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Abstract

We present a (subopt'uhal) filtering algorithm for tracking a highly maneuvering target in a
cluttered environment using multiple sensors dealing with possibly asynchronous (time delayed)
measurements. The filtering algorithm is developed by applying the basic Interacting Multiple
Model (IMM) approach, the Probabilistic Data Association (PDA) technique, and asynchronous
measurement updating for state-augmented system estimation for the target. A state augmented
approach is developed to estimate the time delay between local and remote sensors. A multi-
sensor probabilistic data association ﬁlter is developed for parallel sensor processing for target -
tracking under clutter. The algorlthm is illustrated via a highly maneuvering target tracking
simulation example where two sensors, a radar and an infrared sensor, ‘are used. Compared
with an existing IMMPDA filtering algorithm with the assumption of synchronous (no delay)
measurements sensor processing, the proposed algorithm achieves considerable improvement

(especially in the case of larger delays) in the accuracy of track estimation. -
Keywords: Asynchronous (Delayed) Measurements; Multisensor Parallel Updating; Interact-
ing Multiple Model (IMM); Probabilistic Data Association (PDA).

I Introduction

We consider the problem of tracking a single maneuvering target in clutter. 'This class of problem
has received considerable attention in the literature [1, 2, 3, 4, 9]. In target tracking systems
This work was supported by the Office of Naval Research under Grant N00014-01-1-0971. ‘
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measurements are typically collected in “scans” or “frames” and then transmitted to a processing
center [5, 6]. Asynchronousv (delayed) measurements arise in a multisensor central tracking system
due to communication network delays, varying preprocessing times at the sensor platforms and
possibly lack of sampling time synéhronization among sensor platfoi‘ms. One of the asynchronous
measurement problems is that of out-of-sequence measurements (OOSM) where measurements at
various sensors may arrive out-of-sequence (not in correct time order) at the central processor.
OOSM has been considered using interacting multiple model (IMM) [6, 7, 8]. In this paper we do
not consider OOSM but, instead, consider “in-sequence” measurements with a fixed but unknown
relative time-delay among sensor measurements. Various sensor measurements are assuméd to be at
the same rate but not necessarily time synchronized. All measurements over one sampling interval
(based on the local clock of the central processor) are collected at the central processor, attributed
to one time instant and processed simultaneously. We exploit interacting multiple model (IMM)
and probabilistic data association (PDA) techniques. It is assumed that a track has been formed
(initiated) and the objective of this work is to investigate ﬁxed—but—unknoiﬁn relative fime—delay
(measurement timing mismatch) arising in a multisensor central tracking system.

In [6], fixed-lag smoothing techniques have been investigated using IMM algorithm combined
with PDA filter in a multiple sensor scenario to propose a combined IMMMSPDAF (interacting
multiple model multiple sensor probabilistic data association filter). We exploit the basic structure
of [1] in combination with a state-augmented approach to deal with the fixed-but-unknown relative
time-delay. In [1] and [14] it is assumed that the sensors are collocated and (time) synchronized
with the sampling rate. In contrast, the sensor collocation and (time) synchronizatioh are no longer‘
assumed in this paper. Also, unlike [1, 9, 12] which have used sequential updating of the state
estimates with measurements (i.e., updating of the state estimates sequentially with measurements
from different sénsors), we use parallel updating of the state estimates with measurements k(i.e.;
updating of the state estimates with éll measurements at the same time). For linear systems, the
two updating methods are algebraically equivalent'but for nonlinear filtering, the parallel updating
can yield better performance in spite of higher computational cost [4]. Ref. [14] uses parallel
updating but has some errors: during data assbciation, all measurements at the same time from
different sensors are assumed to be either from clutter or from the target. The p0551b111ty that
a measurement from sesnsor 1 may be from target while the measurement from sensor 2 may be
clutter-induced (and vice-versa) is implicitly not allowed in [14] - this is clearly incorrect. Ref. [10]
allows for such distinctions (hypotheses), however, it is limited to non-manevering targets. In this
paper, we also extend the multisensor approach of [10] to maneuvering targets (see Step 4 in Sec.
V).

