure 3: Pitch response with damping. 
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F. ROLL-YAW RESPONSE 

The horizon sensor is capable of detecting both pitch and roll errors, so both of 

these angles will be available for state feedback.  The momentum wheel gives the 

spacecraft gyroscopic stiffness along the pitch axis, so that when a roll or a yaw error 

occurs, the result is mutation about the pitch axis, similar to a spinning top.  Assuming 

that h>>max(IΩo), it can be shown that Equations (25) can be simplified to 

 ψφφ &&& hhIM oxxdx +Ω+= , 
  (29) 
 φψψ &&& hhIM ozzdz −Ω+= . 

Taking the Laplace transform of Equations (29) the result is four transfer functions; 

however, the design transfer functions are the following 

 ( )
( )( ) s

ozzoxx

oss

dz shhsIhsI
hsI

sM
s

222

2

)( +Ω+Ω+
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=
Ψ , 

  (30) 

 ( )
( )( ) s
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oxx

dz shhsIhsI
hsI

sM
s

222

2

)( +Ω+Ω+
Ω+

=
Φ . 

The yaw and roll response of these two transfer functions is shown in Figure 4. 
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Figure 4: Undamped roll and yaw responses to step input. 

The roll response is within the pointing requirements, but the yaw response 

exceeds 1° after 40 minutes.  This is assuming that the initial conditions for roll and yaw 

are both zero.  If the angular momentum of the wheel is increased, both responses would 

be within limits; for example, if h=15Nms, operationally, no roll-yaw damping would be 

required.  For acquisition, however, roll and yaw damping will be required since there 

will be an initial error upon launch vehicle separation.  It is interesting to note that the 

period of the responses is simply the period of the orbit; there is also a short period 

response, which is related to momentum wheel precession.  Evidence of roll-yaw 

coupling can also be seen since the two plots are 90° out of phase. 

G. ATTITUDE CONTROL DETERMINATION 

Many types of control laws are available, which can conceivably satisfy this 

satellite's pointing requirements.  Some common control laws are: 1) proportional, 2) 

proportional plus derivative, 3) proportional plus integral plus derivative, and 4) optimal.  
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Each of these controllers has its own unique characteristics; however, as long as the 

controllers maintain proper spacecraft attitude, controllers that are more exotic will not be 

required.  In fact, it will be shown that the gains of a simple PD controller can be adjusted 

to minimize overshoot and settling time, 

 φφ xvxx kkh += && ,  
 θθ yvyy kkh += && , (31) 
 ψψ zvzz kkh += && .  

These control laws are expressed as the rate of change of reaction wheel angular 

momentum, or reaction wheel torque, and they are part of the feedback loop.  As can be 

seen, these internal torque equations are a function of the measured Euler angles and 

rates.  If the resulting set of equations is completely de-coupled, and the Laplace 

transform is taken, the following result is obtained, 
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For this particular analysis, it is assumed that the orbital angular velocity is locally 

constant.  The objective is to determine suitable position and rate feedback gains that will 

increase spacecraft robustness.  The nominal characteristic equation for any second order 

system has the following form 

 22 2)( nn sss ωζω ++=Λ . (33) 
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The natural frequency is denoted as nω  and ζ  is the damping factor, which will 

be chosen to be one.  Each of the denominators in Equation (32) will be equated to 

Equation (33).  Solving for the coefficients, the result is two equations and three 

unknowns.  The third equation makes use of the final value theorem, and it is given by 

the following 

 )(lim)(lim)(
0

ssFtff
st →∞→

==∞ . (34) 

The pointing requirements for this satellite require a steady state pointing accuracy of 

0.1° about each axis.  By applying the final value theorem to Equation (32) and if the 

external disturbance torques can be approximated as a step input, position feedback gains 

can be determined from the following equations 
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The 'ss' subscript denotes steady state and the design torques represent a worst-

case scenario.  It can be seen from Equation (35) that the position feedback gains are not 

constant; they will vary as a function of orbital position.  The natural frequency for roll, 

pitch, and yaw can now be determined by taking the square root of the last term in the 

denominator.  Once this is found, the velocity feedback gains can be calculated from the 

following expressions 

 xnxvx Ik ω2= , 
 ynyvy Ik ω2= , (36) 
 znzvz Ik ω2= . 
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In a similar manner to the position feedback gains, the velocity feedback gains also vary 

with time.  Equation (36) and Figure 7 each depicts the time varying nature of the PD 

gains over one orbit, specifically during perigee.  As expected, the pitch and pitch rate 

gains are much higher than the roll and yaw gains [7]. 

H. KINEMATICS 

The inertial frame, orbital frame, and body frame are the three reference frames 

are used in the derivation of equations of motion.  Direction cosine matrices (DCM) are 

used to transform between coordinate systems.  These matrices are given by Equations 

(15) and (16) above.  The orbital frame of reference is oriented such that the x-axis points 

in the direction of the velocity vector, the z-axis points towards the center of the Earth, 

and the y-axis completes the right-hand set.  The body frame is aligned with the orbital 

frame, as that is the direction of motion.  The following 3-2-1 transformations from the 

orbital frame to the body frame are given by Equation (17).  The orbital frame rotates at a 

rate of )(tΩ with respect to the inertial reference frame, or 

 2ôoi Ω−=ω
r . (37) 

To perform angular momentum calculations, the inertial angular velocity is expressed in 

body coordinates.  This is represented by 

 booibi ωωω
rrr

+= . (38) 

Expressed in body coordinates, the angular velocity of the orbital frame with respect to 

the inertial frame, is 

 2ôC obo
b

i Ω=−ω
r . (39) 

Angular velocity of the body frame with respect to the orbital frame, expressed in body 

coordinates, is 
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 321 ˆˆ)()(ˆ oCnCCb obb
b

o ψθθφφω &&&r
++= . (40) 

The 2n̂ unit vector belongs to an intermediate reference frame.  If Equations (39) and (40) 

are substituted into (38), the following result is obtained 

 321
ˆ)(ˆ)(ˆ)( bbbbi φψθψφω Ω++Ω−+Ω−= &&&r . (41) 

Equation (41) is a simplified expression using small angle approximations and neglecting 

second order terms [6], [7], [8]. 

I. DERIVATION OF EQUATIONS OF MOTION 

In determining the attitude of a satellite, the common approach is to translate all factors 

into the body coordinate system, since on-board sensors are designed to detect errors with 

respect to the body frame.  As noted previously, Equation (34) was obtained using small 

angle approximations where errors are represented by: φ  ≡ roll error, θ  ≡ pitch error, and 

ψ  ≡ yaw error.  Total spacecraft angular momentum can be separated into two angular 

momentum vectors for the spacecraft body and the reaction wheels, which is given by the 

expression 

 wb HHH
rrr

+= . (42) 

If it is assumed that cross products of inertia are negligible, then 

 bi
b IH ω

rr
= . (43) 

Note that when calculating the angular momentum of the satellite about its center of 

mass, inertial angular rates must be used rather than body rates.  Substituting Equations 

(41) and (42) into Equation (43), the total spacecraft angular momentum is 

 ( ) ( ) ( ) 321
ˆˆˆ bhIIbhIIbhIIH zzzyyyxxx +Ω+++Ω−++Ω−= φψθψφ &&&

r
. (44) 

Next, the relation 
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 HxH
dt
dH

dt
d bi

bi rrrr
ω+= , (45) 

is used to determine the Euler moment equations.  Neglecting second order terms and 

gravity gradient moments, Euler equations for this spacecraft are 

 ( ) ( ) xxzyzyxzyzyxx hIhhIIIhhIIIT &&&&&&& +Ω−+−−+−Ω+Ω−Ω−−Ω+= ψθψψφφφ 24 , 
 ( ) yyzxzxzxyy hIhhhhIIIT &&&&&& +Ω−−Ω+Ω++−Ω+= φφψψθθ 23 , (46) 
 ( ) ( ) zzyxzyxxyyxzz hIhhIIIhhIIIT &&&&&&& +Ω++−+−Ω+Ω+Ω−+−Ω+= φφθφψψψ 2 . 

These equations describe the motion of the spacecraft when subject to external 

disturbance torques.  Rates of change of angular momentum of each reaction wheel will 

be used to counteract the disturbance moments, maintaining the required pointing 

accuracy.  However, solving for the Euler angles is non-trivial as all three differential 

equations are second order and coupled.  If the cross products of inertia are not 

negligible, the equations of motion become [6], [7], [8], 

 yzxzxyxx IIITT )22()()3( 222
1 Ω−Ω−+Ω++Ω+Ω−Ω−+= θφψψθθ &&&&&&& , 

 yzxzxyyy IIITT )2(3)22( 222
1 φψψφψφφψ Ω++Ω−Ω+Ω+Ω−+Ω+Ω−+= &&&&&&&& , (47) 

 yzIxzIxyIzTzT )23()22()22(1 θθψφφθ Ω−Ω−+Ω−+Ω−+Ω−Ω+= &&&&&&& . 

