AB- IR-03 -9k

EULER ANGLES AND QUATERNIONS IN ﬂJDf4bﬁf

SIX DEGREE OF FREEDOM SIMULATIONS

OF PROJECTILES

by
Michael J. Amoruso

March 1996

Approved for public release;
distribution unlimited.

BEST AVAILABLE cOopy.

g Py

- : - Su Kwong C ng
Aerospace Endgineer,”Aeroballistics Branch, MATD, AED

APPROVED BY: @ % Q
William Eblhara ~

Dr.
Chief, Materlals & Aeroballistics Technology Division, AED

REVIEWED BY:

AEROBALLISTICS BRANCH
MATERIALS & AEROBALLISTICS TECHNOLOGY DIVISION
ARMAMENT ENGINEERING DIRECTORATE
ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
U.S. ARMY ARMAMENT, MUNITIONS AND CHEMICAL COMMAND

PICATINNY ARSENAL, NEW JERSEY 07806-5000

20030929 040 i

\ e _,




CONTENTS

Contents
Figures

Tables

Preface

1.0 Introduction

2.0 Review of Matrix Algebra for Orthogonal
Transformation

3.0 Euler Angles
3.1 Rotating Coordinate Frames
3.2 Plane-Fixed Coordinates
4.0 Quaternions
5.0 Equatidns of Motion
6.0 Integration of Equations of Motion
6.1 Plane-Fixed Equations
6.2 Body-Fixed Equations
6.3 Aeroballistics (Zero~P) Equations
Appendix V

Algorithms for Implementation of the Equations of
Motion in Six Degree of Freedom Computer Simulations

Distribution List

AR uo3-

Page

f=te
e frde

[t
fte
|

14
18
37
53
53
54

57

58

70

-4470
12,4808




FIGURES

Coordinate System
Component Euler Angle Rotations

Imaginary Number i Interpreted as a Rotation
Operator

Page

19




TABLES

Obtaining the Quaternions from the Rotation
Matrix T

Evaluation of ARCTAN (A,B) over All Four Quadrants
Body-Fixed Equations

Time Development of the Body-Fixed Transformation
Matrix Parameters

Plane-Fixed Equations

Time Development of the Plane-Fixed Transformation
Matrix Parameters

Aeroballistic Equations

Time Development of the Aeroballistic
Transformation Matrix Parameters

iii

Page

32
36

47

48

49

50

51

52




PREFACE

The author has been involved in the simulation of guided projectiles for many
years. Different investigators adopt different coordinate frames, such as body-
fixed, plane-fixed and aeroballistic (zero P). Some use the Euler angle
representation to deal with rotations and some use quaternions. Sources which
explain the significance and advantages and disadvantages of these various
approaches are not readily available. It is difficult to find derivations and there
is a lack of advice on incorporating these methods into computer simulations.
The author became especially frustrated when he attempted to collect the
equations to convert an existing six degree of freedom (6 DOF) simulation from
the Euler angle to the quaternion representation. Several sources for the needed
equations were found but no two agreed exactly. Since little in the way of
derivations were provided, it was not trivial to verify the equations or reconcile
‘the discrepancies. This document resulted from the author’s attempt to make
some sense of this confusion.

The first chapter contains an overview of the problem. In the second chapter, a
brief review of the bare minimum of matrix algebra is provided to remind the
reader of some of the important properties of orthogonal transformations. The
third chapter develops the Euler angle formalism with an introduction to the
difference between body-fixed, plane-fixed and aeroballistic coordinates. The
quaternion algebra is developed in chapter 4. This is an extensive subject. Only
enough of the formalism was developed to provide understanding of quaternions
and introduce the tools needed for this documeént. In chapter 5 the rigid body
equations of motion are developed for the three coordinate frames discussed, in
both the Euler angle and quaternion representations. The discussion of the
distinction between body-fixed, plane-fixed and aeroballistic coordinates 1is
distributed throughout chapters 3 to 5. In chapter 6, the integration of the
equations of motion is discussed. Discussions of the treatment of Coriolis and
centripetal corrections in a flat earth model, gravity for a non-flat earth, and time
varying mass and moment of inertia have been included in this report. These
topics will be treated in a future report. The appendix provides a summary of
the algorithms needed for implementing these results in a 6 DOF simulation.

The author wishes to thank Dr. Richard Haddad of Polytechnic University of
- New York, Messrs Romel Campbell and John Grau of ARDEC, Dover, NJ, and
Mr. Thomas Harkins of ARL, Aberdeen, MD, for valuable discussions and
.suggestions. He wishes to thank Mr Sung Chung for checking the mathematical
derivations. ) ‘




1 INTRODUCTION

When developing simulations of aircraft, missiles or gun-launched projectiles,
investigators require a coordinate frame in which to follow the motion.
Newton’s laws require an inertial (unaccelerated) frame. The earth is a
convenient reference frame but is not inertial since the éarth rotates. The earth
may nontheless be used, with Coriolis and centripetal accelerations included to
account for the earth’s rotation.