The paper is organized as follows. Section II presents the problem formulation. Section III




describes the state—augmented system approach. Section IV describes the proposed IMMMSPDAF
algorithm for asynchronous measurements. Simulation results using the proposed algorlthm for a
realistic problem are given in Section V. Fmally, Sectmn VI presents a discussion of the results

and some conclusions.

II Problem Formulation

We assume that the target dynamics can be modeled by one of n hypothesized models. The model
set is denoted as M™ := {1,...,n} and there are total g sensors. The event that model m is in effect
during the sampling period (¢x—1,t;] is denoted by M]". For the mth hypothesized model (mode),

the state dynamics and measurements, respectively, are modeled as

Tk = Fizr,lk—lxk—l + GZ}k—lvlrcn—l ) (1)

and
b =) + 'w,'c"l for 1=1,..,q : local model at the sensor, . (2)

where z;, is the system state at t; and of dimension n,, z}c is the (true) measurement vector (i.e., due
to the target) at sensor [ at ¢, and of dimension T, F,::‘k_l and G’}c”‘k_l are the system matrices when
model m is in effect over the sampling period (1, tx], and h™t is the nonlinear transformation of

zk to 2t (I =1,...,q) for model m. A first-order linearized version of (2) is givén by
4= H,'cn’la:k + 'wZ”l for 1=1,..,q ' _ (3)

where Hm’l is the Jacobian matrix of A™* evaluated at some value of the estimate of state zx
(see Sec. III). The process noise vj* ; and the measurement noise wy," ml are mutually uncorrelated
zero-mean white Gaussian processes with covariance matrices Q7.4 and RZ"“’I, respectively. At the
initial time %o, the initial conditions for the systerh state under each model m are assumed to be
Gaussian random variables with the known mean E{z7'} and the known covariance F§*. The
probability of model m at ¢y, pug* = P{M§}, is also known. The switching from model Mi_, to
model M[" is governed by a finite-state stationary Markov chain with known transition probablhtles

= P{M|M}_,}. Henceforth, time #; will be denoted by .

Assume that there is a fixed but unknown relative time delay dj (modulo T=sampling intérval)
at sample time t; between the local sensor clock and the central processor clock at sample timie
tx. [This time delay could be due to unsynchronized clocks at the two locations or due to inherent
delay due to congestion, insufficient bandwidth etc. in the comfnunication link between the remote
sensor platform and the central processor.] The measu'rements from sensbr l are sent to‘ the central

processor where all measurements collected between local sampling interval (t-1, tx] are attributed




to time ¢;. The state dynamics and measurements reported from the remote sensor platform at

time ¢, (henceforth will be denoted by ka) to the center processor at time t; can be modeled as
Thy = Fry p-1%k-1 + Gﬁl,k—win—l . , | )
and '
24 =k g, ) +wt model of the sensor at the central processor (5)

where i, = tx—dj; and dy; is the time difference between the sampling time at the central processor
and the measurement time at the local sensor (assume that 0 < dig <T', where T is sampling time),
Tk, is the system state at tr, and of dimension ng, Fy _; and G |, are the system matrices

when model m is in effect over the timing interval (¢—1,%x,]

IIT State-Augmented System

Define the augmented state Z; from z; as
i;c = [z;c’v;c"”;c——l"v;c—l] ' ‘ (6)

where zj. denotes the transpose of zx. Assume that there is a fixed but unknown delay, dy;, between
the central processor and the remote sensor ! platform. Using the above definitions (1, 6) and the

measurement delay, di;, the augmented state equation méy be written more compactly as

T = Ff_1Zk-1+ Gih v | | | ()
and

i = dgoay + iy | I
where v,’f‘_l is a small processing noise assumed to be Gaussian néise with zero Iﬁean and (very)

small but nonzero variance. Note that the vprocess noise in (7) is vp* (at time k not at time k —1).’