J. CONTROL LAWS 

To determine control laws for the magnetic torquers, one must define what needs 

to be controlled.  For the satellite, the best approach would be to join all the equations in 

a matrix form and only then linearize them.  An engineer would come up with a MIMO 

control law that would control the system as a whole and not by parts.  This approach has 

one important advantage: it does not matter if the state variables are coupled. 

The only concern becomes the linearization.  As a side effect, one can use the 

model of the plant in a Kalman filter configured as an observer or, if the noise sources are 

not relevant, use a deterministic observer.  The engineer could then use the wealth of 
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methods that are present in the linear state space approach, especially adaptive, robust, 

and optimal, control techniques. 

The control law proposed here is by no means the best one, only suitable for the 

model.  Control laws were developed for pitch, by using the rate of momentum of a 

wheel, and for roll/yaw, by using reaction jets.  In turn, both the reaction jets and the 

momentum wheel laws, generated torque commands.  These were fed into the physical 

devices that would produce the actual torque.  It is reasonable to argue that any physical 

device that can produce the toque required by the control law would be adequate.  Let us 

keep this reasoning in mind when going over the next paragraphs. 

Suppose that it was possible to generate, with the magnetic torquers, the same 

torque that is generated by the reaction jets.  Imagine that there is a box that can accept 

the torque required and outputs the commands for the torquers.  One could then connect 

the output of the reaction jets control law (i.e., a number that requests the amount of 

torque required) and feed it into that magic box.  Now, we can bring this forward a step if 

the control law assumes the system is linear.  Of several implications, one of the most 

important is part of the very definition of linearity: the superposition principle must 

apply.  Next, we look at the pitch control.  The pitch controller generates a number that 

represents the amount of torque the pitch wheel must generate.  If we take this number 

and sum it up with the output by the reaction jets controller, we would have the total 

torque needed to control the spacecraft attitude. 

If we take the total torque that is needed to control the spacecraft and feed it to the 

controller, the torquers could produce all the torque needed.  No change in the angular 

velocity of the wheel would be needed, and no more momentum dumping, and no more 
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wheel over speed and a larger MTTF.  However, open questions remain, such as; what 

goes inside the control algorithm, and are the torquers able to generate all the torque 

needed to control the spacecraft? 

K. MEAN TIME TO FAILURE 

1. Using the Earth’s Magnetic Field 

Suppose that one has the Earth magnetic field vector B and the amount of torque 

desired Td.  We need to know the value m needed for the magnetic torquers that will 

produce Tp in the presence of B.  Note that the torque produced may be, as will be seen, 

different from the desired one 

 Tp = m × B (48) 

From Equation (48) follows Equation (49).  This equation will give the direction 

of the magnetic torquers vector.  However, the engineer must be cautious: Td will only be 

the output of the torquers when Td ⊥ B.  In all the other circumstances, the best torque 

obtainable is the portion of Td, which is perpendicular to B.  That portion of Td is then 

called Tp 

 dTBm ˆˆˆ ×= . (49) 

The amplitude of m can be found using Equation (50) 

 
B

T

mB
B

T
m

pd
ˆ

sin

ˆ
== θ . (50) 

The engineer will then have to make a choice: is Td replaced in Equation (50) 

with Tp?  The question can only be answered with further analysis and simulations.  In 

this work, Equation (50) was used with a slight variation; shown in Equation (51), note 

that the Tp was changed to Td, 
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B
T

m d= . (51) 

This law leaves a question open: what happens when the Earth’s magnetic field is 

parallel to Td?  Nothing, because no torque can be generated, resulting in lack of control 

over the spacecraft.  However, as the time progress, the magnetic field moves with 

respect to the spacecraft and control is regained.  How the shortage is expected to be 

remains an open question.  What are the consequences of Td ≠ Tp?  The answer to this 

question depends on more analysis and simulations.  It seems that for somewhat low 

precision (0.1°) the difference probably can be compensated by the controller.  In the 

simulations the steady state for small and large angles was e = (0 0 0 1)T.  The results 

with disturbances were similar to the one produced with the reaction jets.  Bb does have 

discontinuities.  What happens with the control?  Every time the B measured in the body 

coordinates changes its signal, the control law would need to have discontinuities also.  

Since the discontinuities are when the Td is almost parallel to B, the best solution is to 

turn off the controller and let the spacecraft drift until this condition vanishes.  This is 

probably the best approach because of the magnetic field sensors noise and miss 

alignment. 

There is another concern in the actual implementation: the torquers cannot be 

turned on all the time.  The torquers must be turned off in order to perform accurate 

magnetic field measurements.  If the torquers are active only half of the time, then the 

torquers commands must be multiplied by a factor of two.  It is easy to come out with the 

correction factors for other operation conditions. 
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L. DISCRETE KALMAN FILTER 

The Kalman Filter is a recursive algorithm for estimating a state vector given past 

estimates and current measurements with noise.  With a system model of the plant 

dynamics and sensor noise, the filter will minimize the mean square error.  Since it was 

first development in 1960 by R. E. Kalman, the filter has been used in numerous fields of 

study and many sources exist that walk through the derivation of his work.  For 

simplicity, only the resulting equations will be shown here [3], [8]. 

The filter itself is a two step process, a prediction followed by an update.  In this 

simulation, a single measurement is used as the initial prediction.  The simulation code 

therefore first computes the Kalman Gain with the initial covariance prediction before 

updating the covariance prediction and then making a new prediction. 

1. The Process to Be Estimated 

The Kalman filter addresses the general problem of trying to estimate the state 

ℵℜ∈x  of a discrete-time controlled process that is governed by the linear stochastic 

difference equation 

 kkkkk wBuxAx ++=+1 , (52) 

with a measurement ℵℜ∈kz  that is 

 kkkk vxHz += . (53) 

The random variables wk and vk represent the process and measurement noise 

respectively.  They are assumed independent of each other, white, and with normal 

probability distributions 
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 ( ) ( )QNwp ,0− , 
  (54) 
 ( ) ( )RNvp ,0− . 

The n × n matrix A in the difference Equation (68) relates the state at time step k 

to the state at step k+1, in the absence of either a driving function or process noise.  The 

matrix B relates the control input to the state x.  The matrix H in the measurement 

Equation (53) relates the state to the measurement zk. 

2. The Computational Origins of the Filter 

We define ℵ− ℜ∈kx̂  (note the “super minus”) to be our a priori state estimate at 

step k given knowledge of the process prior to step k, and ℵℜ∈kx̂  to be our a posteriori 

state estimate at step k given measurement zk.  We can then define a priori and a 

posteriori estimate errors as 

 −− −≡ kkk xxc ˆ , (55) 

and 

 kkk xxc ˆ−≡ . (56) 

The a priori estimate error covariance is then 

 [ ]T
kkk eeEP −−− = , (57) 

and the a posteriori estimate error covariance is 

 [ ]T
kkk eeEP = . (58) 

In deriving the equations for the Kalman filter, we begin with the goal of finding 

an equation that computes an a posteriori state estimate kx̂  as a linear combination of an 

a priori estimate −
kx̂  and a weighted difference between an actual measurement and a 

measurement prediction as shown below in Equation (59).  Some justification for 
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Equation (59) is given in the sub-section “The Probabilistic Origins of the Filter,” found 

below 

 ( )−− −+= kkkkk xHzKxx ˆˆˆ . (59) 

The difference ( )−− kkk xHz ˆ  in Equation (59) is called the measurement 

innovation, or the residual.  The residual reflects the discrepancy between the predicted 

measurement −
kk xH ˆ  and the actual measurement kz .  A residual of zero means that the 

two are in complete agreement. 

The mn ×  matrix K in Equation (59) is chosen to be the gain or blending factor 

that minimizes the a posteriori error covariance, Equation (58).  This minimization can be 

accomplished by first substituting Equation (59) into the above definition for ke , 

substituting that into Equation (58), performing the indicated expectations, taking the 

derivative of the trace of the result with respect to K, setting that result equal to zero, and 

then solving for K.  One form of the resulting K that minimizes Equation (59) is given by 

 
( )

k
T
kkk

T
kk

k
T
kkk

T
kkk

RHPH
HP

RHPHHPK

+
=

+=

−

−

−−− 1

. (60) 

Looking at Equation 60, we see that as the measurement error covariance kR  

approaches zero, the gain K weights the residual more heavily.  Specifically 

 1

0
lim −

→
= kkR

HK
k

. (61) 

On the other hand, as the a priori estimate error covariance kR  approaches zero, 

the gain K weights the residual less heavily.  Specifically 

 0lim
0

=
→

k
P

K
x

k

. (62) 
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Another way of thinking about the weighting by K is that as the measurement 

error covariance kR  approaches zero, the actual measurement kz  is “trusted” 

increasingly, while the predicted measurement −
kk xH ˆ  is trusted increasingly less.  On the 

other hand, as the a priori error covariance estimate −
kP approaches zero, the actual 

measurement kz  is also trusted increasingly less, while the predicted measurement −
kk xH ˆ  

is increasingly trusted. 