However, the projectile is both translating and rotating. Thus it is convenient to
express the equations of motion of the projectile, missile or aircraft in
coordinates that move along with it in some way. The obvious choice is body-
fixed coordinates. These coordinates are attached to the projectile or aircraft and
roll, pitch and yaw with it. The reader familiar with gimbals or gyroscopes will
recognize that these Euler angles of roll, pitch and yaw are equivalent to gimbal
angles. In the case of a guided projectile, the seeker, rate sensor,
accelerometers, and control mechanisms whether aerodynamic or reaction control
all operate in and are easiest to describe in body-fixed coordinates.

Sometimes non rolling coordinates are desirable. It is difficult to interpret results

of a simulation when the point of view is rolling, as they are with body-fixed
coordinates. In addition, spin-stabilized gun fired projectiles rotate at hundreds
of revolutions per second. Computer run times for such projectiles using body-
fixed coordinates become intolerably long. This difficulty arises because the
integration time step must become extremely small in order to keep the angle of
roll small during the integration time step. If this is not done, gravity is smeared
over the angular motion that occurs during the integration time step because of
the high roll rate, giving incorrect results.

Some type of non-rolling coordinate system is used to deal with this problem.
One solution is to set the x component of the coordinate frame angular velocity
to zero. Another is to set the Euler roll angle to zero. These two approaches are
not identical, as we shall see in subsequent chapters. We shall see that the
difference arises from the fact that the components of the angular velocity form
an orthogonal set whereas the three Euler angles do not have a mutually
orthogonal set of rotation axes.

Choosing the roll Euler angle to be zero eliminates the horizontal component of
gravity in a flat earth model “entirely since we shall see that the y-axis is
constrained to move in a horizontal plane. This makes the numerical integration
insensitive to the roll rate. However, it is still sensitive to the pitch and yaw
rates. This approach is typically selected when modeling an unguided stage of a
spin stabilized projectile. This type of frame is called plane-fixed.

Choosing the x component of the coordinate frame angular velocity to be zero
yields aeroballistic coordinates. This choice does not completely eliminate the y
component of gravity but sensitivity to the effects of roll is greatly reduced. Its
chief value is the simplification of the equations of motion. Coupling terms




involving the x component of the frame angular velocity disappear from the
equations of motion. If further simplifications are made based on symmetry and
linearity of the aerodynamics, it is possible to obtain closed form solutions to the

equations of motion?.

With any of these frames, it is necessary to regenerate the frame as the projectile
moves. Thus the frame itself has equations of motion. We shall see that the
rotation matrix that transforms the vectors from the moving frame to the inertial
(earth) frame can be expressed in terms of either three Euler angles or four
quaternions. The equations of motion for the Euler angles and for the
quaternions are derived so that they may be integrated to obtain the new frame
and update the projectile equations of motion. Only two angles are required to
describe the rotation of a rigid body so not all the Euler angles or the
quaternions are linearly independent. Constraints such as normalization
conditions therefore exist and will be derived.

The advantage of Euler angles over quaternions is their intuitiveness. Roll, pitch
and yaw are a natural way for a pilot to describe or visualize the angular motion
of an aircraft. The Euler angles are the natural variable for describing a seeker
or spinning gyroscope gimbal. However the Euler angle algebra is somewhat
messy and unsymmetrical, so errors are not always evident. Furthermore, the
sine and cosine of the three Euler angles must be repeated computed, providing a
computational burden that does not exist with quaternions. Thus, although
quaternions are not intuitive in the sense that Euler angles are, their simplicity
and symmetric form make derivations much simpler, are less prone to mask
errors and are computationally more efficient. No trigonometric functions or
transcendental functions need to be evaluated. The most complicated quaternion
arithmetic requires the square of a quaternion or the product of two quaternions.
For this reason quaternion algebra is desirable in digital autopilots for guided
projectiles because it alleviates the computational burden. Furthermore, Euler
angles are susceptible to singularities that can be avoided by using the quaternion
formalism.

The details of the Euler angle and quaternion formalism required to develop the
6 DOF equations of motion for a rigid body in the three coordinate frames
discussed above will be developed in subsequent chapters.

1 Vaughn, Harold R., "A detailed Development of the Tricyclic Theory,” Sandia Laboratories, SC-M-67-2933,
Albuquerque, NM, 1968.