Above equations (7) and (8) can also be absorbed into another augmented state Ty as

- m
Tk - N Yk

Fp = = Fko1%k-1+ GLy—17  where o = ’ : (9)
dii , v,

) = [z}, v, zh_1,vh_s,dwt), and Fip_; and Gt k-1 are defined in Sec. V (see (46)-(53)). Using the

augmented state (9) the counterparts to (2) and (5), respectively, are
2 = h™ (&) + wit = K™H((1,0,0,0,0]F) + w™ : (10)
and |

2 = B™ (&) + wpt = R™([0,0, FP 1, G i1, 0]E%) + wi™ (11)

4




for both measurements from local sensor and from remote sensor, respectivély. To keep the notations
and details to a bare minimum, we will consider the case of two sensors only and furthermore, we
will assume that one of the sensors is either collocated with or is synchronized with the central
processor, so that we will drop the subscript ! from dg;. For more than two sensors, we need to
augment Z; with additional dk’s' (total ¢ — 1): in essence, these delays are relative to one of the
sensors (reference sensor). v B

The following notations and definitions are used regarding the measurements at sensor {. Note
that, in general, at any time some measurements may be due to clutter and some due to the target,
i.e. there can be more than a single measurement at time k at sensor [. The measurement set (not

yet validated) generated by sensor ! at time k is denoted as »
(1) 12 !
lec = {Zk( )azk( ),---,Zk(m[)} v ' , _ (12)

where m; is the number of measurements generated by sensor ! at time k. Variable zfc(i) (i =
1,...;my) is the ith measurement within this set. The validated set of measurements of sensor [ at
time k will be denoted by Ykl, containing m; (< my) measurement vectors. The cumulative set of

validated measurements from sensor ! up to time k is denoted as
Z¥D .= (vh Y3, .. Y. | ' (13)
The cumulative set of validated m;aasurements from all sensors up to time k is denoted as |
PASSR VA S ...,z’c@} | | | o (14)

where ¢ is the number of sensors.

Our goal is to find the state estimate
Exw = E{E1|Z%) S | '_ (15)
and the associated error covariance matrix
P = Bles - bulli -5l 125 | o (16)

where z}. denotes the transpose of zj. , . T

IV . IMMMSPDAF Algorithm for Asynchronbus Measurefnents

We now modify the IMM/(J)PDA algo:ithms of [9] and [12] to apply to the multi-sensor asyn? '
chronous measurements system. We confine our attention to the case of 2 sensors; however, the
algorithm can be easily adapted to the case of arbitrary q sensors. We will only briefly outline the

basic steps in “one cycle” (i.e., processing needed to update for a new set of measurements) of the
IMMMSPDA filter.




Assumed available: Given the state estimate :?:Z'_”k_l := E{&p_1|M[",, Z*"1}, the associated
covariance P 1jk—1> 8nd the conditional mode probability p  i= PIM[*,|Z%1] at time k —1 for
each mode m € M™.

Step 1. Interaction — mizing of the estimate from the p're'bio'u.s time (Yme M™) :

predicted mode probability:

pe” = PIMIZ* Y = 3 pimith -1 | (17)
mixing probability:
pilm = PIM_y M, Z7Y) = pimpth_y /17~ (18)

mixed estimate:

20m - _ at :
Ty et = E{@e_1 M, 257} = 3" 5™, - (19)
- . ;

covariance of the mixed estimate: .

5 . ~ © 20m o~ 20m k—
B oy = B{[Eh-1 — Tp_ k1) (Br—1 — Tp_1je—1)'IMF*, 2571}

20m

= at ) at 20m ; : . )
= {Bi 1ot + Erotpie1 — Zeope-1)Eropet — Txoape—r] J™ (20)

Step 2. Predicted state and measurements for sensors 1 and 2 (Ym € M™) :

state prediction:

Ty = E{ikl-’\’—’maZk_l}_= ﬁlﬁlfizrflw—r | , - (21)
state prediction error covarié,nce: | |

PRy = E{[& — TppallEe — Bgppa)|ME, 2571} = Fﬁlﬁ%ﬂk-lﬂﬁﬁ' éfcnlekmqéZL—Ir (22)

The mode-conditioned predicted measurement for sensor [ is | -

At = i ER ). - S (23)
Using the linearized version (3), the covariance of the mode-conditioned residual

I/Ln’l(i) = zfc(i) - él'cn’l,
is given by (assume q¥2, the case of 2 sensbi‘s)

m . m,lz m,lz' m — ' ~m, DM ~ma, . ‘i'
spt = Bt O My, 241y = AT B AT 4+ R | (24)