3. The Probabilistic Origins of the Filter 

The justification for Equation (59) is rooted in the probability of the a priori 

estimate −
kx̂  conditioned on all prior measurements kz  (Bayes’ rule).  For now let it 

suffice to point out that the Kalman filter maintains the first two moments of the state 

distribution 

 
[ ]

( )( )[ ] k
T

kkkk

kk

PxxxxE

xxE

=−−

=

ˆˆ

ˆ
. (63) 

The a posteriori state estimate equation 60 reflects the mean (the first moment) of 

the state distribution—it is normally distributed if the conditions of Equations (54) are 

met.  The a posteriori error covariance estimate, Equation (58), reflects the variance of 

the state distribution (i.e., the second non-central moment).  In other words 

 ( ) [ ] ( )( )[ ]( ) ( )kk
T

kkkkkkk PxNxxxxExENzxP ,ˆˆˆ,| =−−− . (64) 

4. The Discrete Kalman Filter Algorithm 

We begin this section with a broad overview covering the “high-level” operation 

of one form of the discrete Kalman filter.  After presenting this high-level view, we will 

narrow the focus to the specific equations and their use in this version of the filter. 
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The Kalman filter estimates a process by using a form of feedback control: the 

filter estimates the process state at some time and then obtains feedback in the form of 

(noisy) measurements.  As such, the equations for the Kalman filter fall into two groups: 

1) time update equations and, 2) measurement update equations.  The time update 

equations are responsible for projecting forward in time the current state and error 

covariance estimates to obtain the a priori estimates for the next time step.  The 

measurement update equations are responsible for the feedback, (i.e.) for incorporating a 

new measurement into the a priori estimate to obtain an improved a posteriori estimate. 

The time update equations can also be thought of as predictor equations, while the 

measurement update equations can be thought of as corrector equations.  Indeed the final 

estimation algorithm resembles that of a predictor-corrector algorithm for solving 

numerical problems as shown below in Figure 5. 

Time Update 
(“Predict”) 

Measurement Update 
(“Correct”) 

 

Figure 5: The ongoing discrete Kalman filter cycle. 

The time update projects the current state estimate ahead in time, while the measurement 

update adjusts the projected estimate by an actual measurement at that time. 

The specific equations for the time updates are presented below in Equations (65) 

while the measurement updates are presented below in Equations (66). 
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 kkkk BuxAx +=+ ˆˆ 1 , 
  (65) 
 k

T
kkkk QAPAP +=−

+1 . 

Notice how the time update in Equations (65) project the state and covariance 

estimates from time step k to step k+1.  kA  and B are from Equation (52), while kQ  is 

from Equation (54).  Initial conditions for the filter were discussed in earlier references 

 ( ) 1−−− += k
T
kkk

T
kkk RHPHHPK , 

 ( )−− −+= kkkkk xHzKxx ˆˆˆ , (66) 

 ( ) −−= kkkk PHKIP . 

The first task during the measurement update is to compute the Kalman gain, kK .  

Note that the equation given here, as Equation (66), is the same as Equation (60).  The 

next step is to actually measure the process to obtain kz , and then to generate an a 

posteriori state estimate by incorporating the measurement as in Equation (66).  Again, 

Equation (66) is simply Equation (59) repeated here for completeness.  The final step is 

to obtain an a posteriori error covariance estimate via Equation (66). 

After each time and measurement update pair, the process is repeated with the 

previous a posteriori estimates used to project or predict the new a priori estimates.  This 

recursive nature is one of the very appealing features of the Kalman filter as it makes 

practical implementations much more feasible than, say for example, an implementation 

of a Weiner filter which is designed to operate on all of the data directly for each 

estimate.  Instead, the Kalman filter recursively conditions the current estimate on all of 

the past measurements.  Figure 6 below offers a complete picture of the operation of the 

filter, combining the high-level diagram of Figure 5 with the equations from Equations 

(65) and Equations (66). 
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5. Filter Parameters and Tuning 

In the actual implementation of the filter, each of the error measurement 

covariance matrices kR  and the process noise kQ , as given by Equations (54), might be 

measured prior to operation of the filter.  In the case of the measurement error covariance 

kR , in particular, this makes sense-because we need to be able to measure the process, 

while operating the filter; generally, we should be able to take some off-line sample 

measurements in order to determine the variance of the measurement error. 

In the case of kQ , oftentimes the choice is less deterministic.  For example, this 

noise source is often used to represent the uncertainty in the process model shown in 

Equation (52).  Sometimes a very poor model can be used simply by “injecting” enough 

uncertainty via the selection of kQ values.  In this case, one would hope that 

measurements of the process would be reliable. 

In either case, whether or not we have a rational basis for choosing the 

parameters, statistically speaking, superior filter performance can be obtained by “tuning” 

the filter parameters kQ  and kR .  The tuning is usually performed off-line, frequently 

with the help of another distinct Kalman filter. 
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  Initial estimates for −
kx̂  and −

kP  
  | 
  | 
  V 

Time Update 
(“Predict”) 

 Measurement Update 
(“Correct”) 

(1) Project the state ahead  (1) Compute the Kalman gain 

kkkk BuxAx +=+ ˆˆ 1   ( ) 1−−− += k
T
kkk

T
kkk RHPHHPK

(2) Project error covariance ahead  (2) Update measurement with zk 

k
T
kkkk QAPAP +=−

+1   ( )−− −+= kkkkk xHzKxx ˆˆˆ
  (3) Update the error covariance 
  ( ) −−= kkkk PHKIP

Figure 6: A complete picture of the operation of the Kalman filter, combining the high-
level diagram of Figure 5 with the equations from Equations (65) and (66). 

In closing we note that under conditions where kQ  and kR  are constant, both the 

estimation error covariance kP  and the Kalman gain kK  will stabilize quickly and then 

remain constant (see the filter update equations in Figure 6).  If this is the case, these 

parameters can be pre-computed by either running the filter off-line or, for example, by 

determining the steady-state kP  value. 

It is frequently the case however that the measurement error does not remain 

constant.  For example, when sighting beacons in our optoelectronic tracker ceiling 

panels, the noise in measurements of nearby beacons will be smaller than in beacons that 

are more distant.  In addition, the process noise kQ  is sometimes changed dynamically 

during filter operation in order to adjust to different dynamics.  As an example, in the 

case of tracking the head of a user of a 3D virtual environment we might reduce the 

magnitude of kQ  if the user seems to be moving slowly, and increase the magnitude if 

the dynamics start changing rapidly.  In such a case kQ  can be used to model not only the 

uncertainty in the model, but also the uncertainty of the user’s intentions. 
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A 6-state discrete Kalman filter has been chosen to estimate both position and 

rates from noisy star sensor data.  The Kalman filter that will be used in the simulation is 

represented by 

 kkkkkk wuxx
rrrr

+∆+Φ=+1 , 
  (67) 
 kkk vxHz

rrr
+= . 

The white sequence kw  for the plant has a covariance, Q, while the sensor’s noise 

kv  has a covariance, R.  Noise from the star sensor is affected by the magnitude of the 

star; a bright star is noisier than a dim star.  The sensor noise covariance is defined as 

follows 

 [ ]T
kkk vvER rr

= . (68) 

M. DERIVATION OF THE Q MATRIX 

Solving for the covariance of the plant noise is no trivial matter.  In this 

simulation, the Q matrix will vary with each time step.  The formal definition of the plant 

noise covariance is given by [3], [10]  

 [ ]T
kkk wwEQ
rr

=   (69) 

It can be shown that Equation (69) must satisfy the following matrix differential equation 

 TT
augkkaugk BWBAQQAQ ++=& . (70) 

The augmented Aaug matrix is defined from dBuxBFAx +−= )(&r  as the quantity, A-BF, 

and the power spectral density matrix associated with the forcing function u
r  is denoted 

by W. 

The solution to Equation (70) is greatly simplified for the time invariant case.  It 

proceeds as follows, 
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 t
B

BWBA
T

T
aug ∆











−
=

0
α . (71) 

By taking the matrix exponential of Equation (71), the following result is obtained 

 


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






=

−

T
kQ

χ
χβ

0
... 1

. (72) 

The upper left partition can be neglected for this analysis.  The plant noise covariance 

matrix can now be determined by multiplying the upper right partition of Equation (72) 

by χ .  This method was first formulated by Van Loan in 1978. 

N. KALMAN ALGORITHM 

Before entering the Kalman filter loop, an initial estimate −
0x̂ , and its error 

covariance −
0P , must chosen.  The '-' superscript will represent the predicted estimate 

while the '^' notation denotes estimation.  The discrete Kalman filter is, in essence, just a 

computer algorithm that derives optimal estimates from discrete measurements.  

Although there are different forms of the discrete Kalman filter, the most fundamental 

form starts with the Kalman gain calculation, which is given by [3], [10] 

 1)( −−− += k
T
kkk

T
kkk RHPHHPG . (73) 

The value of this gain matrix will vary with each time step.  Next, it is required to update 

the estimate using star sensor data to determine the accuracy of this new estimate.  These 

equations are given as 

 ( )−− −+= kkkkkk xHzGxx ˆˆˆ rrrr , 
  (74) 
 ( ) −−= kkkk PHGIP . 
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Equation (75), shown below, illustrates the recursive nature of the discrete Kalman filter.  

A favorable characteristic of any recursive filter is that there is no need to store past 

measurements. 

Equation (74) is the actual output of the discrete Kalman filter.  It estimates both 

attitude angles and attitude rates given only star sensor angle information.  Not only does 

it derive rates, but it also mitigates sensor noise effects.  Lastly, it is necessary to project 

ahead and estimate the state for the next time step.  The predictive equations are as 

follows 

 kkkkk uxx
rrr

∆+Φ=−
+

ˆˆ
1 , 

  (75) 
 k

T
kkkk QPP +ΦΦ=−

+1 . 

It is interesting to note that in Equation (75), the deterministic forcing function 

has been included.  This forcing function consists of known reaction wheel moments, 

which can be measured by the reaction wheel motor assembly.  If this deterministic term 

is not included, the rate estimator is unable to accurately estimate satellite rates near 

perigee. 

For the purpose of analysis and proper tuning, it is helpful to look at the time-

varying nature of both the Q and P matrices over a period of one orbit.  Since the off-

diagonal elements of these matrices are small, only the diagonal elements will be 

examined.  These elements are shown in Figure 16. 

O. STATE SPACE EQUATIONS OF MOTION 

The equations of motion completely describe the motion of the satellite when 

subjected to both internal and external disturbance moments.  If the body accelerations 

are solved for in Equation (47), the following result is obtained [8], [10] 
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For computational reasons, it is desirable to reduce these second order equations to first 

order equations by making the following state variable substitutions 

 Tx ][ ψψθθφφ &&&r
= . (77) 

With these definitions, we can translate the satellite dynamic equations into the following 

matrix form 

 uBxAx
rr&r += . (78) 

A is the plant matrix and it is given by 
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B is the control matrix given by 
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u is going to be the input reaction wheel control, and will have the following form 

 duFxu +−= . (81) 
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F will be the PD controller gain matrix and du will represent the summation of the solar 

pressure moments and the internal reaction wheel moments. F and du are given by 
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Substituting Equation (82) into Equation (78), the following equation of motion is 

obtained 

 dBuxBFAx +−= )(&r . (83) 

Equation (83) is equivalent to the equations of motion. 

P. THE MODELING APPROACH 

The derivations excerpted in this section were employed as part of the foundation 

for the simulations in this project and were originally compiled in a paper by Henry D. 

Travis at the Naval Postgraduate School.  For the sake of completeness, the full reference 

for this compilation is: Travis, Henry D., “Attitude Determination Using Star Tracker 

Data with Kalman Filters,” Thesis, Naval Postgraduate School, December 2001. 

1. Astrodynamics 

a) Equations of Motion 

In this case, the satellite is traveling along a Molniya orbit in the plane described 

by the radius and velocity vectors.  The spacecraft’s position in the orbit is defined by its 
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distance in kilometers from the center of the earth, r, and the true anomaly, ν, which is 

measured from perigee in radians.  Using the basic equations of motion 

 )( 2ν&&& rrmFr −= , 
  (84) 
 )2( ννν &&&& rrmF −= , 

the forces in both the radial and tangential direction can be determined.  Since the mass 

of the spacecraft is considered a point mass, the force per unit mass can be written as 

 2// rmFr µ−= . (85) 

Because of the nature of a two-body problem the only force acting on the point 

mass is in the radial direction, the angular force F is zero.  This leaves 

 22 / rrr µν −= &&& , 
  (86) 
 rr /2 νν &&&& −= . 

b) Modeling Molniya Orbit 

We first model the system in the form 

 BuAxx +=& , 
  (87) 
 DuCxy += , 

by defining the state vector, x, as 

 Trrx ][ νν &&≡ ,  (88) 

and the control vector, u, from Equations (86) as 
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With all non-linearity included in the control laws, the system coefficients can be 

easily written as 
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 [ ]0=orbitD . 

With the linear system coefficient matrices defined, the next step is to compute 

the state transition matrix, Φ, and the convolution matrix, ∆, using the ‘c2d’ function in 

MATLAB.  Thus, the entire Molniya orbit can be described using the discrete equation 

 kkk uxx ∆+Φ=+1 . (91) 

This orbital information is stored for future reference with the pitch controller. 

2. The Discrete Kalman Filter 

a) Definitions 

The Kalman Filter is a recursive algorithm for estimating a state vector 

given past estimates and current measurements with noise.  With a system model of the 

plant dynamics and sensor noise, the filter will minimize the mean square error.  Since it 

was first development in 1960 by R.E. Kalman, the filter has been used in numerous 

fields of study and many sources exist that walk through the derivation of his work.  For 

simplicity, only the resulting equations will be shown here.  Following modern 

convention, the following definitions and notation will be used: 
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≡−1ˆ kkx  State vector estimate at time k given measurements up to time k-1 

≡kkx̂  State vector estimate at time k given measurements up to time k 

≡−= kkxxe ˆ  State estimate error 

≡−1kkP  Prediction of the covariance of the state vector 

≡kkP  Update of the covariance of the state vector  

≡G  Kalman gain 

≡Q  Plant covariance matrix 

≡R  Measurement covariance matrix 

≡Φ  State transition matrix 

≡H  Observation matrix 

≡w  Zero mean white Gaussian plant noise 

≡v  Zero mean white Gaussian measurement noise 

≡z  Noisy measurement 

b) System Model 

Before we can build the filter, a system must be developed that will 

adequately describe the behavior of the spacecraft.  For simplicity, we have linearized the 

attitude dynamics equations of motion and used the small angle approximation.  Looking 

at the equations of angular velocity in a rotating frame with a φθψ →→  transformation 

 RIBBRBI ωωω += , (92) 

where 



50 

 
















−
+
−

=















=

)sin()cos()cos(
)sin()cos()cos(

)sin(

φθθφψ
φθψφθ

θψφ
ω

&&

&&

&&

r
q
p

BR , (93) 

which for small angles becomes 
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and 
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therefore 
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Thus, the time rate of change of ω follows as 
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Using the preceding dynamics equations, we further assume that the second time 

derivatives of the angles are small enough to be ignored.  This gives the following linear, 

constant coefficient matrices for the first system, which deals with only roll and yaw. 
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The final step is to compute the state transition matrix, Φ and the convolution 

integral, ∆ using the MATLAB command 

 [ Φ , ∆ ] =  c2d(A,B,dt);  (99) 

which are used to promulgate the state vector using the equation 

 kkk uxx ∆+Φ=+1 . (100) 

c) Controllability 

This linear time-invariant system is considered controllable if an input, 

u(t) will transfer the initial state of the system x(0) to the origin, x(tf)=0 with tf finite.  

Setting the state equation from the previous section to zero, it can be shown that the 

system is controllable if it satisfies the condition that the controllability matrix, 

 [ ]ABBCm = , (101) 

has an inverse.  Computing Cm for our system, it is seen that this condition is satisfied. 
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d) Control Gains 

Two methods are presented for computing the control gain.  The first is 

the pole placement method, and the second is a Linear Quadratic Regulator method, or 

LQR. 

Pole placement method has been relied on for decades as a means of ensuring the 

poles of the closed-loop system are at desirable locations.  Ackermann developed a 

procedure for computing the control gain and for single input systems; this algorithm is 

performed using the ‘acker’ command in MATLAB.  However, for a multiple input case, 

the MATLAB ‘place’ command is used instead.  The inputs for the place command are 

the state transition matrix, the convolution matrix, and the desired eigenvalues. 

Using a Linear-quadratic regulator design for discrete-time systems is another 

method of computing the control gain.  The gains from this method are considered 

optimal since the state-feedback law u[n] = -kx[n] minimizes the cost function 

 ( )∑ ++= NuxRuuQxxJ '2'' , (102) 

subject to the state dynamics 

 x[n+1] = Φx[n] + ∆u[n]. (103) 

The matrix N represents a relationship between the system noise, Q, and the 

measurement noise, R, and is set to zero for our system.  Also returned are the Riccati 

equation solution and the closed-loop eigenvalues. 

e) Filter Model 

We begin developing the Kalman Filter by modeling the random process 

 kkkk wxx +Φ=+1 , (104) 

The process is observed at discrete points in time by the following relation 
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 kkkk vxHz += , (105) 

As defined earlier, the covariance matrices Q and R are given by 

 k
T
ik QwwE =][ , 

  (106) 
 k

T
ik RvvE =][ . 