Sp? = By Oup 2 \vgn, 241} = AT P AR + RYY o (25)




where fI’k" ' is the first order derivative (Jacobian matrix) of A™!(.) evaluated at the state prediction
xklk 1 (see (23)). Note that (24) and (25) assume that z; 1@ originates from the target. The results
(24) and (25) do not depend upon the actual measurements. ‘

As mentioned earlier, since our approach to the problem deals not ohly with the asynchronous
measurements but also with multiple simultaneous measurements [10, 11] arising from two separate
sensors that are tracking a single target through a common surveillance region, a method for fusion
of multiple measurements has to be devised. In order to do this, now the combined covariance S;*
of the mode-conditioned residual obtained from (24) and (25) also needs to be considered as follows

Frm,1 m,1
Sp = e By [ g g ] + i ’ /. . (26)
M | 0 R

Step 3. Measurement validation for sensors 1 and 2 (Yme M™") :

There is uncertainty regérding the measurements’ origins Therefore, we perform validation for
each target separately. One sets up a validation gate for sensor I centered at the mode—condltloned
- predicted measurement, z,’c"l Let (JA| = det(A))

— m,l
Mg i= arg {,,{%aﬁ(n |.S’,c ’} .
Then measurement zfc(i) (=1,2,...,my;) is validated if and only if
. -1 . o
(2 = 2o IS [ — 0 <y | (27)

where 7 is an approprlate threshold. The volume of the validation region with the threshold v is

1/2

V.= = cn, ,Ynzz/2|,gma’ | (28)

where n,; is the dimension of the measurement and Cn,, is the volume of the unit hypersphere of
this dimension (¢; = 2, c3 = 7, c3 = 47/3, etc.). Choice of v is discussed in more detail in [4, Sec.
- 2.3.2]. After performing the validation for each target separately, we deal with all the validated
data for measurement fusion. » ,

Step 4. State estimation with validated measurement from sensors 1 and 2 (Vm €
From among all the raw measurements from sensor ! at time k, i.e. Z} := {zi(l), z,lc@),. .,z,lc(m’)},

define the set of validated measurement for sensor [ at time k as
= (0,41 )y | | . . o (29)
where 7, is total number of validéted measufement for sensor [ ét time k and
y? =% T o (30)

where 1< [; < lp < ... < lm, £ my when My #0. Define the association events (hypotheses) GZ’j as
follows (here we follow [10]) .




62°: none of the measurements in Y} or Y is target originated.

627: only 32) in Y2 is a target measurement, all other measurements in Y}! or Y2 are clutter,

1=0,7=1,..,M9.

6;°: only yi(i) in Y}! is a target measurement, all other measurements in Y}! or Y2 are clutter,

i=1,...,m1,j=0.

6’2’j : y,lc(i) and yi(j) in Yk1 and Y2, respectively, are target measurements, all other measure-

ments are clutter, i = 1,...,7m1, § =1, ..., Ma.

Therefore, there are a total of m1m2+m1+m2+1 possible association ‘hypothese's, each of which

has an association probability. Define the mode-conditioned association event probabilities as

B = PLOYIME, Y2, Y2, 2571, N -6

Exploiting the diffuse model for clutter in [1, 4], it turns out that

ﬂlfcn,O,O = Cfl"PIh P, )(1-Pp, Pc,)

WVhHmi (V™ K 1=0,] =.0

PD2 (I—PD1 PG1 )N [u’vcnﬂ(j) ;0,SL”’2]

(VE)m2—lma

g = ¢ , =0, j=1,..,17

- - (32)
m,1(i), )1 (
mi0 PD1 (1—PD2 Pcz)N l-l/k ,O,S;n ] . _ ] .
ﬂk = V) 2Ty , t=1,.,my, j=0
10),9 gmi1 2(3) 9 g2 '
oy N[u,';‘ 0,5 ]N[u,’;‘ @.0,5m ]PD1 Pp, ) o _
B, =C i=1,...,m1, j=1,..,79

g (Vi)™ =1 (VE)m2 =T '

where Pp, and Pp, are the detection probabilities that 'the‘ sensors 1 and 2 detect the target,

respectively, Pg, and Pg, are probabilities the target is in the validation region observed from

sensors 1 and 2, respectively, C' is a normalization constant such that ™ ’-ﬂ"’o ﬂ?’i’j =1VYm and

1=0 Lsj=!

: - 71, _
Nlaiy, Pl = fpnP[ P exp [~ (o~ ) P ).




Define the mode-conditioned innovations v

., m00 _

m04 _

m,i,0

v,'c’"i’j -

L

Vi

Onzlxl

L Onz2x1

Onzlxl

m,2(5)
Vi

m,1(1)

L Onz2><1 _

i V,T’l(i)

m,2(5)
Vi

mij oo

i=0,7=0

i=1,..,mM, =0

i=1,..,m, j=1,.., M.

The likelihood function for each mode m is

Ap = p [V2, Y2IM, 2+

where

mj M2

=0 j=0

= Z Zp [},klvylgaoi}lel:n’Zk—l]

(33)

(34)

p [V, 2 001Mp 2] = p [vi VM 67, 24 PIBY)

( (I"PDlpG'l )(I_Pszcz)

AN

’ 7'=0,.7=0

A

(Pp, Pc,)(1-Pp, P, ) /i

|
\
| ’ (1=Pp, P, )(Pp, Pe, ) /m2 < N
|
|

Pa,y [Vkl]ml_l

(P, PG1)(P02P02)/('f1"i2)

\

Fo, []™ " P, [VE]™

prf”%stﬂ,i

[ﬁﬂmmﬁpﬂ,i=m1;1wﬂm

(35)
= 1""’,":?1‘1’ .7 =0

prfwmﬁﬂ, i=1,..,m1, §=1,... .

Using :?:ka,l (from (21)) and its covariance P,;’llk_l (from (22)), one computes the partial update

:%ka and its covariance P,;'I*k according to the standard PDAF [1], except that the augmented state

is conditioned on 0;;’j with data fusion from sensors 1 and 2. Define the combined mode-conditioned

innovations
ﬁll ﬁlz .. s e
vy = Z ZIBZE,!,JV;",M. (36)
i=0 j=0
Therefore, partial update of the state estimate
::m,i,j P _ . am ,.’. ,.,.
Ty =E {wklé’}g’,,Mi", z* I,Ykl,Y,f} = Zpp—1 + WhH Iy (37)




where Kalman gains, W™/, are computed as
[ w0 =, for i=0,j=0
WmtO — pl:?k-l['glzn,ll[sl:n’l]_l 0]’ for i # 0, j= 0

= 0 -y 2 ' ' | (55)
w0 = klk 0 HP[SE)Y), for i=0,5#0

| Wit = P BEISpTTY, for i#0, §#0,

and fI m' [f{ m,1’ fI m,2 ] . Therefore, mode-conditioned update of the state estimate

my ma

xk;k —E{xkle ,Zk1 YkaYk} ZZﬁmz’rmiﬂ | (39)
=0 j=0 ) ,

. » am
and covariance of Ty,

ml mo , . ., .. .y
ﬁmy"'vj Wm’l?] S;:"’zyj Wl:n'ytsj
i=0, (1,7)#(0,0) =0

+ ZO ioﬂmt,JWmt,J mz,] mz,] W'm.t,_j ' (40)
1=05=0 -

N 1]
[E Z ﬂmmWﬂH,J mz,]] {Z Z ﬁmi,JWm"q] m,i,J .

1=0j=0 1=0 j=0

pm ._ pm _
Pk = Pi—y

Step 5. Update of mode probabilities (Ym € M") :
1 a .
W= P [MP|Z¥] = ZupmAp | (41)

where C is a normalization constant such that E upr =1 » :
Step 6 Combination of the mode- conditioned estimates (Ym € M™ ) The final aug-

mented state estxmate update at tlme k is given by

Ty = Zm CHT | | . B | | - (42)
and its covariance is given by ‘

By = Zm {Pifk + [‘%Z[lk - éklk] [ikmm - -%k|k]’}llin- . ‘ v | (43)

From the final augmented state (see (42)), the state filtered vector Zyx and the state smoothing -

vector £;_j can be easily obtained.