And the plant covariance is derived from the errors in position.  Assuming a constant 

acceleration over one time step, dt, using Newton’s force equations 

 2/2atxx o += , 
  (107) 
 atxx o += && , 

results in an error of [ ]dtdt 2/2 , which is squared and then entered into the covariance 

matrix 
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and the measurement covariance is the square of the star tracker error 
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Since pitch is decoupled from roll and yaw, we omit pitch and pitch rate from the 

first state vector.  The state vector, x, is then 

 ][ ψψφφ &&≡x , (110) 

A second filter is therefore necessary for pitch and the corresponding state vector is 

defined here as 

 ][ θθ &≡px , (111) 
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Similarly, the plant covariance follows as 

 
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×= 23

34
2
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dtdt
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qQ pp , (112) 

and the measurement covariance is reduced to 

 [ ]2steR = . (113) 

f) Algorithm 

The filter itself is a two-step process, a prediction followed by an update.  

In this simulation, a single measurement is used as the initial prediction.  The code 

therefore first computes the Kalman Gain with the initial covariance prediction before 

updating the covariance prediction and then making a new prediction 

 1
1|1| )( −

−− += RHHPHPG T
kk

T
kk , 

 1|| )( −−= kkkk PGHIP , (114) 

 QPP T
kkkk +ΦΦ=− |1| . 

Similarly, the initial state vector is first updated with the new Kalman Gain before 

a new prediction of the state vector is made based on the measurement residual 

 )(ˆˆ 1|1|| −− −+= kkkkkk zzGxx . (115) 

The control, u, is then determined using the Optimal Control Law 

 )ˆ( 1| −−−= kkxxku , (116) 

before updating the state vector and predicting the next state estimate using the state 

transition matrix, Φ, and convolution integral, ∆, 

 uxxk ∆+Φ=+1 , 
  (117) 
 uxx kkkk ∆+Φ=− |1| ˆˆ . 
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The same procedure is followed to update and predict the pitch and pitch rate 

estimates with the new state vector, xp. 

There are several ways to initialize the Kalman Filter, including using an assumed 

state, a measurement, or a batch-processed state.  An assumed state would be used either 

when the state is generally known without measurement or when the error is permitted to 

be large because there is sufficient time for the larger transient.  A measurement approach 

is used when the error is expected to be small to begin with.  A batch processed method 

would be used when the dynamics of the system would cause large changes from one 

measurement to the next.  The expected changes will dictate the number of measurement 

processed to initialize the filter.  Due to the accuracy of the star trackers and assumed low 

rate of change of the Euler Angles, the Kalman Filter could use the first measurement of 

the star tracker to initialize the filter.  To measure the responsiveness of our filter, we will 

assume a zero state initially. 

g) Modifications 

The Kalman Filter does an excellent job of seeing through the noise to 

provide reliable state estimates.  By taking a closer look at the filter, we see some 

variables that can be adjusted.  Most of these adjustments will involve the system 

covariance matrix.  In covariance manipulation, system covariance is an assumption of 

how much noise exists in the system.  Small covariance correlates to a small amount of 

noise and will result in a better estimate.  If the system is subjected to a large noise from 

an unexpected source, the filter will be unable to track the transient and the estimate will 

deteriorate.  The desired covariance would be the smallest possible while still tracking 

any expected transient.  Different variables and methods of adjusting covariance are: 



56 

reset threshold, discretized residual bias, alpha-beta, star gap response, and glitch/bias 

rejection.  
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IV. RESULTS 

A. NPSAT-1 SIMULATION RESULTS 

Results of the NPSAT-1 project described in this work, are presented in this 

section.  No noise analysis was made due to the amount of effort required.  The actual 

control law is very dependent upon the cross product of the magnetic field vector and the 

amount of torque desired.  Therefore, noise in the angle between both vectors is going to 

have an important effect on the results.  The evaluation of this control law will not be 

complete without a study of the noise effect.  Additionally, two different results are 

presented here: with magnetic pitch control and without magnetic pitch control. 

1. Small Angles 

In this subsection, the results of the system with small initial angles and no noise 

are presented.  The system was initialized with the quaternion set of 
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The results are presented in the following graphs.  Figures 7, 8, 9, and 10 display 

simulated results with no disturbance 
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Figure 7: Small angles, mechanic pitch, with perturbation. 

 

Figure 8: Small angles, mechanic pitch, with perturbation, expanded. 

 

Figure 9: Small angles, mechanic pitch, with perturbation, transient response. 
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Figure 10: Small angles, mechanic pitch, with perturbation, steady state response. 

Figures 11, 12, 13, and 14 display simulated results with disturbance: 

 

Figure 11: Small angles, mechanic pitch, with perturbation, transient response. 
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Figure 12: Small angles, mechanic pitch, with perturbation, transient response. 

 

Figure 13: Small angles, mechanic pitch, with perturbation, transient response. 

 

Figure 14: Small angles, mechanic pitch, with perturbation, steady state response. 



61 

2. Large Angles 

In this subsection, the results of the system with small initial angles and no noise 

are presented.  The system was initialized with the quaternion set of 
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Since the most interesting results for the large angles acquisition is when the 

system is under torque perturbations, only these results are presented here.  In addition, 

the steady state is not relevant for this analysis, since the results are the same as with the 

small angle acquisition.  The results of the simulation are presented as follows: 

 

Figure 15: Large angles, magnetic pitch, with perturbation. 
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Figure 16: Large angles, mechanic pitch, with perturbation. 

 

Figure 17: Large angles, mechanic pitch, with perturbation. 

3. Wheel Bias Failure 

An interesting result would be if the satellite could be controlled without the 

momentum bias wheel.  Since the magnetic torquers can control roll, pitch, and yaw this 

would be a nice result. 

The attempt of removing the wheel from the loop resulted in instability in yaw.  

This was expected, since the roll/yaw gains were computed for the system with the wheel.  

Interesting enough, the controller could hold very well in roll and pitch (even much better 
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than with the wheel on).  It is believed that the controller coefficients can be recalculated 

to yield a stable system. 

This approach is interesting in case of wheel failure.  However, it is not 

recommended for general control.  Since the removal of the wheel also removes stiffness 

form the system, any small torques can cause large drift on the satellite attitude in small 

amount of time.  If that occurs, the magnetic torquers may not be able to control the 

attitude in a satisfactory manner due to the control shortages" created when the desired 

torque is aligned with the Earth magnetic field. 

B. RATE ESTIMATOR SIMULATION RESULTS 

The results of the 3-axis star sensor Kalman filter rate estimator are outlined 

below.  These simulations prove that a single star sensor can provide the rate estimator 

required to provide additional vectors for the NPSAT-1 initial attitude determination.  For 

the Molniya orbit case, the single axis star sensor provides estimated yaw rates based on 

the Kalman filter, which can be coupled with other sensors in future designs to provide a 

more accurate rate estimate, which in turn, will be utilized in the event of a rate gyro 

failure. 

The results of the Kalman filter rate estimator simulations are outlined as follows: 
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Figure 18: Molniya orbit simulation. 

 



65 

Figures (19), (20), and (21) represent constant gain Kalman filter with q=0.01. 
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Figure 19: Pitch (q=0.01). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

0.4

0.6
roll vs roll rate 

x1

x2

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5
roll & roll estimate vs time

time

x3
 &
 x
kk
3

 

Figure 20: Roll (q=0.01). 
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Figure 21: Yaw (q=0.01). 

 



66 

Figures (22), (23), and (24) represent constant gain Kalman filter with q=10.0. 

0 5 10 15 20 25 30 35 40 45 50
-0.02

0

0.02

0.04

0.06

0.08
pitch  & pitch  est vs time

time

pi
tc
h 
ra
te
   
xp

2

0 5 10 15 20 25 30 35 40 45 50
-2

-1

0

1

2

3
x 10-3 pitch rate & pitch rate est vs time

time

pi
tc
h 
ra
te
   
xp

2

 

Figure 22: Pitch (q=10.0). 
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Figure 23: Roll (q=10.0). 
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Figure 24: Yaw (q=10.0). 
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Figures (25), (26), and (27) represent constant gain Kalman filter with q=1000.0. 
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Figure 25: Pitch (q=1000.0). 
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Figure 26: Roll (q=1000.0). 
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Figure 27: Yaw (q=1000.0). 
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V. SUMMARY AND CONCLUSION 

The process of the design and simulation of a small satellite is an essential part of 

technological development required to explore and test new design techniques and 

procedures.  When exploring new technologies, it is essential to utilize available and 

proven current technologies, and test these technologies as backup systems to 

demonstrate design feasibility. 