\4 Svimulation Example

The following example of tracking a highly maheuvering target in clutter is considered. The target
starts at location [21689 10840 40] in Cartesian coordinates in meters. The initial velocity (in m/s)

is [-8.3 -399.9 0] and the target stays at constant altitude with a constant speed of 400 m/s. Its
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trajectory is a straight line with constant velocity between 0 and 20s, a coordinated turn (0.15
rad/s) with constant acceleration of 60 m/s'2 between 20 and 35s, a straight line with constant
velocity between 35 and 55s, a coordinated turn (0.1 rad/é) with constant acceleration of 40 m/s?
between 55 and 70s, and a straight line with constant velocity between 70 and 90s. The target
motion models are patterned and modified after [1]. In each mode the target dynamics are modeled

in Cartesian coordinates as

& = F_18k-1 + Gy 07" - (49
Ghy = F o _1Fko1 + G 1 07 , o (45)

where the augmented state of the target consists of position, velocity, acceleration, and the process
noise in each of the three Cartesian coordinates (z,y, and 2) at t; and tx_; as well as the delay
time dj, at tx. Thus both Zx and &, are of dimension 25 (ny = 25). Three maneuver models are
considered in the following discussion. The system matrices ﬁ’k,k_l, ‘ék,k_l, ﬁ‘k 4k—1 and G ak—1

are defined as

Gy 0

. F, 0 . :
ﬂ:"k—l =1. ‘ ) G;c’:k.—l = (46)
0 I 0 I
_ Fre . © _— GRea O .
Fiir1= v Grygk—1= (47)
0 I 0 I - '
where
_ iy Grx— . 0
hk—1 = ’ kk—1 = (48)
0 0 ‘ I
Fle1 Grok-1 . 0
Fep—1= v Grak-1= ; (49)
0 0 . I
| _
i Fm 0 0 G™ 0 0
‘ Fl:?k—l = 0 Fm 0 ) Gz:k—l = 0 Gm 0 3 . (50)
0 0o ™ 0 0 G™
Fr 0 0 Gr 0 0
Fpa=| 0 Fp 0 |, GRia=|o0 6p o |. | (51)
0 o Fp 0 o0 oF
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" probability matrix is given by (as in [1])

Model 1. Nearly constant velocity model with zero mean perturbation in acceleration

(1.7 0 r

F=lo10|, ¢&=|r7]|, * | (52)
00 0 0
(1 (T—dy) 0 o

Fj=l0 1 0], Gi=|@T-d)|, (53)
0 0 0 0 | |

where T is the sampling period. The standard deviation of the process noise of M! is 5 m/s? (as
in [1]).

Model 2. Wiener process acceleration (nearly constant acceleration motion)

[17% :

FP=|o1 71, &=|71], o (54)
0 0 1 1 | |
(1 (T-d) T [ S

Fi=1o0 1 (T—-d) |, Gi=|(T-d) - - (55).
0o 0 1 1

The standard deviation of the procéss noise of M2 is 7.5 m/s? (as in [1]).

Model 3. Wiener process acceleration (model with large acceleration increments, for the onset
and termination of maneuvers), with F3 = F2, G® = G2, F3 = F? and G3 = G%. The standard
deviation of the process noise of M3 is 40 m/s? (as in [1]). '

The initial model probabilities are p} = 0.8, y2 = 0.1 and pd = 0.1. The mode switching

pu1 P12 P13 0.8 0.0 0.2
P p2 pas |=|00 08 02 . D | (56)
P31 P32 P33 0.3 0.3 04

The Sensors: T'wo sensors are used to obtain the measurements. Sensor 1 and Sensor 2 are
located at [z1,y1, 21]=[-4000 4000 0] m and [z2,ys, 22]=[5000 0 0] m, respectively, and the central

processor is collocated with sensor.1 platform (we assume that there is no time delay between sensor

12




1 and central processor and there is fixed but unknown time delay between sensor 2 and central
processor). The measurements from sensor ! for model m are z} = A™!(z) + 'w;cn’l forl =1 and 2,
reflecting range and azimuth angle for sensor 1 (radar) and azimuth and elevation angles for sensor

2 (infrared). The range, azimuth, and elevation angle transformations, respectively, are given by

no= {e-a+@-w+G-2%" - (57)
a = tnl-w/@-m)] | (58)
a = a7z~ 2)/{ )"+ -w") - o (59)