Additionally, the design and development of a optimal Kalman filter rate 

estimator to perform the essential requirement for attitude control determination can be 

useful for future development of a more complex rate estimator necessary to implement 

more advanced and complex control systems. 

A. NPSAT-1 SUMMARY 

The results obtained in this thesis are quite extraordinary.  The controller uses a 

magnetic torque actuator to create the required torques. 

The linear principle of superposition also allowed the removal of wheel speed 

changing, creating a nice constant speed wheel.  The system was well behaved.  The orbit 

inclination is also a concern (this approach will probably have problems with equatorial 

or polar orbits).  There is an important detail that must be mentioned: the controller dead 

zone. 

B. KALMAN FILTER RATE ESTIMATOR 

This thesis has shown that a properly designed optimal rate estimator Kalman 

filter is effective and able to estimate body rate from a single star sensor.  In addition, 
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these initial results prove that a single sensor couple with a proper rate estimator design 

can be used as backup or even primary attitude determination process. 

For NPSAT-1, a single star sensor estimator will be an addition to the control 

system.  This approach will be necessary, especially during the initial launch from the 

Pegasus, where after initial launch the spacecraft will tumbling at some pitch, roll, and 

yaw rates.  The magnetometer and the magnetic torquers control, but would require, an 

additional vector which the star sensor can provide 

C. FUTURE RESEARCH AREAS 

The future of small satellite design and development is an interesting area.  One 

approach would be to implement a MIMO controller using the state space approach.  This 

could allow for more sophisticated techniques and possibly lower the design 

requirements of the sensors and actuators. 

A second approach might be to design a controller that would eliminate the 

momentum wheel, replacing it with only three-axis magnetic torquers.  This advance 

requires extensive investigation and simulation.  However, initial testing indicates that 

this may be an adequate design approach for some future mission with less stringent 

pointing accuracy.  Additional simulation would be necessary using a Monte Carlo 

approach for different αs and µs as required (a Monte Carlo approach is considered 

suitable). 

Thirdly, new research on the development of an optimal estimator that includes 

‘sensor fusion.’  Sensor fusion would combine all rates from every sensor and merge the 

data into a more accurate estimator.  Due to the failure of aging satellites, design of a 

sensor fusion type of rate estimator could be useful to replace in-orbit, failing rate gyros, 
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and allow for updating software packages that perform the rate estimation for gyros.  

Data streams would emanate from several different types of onboard sensor devices such 

as: star trackers, horizon sensors, magnetometers, and sun sensors 

A fourth area of research would involve the concept of reverse time smoothing.  

Typically, the Kalman Filter uses only past and present observations, and is therefore a 

causal filter.  This is ideal for real time systems such as satellites.  However, for 

improved estimates, the additional computing power of modern satellites could be used to 

post-process old data.  The smoothed past estimates could then be used in the Kalman 

Filter. 

When considering a fixed interval smoother, several methods have been 

developed to post-process data.  Three of the most common are 1) forward-backward 

smoother, 2) two-point boundary value approach, and 3) the Rauch-Tung-Streibel 

smoother.  Additional work in this area could potentially offer some accuracy 

improvements. 
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APPENDIX A: SIMULINK AND MATLAB CODE 
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Appendix Figure 1:  Simulink Block Diagram. 
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Appendix Figure 2:  Cross Product. 
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Appendix Figure 3:  Gravity Gradient Block. 
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Appendix Figure 4:  H-Block Integrator. 

1

b_C_o

e b_C _o

e2b_C_o (b locks)

[0  0 0  1]

Zero  IC

[.05 , .05 , .05 , .996242942]

Sm al l  angles

M anua l  Swi tch1

M anual  Swi tch[.5  , .5  , .5  , sqrt(1-3*0 .5^2)]

Large angles

o_w_b

e_Init ial
e1

Integra tor_e (b locks)

1

o_w_b

 

Appendix Figure 5:  Rotation Integrator. 
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Appendix Figure 6:  Rotation Integrator E-Block. 
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Appendix Figure 7:  Rotation Integrator e2b_C_o. 
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Appendix Figure 8:  w_n_body. 
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Appendix Figure 9:  b_C_o to phi theta psi. 
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function M=Dumping(u) 
%w1=u(1); 
w2=u(2); 
c13=u(3); 
%c23=u(4); 
K1=14; 
K2=0.1146; 
K3=1; 
T=K2*(-K1*w2+c13); 
M=K3*T*[0 1 0]'; 
 
function b_C_o=e2b_C_o(e) 
e=reshape(e,4,1); 
C=zeros(3,3); 
C(1,1)=e(1)*e(1)-e(2)*e(2)-e(3)*e(3)+e(4)*e(4); 
C(2,1)=2*(e(1)*e(2)-e(3)*e(4)); 
C(3,1)=2*(e(1)*e(3)+e(2)*e(4)); 
C(1,2)=2*(e(1)*e(2)+e(3)*e(4)); 
C(2,2)=e(2)*e(2)-e(1)*e(1)-e(3)*e(3)+e(4)*e(4); 
C(3,2)=2*(e(2)*e(3)-e(1)*e(4)); 
C(1,3)=2*(e(1)*e(3)-e(2)*e(4)); 
C(2,3)=2*(e(2)*e(3)+e(1)*e(4)); 
C(3,3)=e(3)*e(3)-e(1)*e(1)-e(2)*e(2)+e(4)*e(4); 
Error=0; 
tol=1e-6; 
if (abs(norm(C(1,:))-1)>tol) 
   Error=1; 
elseif (abs(norm(C(2,:))-1)>tol) 
   Error=1; 
elseif (abs(norm(C(3,:))-1)>tol) 
   Error=1; 
elseif (abs(norm(C(:,1))-1)>tol) 
   Error=1; 
elseif (abs(norm(C(:,2))-1)>tol) 
   Error=1; 
elseif (abs(norm(C(:,3))-1)>tol) 
   Error=1; 
end; 
if (Error==1) 
   disp('Error on b_C_o!!!Reduce time step or tighten 

tolerance.'); 
end; 
b_C_o=reshape(C,9,1); 
 
function M=GravityGrad(u) 
b_C_o=reshape(u,3,3); 
C=b_C_o(:,3); 
I=[22.63 0 0; 0 24.67 0;0 0 11]; 
%I=[2246.87 0 0; 0 3202.94 0; 0 0 969.121]; 
wo=.0010949; 
M=3*wo^2*cross(C,I*C); 
 
function B=MagneticField(U) 
b_C_o=U(1:9); 
t=U(10); 
alpha0=0; 
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u0=0;i=75*pi/180; 
e=11*pi/180; 
K=7.943e15; 
w0=.0010949; 
we=2*pi/(24*3600); 
C=reshape(b_C_o,3,3); 
alpha=alpha0+w0*t; 
u=u0+we*t; 
R=(6378.4+550)*1000; 
r_o=[0 0 -1]'; 
Ca=cos(alpha);Sa=sin(alpha); 
Cu=cos(u);Su=sin(u); 
Ce=cos(e);Se=sin(e); 
Ci=cos(i);Si=sin(i); 
Cx=-Ca*(Ce*Si-Se*Ci*Cu)+Sa*Se*Su; 
Cy= Ce*Ci+Se*Si*Cu; 
Cz= Se*(Ca*Su-Sa*Cu*Ci)+Ce*Sa*Si; 
M_o=[Cx,Cy,Cz]'; 
B_o=(K/R^3)*(3*(M_o'*r_o)*r_o-M_o); 
B_b=C*B_o; 
 
function M=ReactionJets(u) 
w1=u(1); 
%w2=u(2); 
%c13=u(3); 
c23=u(4); 
K1= 800; 
K2= 0.0573; 
K3= 0.268; 
K4=1; 
Mx=-K2*(800*w1+c23); 
Mz=-K3*Mx; 
M=[Mx,0,Mz]'; 
 
function edot=we2edot(u) 
w=u(1:3); 
e=u(4:7); 
w=reshape(w,3,1); 
e=reshape(e,4,1); 
if (abs(norm(e)-1)>1e-6) 
   disp('Sum of squares of e'' not summing to 1!!'); 
end; 
M=     [   0       w(3) -w(2) w(1); 
        -w(3)        0   w(1) w(2); 
         w(2)     -w(1)    0  w(3); 
        -w(1)     -w(2) -w(3)   0]; 
    
edot=0.5*M*e; 
      
function wo=WoInBody(b_C_o) 
C=reshape(b_C_o,3,3); 
wo=.0010949; 
wo=-wo*C(:,2); 
 
function wo=WoInBody(b_C_o) 
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C=reshape(b_C_o,3,3); 
wo=.0010949; 
wo=-wo*C(:,2); 
 
 
%  Sat att rate est.. 
% x1 is roll,x2 is roll rate,  x3 is yaw, x4 is yaw rate, 

xp is pitch 
 
%  orbit by discrete. This becomes the pitch observable 

xo(3,i) 
Ao=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 0 0] 
Bo=[ 0 0;1 0;0 0;0 1] 
Co=[1 0 0  0]; 
%N=-1;Tf=29400;dt=2;kmax=Tf/dt +1; 
N=-1;Tf=38900;dt=2;kmax=Tf/dt +1; 
[Phio,Delo]=c2d(Ao,Bo,dt) 
uo=zeros(2,kmax);ho=zeros(1,kmax);xo=zeros(4,kmax); 
yo=zeros(1,kmax);time=zeros(1,kmax);xcart=zeros(2,kmax); 
xo(:,1)=[7439*0.62 0 0 0.00130]'; 
for (i=1:kmax-1) 
    uo(:,i)=[xo(1,i)*xo(4,i)^2-

(32.16/5280)*4000^2/(xo(1,i))^2; 
-(2*xo(2,i)*xo(4,i))/(xo(1,i))]; 
    xo(:,i+1) = Phio*xo(:,i) +Delo*uo(:,i); 
   time(i+1)= time(i) + dt; 
end; 
for (i=1:kmax) 
  xcart(1,i)=xo(1,i)*sin(xo(3,i)); 
  xcart(2,i)=xo(1,i)*cos(xo(3,i)); 
 end 
 w=0.00013; 
 A=[0 1 0 0;0 0 0 -w;0 0 0 1;0 w 0 0]; 
B=[0 0; 1 0;0 0;0 1]; 
Bp=[0 1]'; 
dt=2; 
pz=[0.78 0.79 0.77  0.76]'; 
[Phi,Del]=c2d(A,B,dt) 
k=place(Phi,Del,pz) 
ppp=eig(Phi) 
pppp=eig(Phi-Del*k) 
pause 
[Phi,Del]=c2d(A,B,dt) 
Ap=[0 1; 0 0] 
[Phip,Delp]=c2d(Ap,Bp,dt) 
p=[.85 .856]' 
kd=place(Phip,Delp,p) 
pp=eig(Phip+Delp*kd) 
%pause 
u=zeros(2,kmax); 
up=zeros(1,kmax); 
x=zeros(4,kmax); 
xp=zeros(2,kmax); 
y=zeros(1,kmax); 
xf=zeros(4,kmax); 
time=zeros(1,kmax); 
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zkkm1=zeros(2,1); 
       % Random number generator 
       v=randn(1,v); 
zkkm1p=0; 
P=50*eye(4); 
Q=[(dt^4)/4  (dt^3)/2 0 0;(dt^3)/2 dt^2 0 0; ... 
0 0 (dt^4)/4  (dt^3)/2;0 0 (dt^3)/2 dt^2]*0.0001; 
R=[.0002 0;0 .0002]; 
H=[1 0 0 0;0 0 1 0]; 
Pp=50*eye(2); 
Qp=[(dt^4)/4  (dt^3)/2;(dt^3)/2 dt^2]*0.0001 
Rp=[.00002]; 
Hp=[1 0 ]; 
x(:,1)=[0.001; 0.002 ;0.003; 0.004]; 
xkk=zeros(4,kmax); 
xkkm1=zeros(4,kmax); 
xkkm1(:,1)=[0.0;0.0;0;0.0013]; 
xp(2,1)=0.0013; 
xkkp=zeros(2,kmax); 
xkkm1p=zeros(2,kmax); 
xkkm1p(:,1)=[0;0]; 
zkkm1(:,1)=[0;0]; 
z=[x(1,1);x(3,1)]; 
for (i=1:kmax-1) 
%  plant 
   u(1,i)= -k(1,:)*x(:,i); 
   u(2,i)= -k(2,:)*x(:,i); 
   x(:,i+1) = Phi*x(:,i) + Del*u(:,i)  ; 
   time(i+1)= time(i) + dt; 
     % Random number generator 
                v=randn(1,v); 
                y(1,i+1)=0.000001*randn(1); 
%  Kalman Filter 
   G=P*H'*inv(H*P*H'+R); 
   Pk=(eye(4)-G*H)*P; 
   P=Phi*Pk*Phi'+Q; 
   xkk(:,i)=xkkm1(:,i)+G*(z-zkkm1); 
   xkkm1(:,i+1)=Phi*xkk(:,i); 
   zkkm1=[xkkm1(1,i+1);xkkm1(3,i+1)]; 
   z=[x(1,i+1);x(3,i+1)]; 
   % from Kepler  H = mr1^2*w1 = mr2^2*w2....r2 = xo(2,i) = 

(r1^2*w1/w2)^(0.5) 
   %r2=((7439*0.62)^2*0.0013)^0.5; 
   Gp=Pp*Hp'*inv(Hp*Pp*Hp'+Rp); 
   Pkp=(eye(2)-Gp*Hp)*Pp; 
   Pp=Phip*Pkp*Phip'+Qp; 
   zp=[xo(3,i)+y(1,i)]; 
   xkkp(:,i)=xkkm1p(:,i)+Gp*(zp-zkkm1p); 
 
   up(i)= -(2*xo(2,i)*xkkp(2,i))/(xo(1,i)); 
   xp(:,i+1) = Phip*xp(:,i)  +Delp*up(i); 
   xkkm1p(:,i+1)=Phip*xkkp(:,i)+ Delp*up(i); 
   zkkm1p=[xkkm1p(1,i+1)]; 
end 
clf 
figure(1) 
plot(time(1,:),y(1,:)) 
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%pause 
%clf 
figure(2) 
%subplot(221), 
plot(x(1,:),x(2,:)) 
title('roll vs roll rate ') 
xlabel('x1'), ylabel('x2'),grid 
%subplot(222), 
figure(3) 
plot(time(1,:),xkk(3,:),'o',time(1,:),x(3,:)) 
title('yaw est vs time') 
%subplot(223), 
figure(4) 
plot(x(3,:),x(4,:)) 
title(' yaw vs yaw rate') 
xlabel('x3'), ylabel('x4'),grid 
%subplot(224 ), 
figure(5) 
plot(time(1,:),xkk(4,:)) 
title('yaw rate est vs time ') 
xlabel('xkk3'), ylabel('xkk4'),grid 
%pause 
%clf; 
figure(6) 
%subplot(221), 
plot(time(1,:),xkk(1,:),time(1,:),x(1,:),'.'); 
xlabel('time'),ylabel('xkk1  &   x1'); 
title(['roll']); 
%subplot(222), 
figure(7) 
plot(time(1,:),xkkp(2,:),' x',time(1,:),xp(2,:),'.') 
xlabel('time'),ylabel('pitch rate   xp2'); 
title(['']); 
grid; 
%subplot(223), 
figure(8) 
plot(time(1,:),xkk(2,:),time(1,:),x(2 ,:),'.') 
xlabel('time'),ylabel('roll rate    xkk2'); 
%subplot(224), 
figure(9) 
plot(time(1,:),xkkp(2,:)) 
xlabel('time'),ylabel('pitch rate est   xkkp2'); 
grid; 
%pause 
xxp=zeros(2,10); 
xxkkp=zeros(2,10); 
ttime=zeros(1,10); 
for (i=1:70) 
xxkk(2,i)=xkk(2,i); 
xx(2,i)=x(2,i); 
ttime(1,i)=time(1,i); 
end 
%clg 
figure(10) 
plot(time(1,:),xp(2,:),' x',time(1,:),xo(4,:),'o') 
xlabel('time'),ylabel('pitch rate xo2 &  xp2'); 
title(['']);  
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%pause 
figure(11) 
plot(xcart(1,:),xcart(2,:)) 
title('orbit ');xlabel('x'), ylabel('y'),grid; 
%pause 
figure(12) 
plot(ttime(1,:),xxkk(2,:),' x',ttime(1,:),xx(2,:),'o') 
xlabel('time'),ylabel('roll rate   x2'); 
title(['']);  
%pause 
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%MATLAB CODE 
%Primary Code 
%  Code written by Professor Hal Titus 
%  Modified by LCDR John Vitalich 01 JUN 02 
%  orbit by discrete. This becomes the pitch observable xo(3,i) 
%  from Kepler  H = mr1^2*w1 = mr2^2*w2....r2 = xo(2,i) = 
(r1^2*w1/w2)^(0.5) 
%  r2=((7439*0.62)^2*0.0013)^0.5; 
 
% constants 
mu = 3.986e5             % Gravitational coefficient (km3/sec2) 
w=0.00013;               % orbital frequency (rads/sec) 
Tf=29400*2;             % seconds in one 12 hour pass 
Tf=50;                       % seconds in one 12 hour pass 
dt=1; 
kmax=Tf/dt +1; 
trackerr=6*pi/(3600*180); 
 