As we see from (1), (2), (4) and (5), the measurements obtained from sensors 1 and 2 can be

expressed as
2} = h1([I,0,0,0,0]3) + w} | (60)
zp = h*([0,0, F 1, GT: 11, 0]%k) + wi. _ {61)

The measurement noise 'w,'cn’l for sensor ! is assumed to be zero-mean white Gaussian with known
covariances, R! = diag[g,,qa1] = diag[400m2,49mrad?] with ¢, and g, denoting the variances
for the radar range and azimuth measurement noises, respectively, and R? = diag[g.2,q.] =
diag[4mrad?, 4mrad?] with g,2 and g, denoting the variances for the ipfrared sensor azimuth and
elevation measurement noises, respectively. The sampling interval was T=1s and it was assumed
that the probability of detection Py=1 for both sensors.

The Clutter: For -generating félse measurements in simulations, the clutter was assumed
to be Poisson distributed with expected number of A\; = 13 X 10“6/m mrad for sensor 1 and -
A2 = 7 x 107%/m mrad for sensor 2 [1, case 1] These statistics were used for generating the
clutter in all simulations. However, a nonparametric clutter model was used for implementing all
the algorithms for target tracking. o

Other Parameters: The gates for setting up the validation regions for both the sensors were
based on the threshold 7—16 With the measurement vector of dimension 2, this leads to a gate
probability Pg=0.997 (see [4, pages 95-96]). »

‘Simulation Results: The results were obtained from 100 Monte Carlo runs. Fig. 1 shows the
true trajectory of the target. Fig. 2 shows the delay estimates (given unknown but fixed timing
mismatch between the two sensors) based on 100 Monte Carlo runs. Fig. 3 shows the RMSE (root
mean~s<juare error) for the filtered state and the smoothed state (lag il) in position, velocity and
acceleration. It is seen from Fig. 3 that the smoothing method shows better accuracy than the
‘ filtering method as well described in [9]. Fig. 4 shows a comparison among the performances of the
proposed IMMMSPDAF balgorithm dealing with asynchronous meésurements with unknown but
fixed d;, with known d, and the standard IMMMSPDAF algorithm with the assumption that d=0
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Figure 1: Trajectory of maneuvering target (read left to right, fop to boi:tom). (a) Position in zy

plane. (b) z and y velocities. (c) = and y accelerations. (d) magnitude of accelerations

always applies. It is seen from Flg 4 that when the unknown but fixed timing mismatch dj, is more
than one fifth of the sampling time, the performance improvement is significant compared with the
standard IMMMSPDATF algorithm that ignores the time-delay d. '

VI Conclusions

We investigated an IMMMSPDAF algorithm with asynchronous measurement (there is unknown
but fixed timing mismatch between sensor platforms) for tracking a highly'maneuvering target in
clutter. The proposed algorithm was illustrated via a simulation example where it outperformed
a standard IMMMSPDAF algorithm that ignored the possible timing mismatch (especially when

the possible timing mismatch is more than one fifth of the sampling time).
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Figure 2: Estimation of delay (given unknown but fixed timing mismatch between two separated
sensors) based on 100 Monte Carlo runs (read left to right, top to bottom). (a) d = 0. (b) d =
0.1T. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T. (T = sampling rate) |
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Figure 3: Comparison of filtering and smoothing (lag=1) for various delay values (acceleration,
velocity, and position RMS errors (3 rows each), read left to right, top to bottom). (a) d = 0. (b)
d = 0.1T. (c) d = 0.3T. (d) d = 0.5T. (e) d = 0.7T. (f) d = 0.9T. (T = sampling rate). In the

figure legends, estimation refers to filtering and smoothing is with lag=1.
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Figure 4: RMSE in position using IMMMSPDAF under various scenarios of known delay, est'imé.ted

delay and ignoring delay, for various delay values (read left to right, top to bottom). (a) d = 0.

(b) d =0.1T. (c) d = 0.3T. (d) d = 0.5T. (¢) d = 0.7T. (f) d = 0.9T. (T = sampling rate). Unless
otherwise stated, the results are for filtering.
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