% Kalman Filter Covariances and observation matrices 
% roll yaw 
P=1*eye(4); 
q=0.01 
Q=[(dt^4)/4  (dt^3)/2 0 0;(dt^3)/2 dt^2 0 0; ... 
    0 0 (dt^4)/4  (dt^3)/2;0 0 (dt^3)/2 dt^2]*q; 
R=[trackerr^2 0;0 trackerr^2]; 
H=[1 0 0 0;0 0 1 0]; 
% pitch 
Pp=50*eye(2); 
Qp=[(dt^4)/4  (dt^3)/2;(dt^3)/2 dt^2]*q; 
Rp=[trackerr^2]; 
Hp=[1 0 ]; 
 
% initialize matrices 
uo=zeros(2,kmax);ho=zeros(1,kmax);xo=zeros(4,kmax); 
yo=zeros(1,kmax);time=zeros(1,kmax);xcart=zeros(2,kmax); 
u=zeros(2,kmax);up=zeros(1,kmax);x=zeros(4,kmax);xp=zeros(2,kmax); 
y=zeros(1,kmax);xf=zeros(4,kmax);time=zeros(1,kmax);zkkm1=zeros(2,1); 
xkk=zeros(4,kmax);xkkm1=zeros(4,kmax);  z=zeros(2,1); 
xkkp=zeros(2,kmax);xkkm1p=zeros(2,kmax); 
 
% Define the Molniya orbit 
Ao=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 0 0]; 
Bo=[ 0 0;1 0;0 0;0 1]; 
Co=[1 0 0  0]; 
[Phio,Delo]=c2d(Ao,Bo,dt); 
 
% xo1 is r (km), xo2 is r dot, xo3 is theta (rad), xo4 is theta dot 
xo(:,1)=[7439 0 0 .0013]'; 
h=xo(1)^2*xo(4)                    % angular momentum 
for (i=1:kmax-1) 
    uo(:,i)=[xo(1,i)*xo(4,i)^2-mu/(xo(1,i))^2; 
             -(2*xo(2,i)*xo(4,i))/(xo(1,i))]; 
    xo(:,i+1) = Phio*xo(:,i) +Delo*uo(:,i); 
   time(i+1)= time(i) + dt; 
end; 
% convert orbit to rectangular co-ordinates for plotting 
for (i=1:kmax) 
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  xcart(1,i)=xo(1,i)*sin(xo(3,i)); 
  xcart(2,i)=xo(1,i)*cos(xo(3,i)); 
  xc(1,i)= 6378*sin(xo(3,i)); 
  xc(2,i)= 6378*cos(xo(3,i)); 
end 
 
% x1 is roll,x2 is roll rate,  x3 is yaw, x4 is yaw rate, xp is pitch 
A=[0 1 0 0;0 0 0 -w;0 0 0 1;0 w 0 0]; 
B=[0 0; 1 0;0 0;0 1]; 
Ap=[0 1; 0 0]; 
Bp=[0 1]'; 
 
% place desired poles for roll and yaw 
pz=[0.78 0.79 0.77  0.76]'; 
%pz=[.4 .41 .42 .43]'; 
% state transition matrix 
[Phi,Del]=c2d(A,B,dt); 
 
% gains and eigenvalues 
k=place(Phi,Del,pz); 
[klqr,s,elqr]=dlqr(Phi,Del,Q,R)         % discrete linear quadratic 
regulator 
%k=klqr; 
ppp=eig(Phi); 
pppp=eig(Phi-Del*k); 
 
% place desired poles for pitch 
p=[.85 .856]'; 
[Phip,Delp]=c2d(Ap,Bp,dt); 
 
% gains and eigenvalues 
kd=place(Phip,Delp,p); 
[klqrp,s,elqr]=dlqr(Phip,Delp,Qp,Rp)         % discrete linear 
quadratic regulator 
%kd=klqrp; 
pp=eig(Phip+Delp*kd); 
 
 
% Kalman filter 
 
% initial conditions 
x(:,1)=[0.001; 0.002 ;0.003; 0.004];        % x is truth state 
xkkm1(:,1)=[0.0;0.0;0;0.0013];              % z is truth measurement 
%(includes meas. error) 
zkkm1p=0; 
xp(2,1)=0.0013; 
xkkm1p(:,1)=[0;0]; 
zkkm1(:,1)=[0;0]; 
zp=.0013; 
 
% run filter 
for (i=1:kmax-1) 
%  plant 
   time(i+1)= time(i) + dt; 
 
 
   % for roll and yaw 



87 

   G=P*H'*inv(H*P*H'+R);                           % Kalman Gain 
   Pk=(eye(4)-G*H)*P;                                   % Covariance 
Update 
   P=Phi*Pk*Phi'+Q;                                     % Covariance 
Prediction 
   xkk(:,i)=xkkm1(:,i)+G*(z-zkkm1);             % State estimate update 
   u(1,i)= k(1,:)*(xkk(:,i)-x(:,i));                    % Control Law 
   u(2,i)= k(2,:)*(xkk(:,i)-x(:,i));                    % Control Law 
   x(:,i+1) = Phi*x(:,i) + Del*u(:,i)  ;        % Update State 
   xkkm1(:,i+1)=Phi*xkk(:,i)+ Del*u(:,i) ;      % Predict State 
estimate 
 
   roller=12*(randn(1)-.5)*pi/(3600*180);         % +/- 6 arcseconds of 
random error 
   yawer=12*(randn(1)-.5)*pi/(3600*180);        % +/- 6 arcseconds of 
random error 
   pitcher=12*(randn(1)-.5)*pi/(3600*180);       % +/- 6 arcseconds of 
random error 
 
   z=[1+roller;2+yawer]; 
   zkkm1=[xkkm1(1,i+1);xkkm1(3,i+1)];           % Update Measurement 
estimate 
 
   % for pitch 
   Gp=Pp*Hp'*inv(Hp*Pp*Hp'+Rp);                  % Kalman Gain 
   Pkp=(eye(2)-Gp*Hp)*Pp;                                % Covariance 
Update 
   Pp=Phip*Pkp*Phip'+Qp;                                 % Covariance 
Prediction 
   xkkp(:,i)=xkkm1p(:,i)+Gp*(zp-zkkm1p);         % State estimate 
update 
   up(i)= -(2*xo(2,i)*xkkp(2,i))/(xo(1,i));              % Control Law 
   xp(:,i+1) = Phip*xp(:,i)  +Delp*up(i);                % Update State 
   xkkm1p(:,i+1)=Phip*xkkp(:,i)+ Delp*up(i);      % Predict State 
estimate 
   zp=[xo(3,i)+pitcher];                                 % Update 
Measurement 
   zkkm1p=[xkkm1p(1,i+1)];                           % Update 
Measurement estimate 
end % Kalman loop 
 
 
clf 
figure(1) 
plot(xcart(1,:),xcart(2,:),0,0,'*',xc(1,:),xc(2,:)) 
AXIS([-35000 35000 -60000 10000]) 
XLABEL('km'); YLABEL('km') 
 
figure(2) 
subplot(211),plot(x(1,:),x(2,:)) 
title('roll vs roll rate ') 
xlabel('x1'), ylabel('x2'),grid 
 
subplot(212),plot(time(1,:),xkk(1,:),'.',time(1,:),x(1,:)) 
title('roll & roll estimate vs time') 
xlabel('time'), ylabel('x3 & xkk3'),grid 
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figure(3) 
subplot(211),plot(x(3,:),x(4,:)) 
title(' yaw vs yaw rate') 
xlabel('x3'), ylabel('x4'),grid 
 
subplot(212),plot(time(1,:),xkk(3,:),'.',time(1,:),x(3,:)) 
title('yaw & yaw estimate vs time') 
xlabel('time'), ylabel('x3 & xkk3'),grid 
 
figure(4) 
subplot(211) 
plot(time(1,:),xkkp(1,:),time(1,:),xp(1,:),'.') 
title(['pitch  & pitch  est vs time']); 
xlabel('time'),ylabel('pitch rate   xp2'); 
grid; 
 
subplot(212) 
plot(time(1,:),xkkp(2,:),time(1,:),xp(2,:),'.') 
title(['pitch rate & pitch rate est vs time']); 
xlabel('time'),ylabel('pitch rate   xp2');   
grid; 
 
% Profile Generator 
 %function xtrue=profile(kmax) 
   %xtrue 
    
% Random number generator 
 
for i=1:kmax 
y(1,i+1)=12*(randn(1)-.5)*pi/(3600*180);    % +/- 6 arcseconds of 
random error 
y(2,i+1)=12*(randn(1)-.5)*pi/(3600*180);    % +/- 6 arcseconds of 
random error 
 
xtrue(:,i)=[1;0;2;0;1+y(1,i+1); 2+y(2,i+1)];   % profile variable 
end 
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