2 REVIEW OF MATRIX ALGEBRA
FOR ORTHOGONAL TRANSFORMATIONS

 This chapter contains a brief review of the matrix algebra required in this
document 12, An n by m matrix A is an array of elementsa _,i= Iton, j= 1to
m, of i rows and j columns, which obeys the following fawe of addmon and
multlphcatlon

C=A+B - ¢c..=a .+ b, (2.1)
1) L] L}

C=AB - ¢, = Say b, (2.2)

i

For these operations to be meaningful, certain matching restrictions exist on the
number of rows and columns. For addition, A, B and C must all have the same
number of rows and the same number of columns. For multiplication, the
number of columns of A must match the number of rows of B. The product C
has the same number of rows as A and the same number of columns as B. Such
matrices are said to be conformable .If the number of rows and columns are
equal, the matrix is square A vector can be represented by an n by 1 column
matrlx

The wusual algebraic laws hold except that multiplication is not generally
commutative and the multiplicative inverse does not always exist (see below).
When we refer to the inverse of a square matrix, we generally mean the
multiplicative inverse. The inverse of a square matrix A is denoted by A landis
defined by

-1 -1
AA =A A=1 (2.3)

where 1 is the unit matrix (i.e., 1 along the diagonal and zero elsewhere). This
can also be written in terms of the elements of the matrix

-1 -1
zaij a, = Eaij a, = 5. (2.4)

J J

1 Wylie, C. R., Jr, "Advanced Engineering Mathematics,” McGraw-Hill, New York, 1956.

2 Margenau, Henry and George Moseley Murphy, "The Mathematics of Physics and Chemistry,” Van Nostrand, New
York, 1956.
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where i,jand k = 1, 2, 3 and Bi is the Kronecker delta function which is unity
when the subscripts are equal and zero otherwise. In general, the inverse of a
matrix does not always exist. Generally, a necessary and sufficient condition for
a matrix to have an inverse is that it must be square and the determinant of the
matrix must be non zero. Such a matrix is called non singular. Even when a
matrix is non singular, finding the inverse is generally tedious. This will not
concern us here since we will be dealing only with orthogonal matrices which are
always square and non-singular. We shall also see that the inverse can be found
quite trivially. From this point onwards, we adopt the summation convention
which states that a sum is implied over any index that is repeated twice. Thus

a; by = 29, (2.5)
j

We define an orthogonal matrix as one that preserves the length of a vector upon
which it operates. The matrix operators than rotate rigid-body vectors must
preserve length since rotation does not stretch or compress a rigid body. Thus a
rotational transformation must be a subset of orthogonal transformations. What
properties can we derive from this definition? Consider the matrix A operating
on the column matrix or vector v.

vi =AY ' (2.6)
This may also be written in terms of the elements

vi=a, v, (2.7

If the length of v is preserved by this transformation A, then

r

v .V = Vv (2.8)

where the dot product lS defined by

2 2

2
Vv =V, + v, + v, (2.9

Thus, if A is an orthogonal, length-preserving transformation

’ ’ ) )
= = a,.vVv. a = a.a, V.V .
v, v, viovh 3V, a, vy aualkvJ . (2.10)

This is possible only if

a,.a, = 8jk , (2.11)

But this is the definition of the inverse of A.

-1
a; 4y = Sjk (2.12)
-1 3 -
Thus, for an orthogonal matrix, a;, =4, The inverse of an orthogonal matrix




is obtained by interchanging the subscripts or the rows and columns of the
matrix. This is equivalent to reflecting the matrix about the diagonal. This
operation is called the transpose and will be denoted by a superscript T. Thus

-1 T

A A (2.13)

defines an orthogonal matrix

We define the trace or spur of a matrix. The trace is simply the sum of all the
elements along the diagonal. Thus

Tr{A]=Tr(A ]=Sa (2.14)

1

The trace is obviously invariant to the transpose operation since the diagonal
elements are unchanged under transposition.

Finally, we show that the transpose of a product of two matrices is the product of
the transposes of the individaul matrices, but in reverse order.

(aB) =B" A" (2.15)

The proof is as follows:

T T o
[AB], =04, L ) = Aquqi
T T _ T T
qu Akq = Biq Aqk ={B A ]ik (2.16)

1 |t can be shown that the determinant is invariant to the transpose operatibn: Therefore from (2.3) and (2.13) we can
conclude that the square of the determinant of an orthogonal matrix is 1. Thus the determinant must be +1. The
negative determinant is associated with reflections, which obviously also preserves length. The positive deter-
minant is associated with rotations.




3 EULER ANGLES

3.1 ROTATING COORDINATE FRAMES

We use a right hand coordinate system with x positive forward, y-positive to the right and
z positive down, as indicated in Figure 1. Each Euler angle also obeys a right hand rule
with respect to its axis. Theroll @ occurs about the x axis, the pitch 0 occurs about the
y axis, and the yaw y occurs about the z axis. Thus the roll is positive clockwise looking
forward from the rear, pitch is positive upward (even though z is positive down), and the
yaw is positive looking forward. By convention, the rotational transformation from iner-
tial to rotating axes consists of a yaw through angle v, followed by a pitch through angle
0, and finally a roll through angle @. The order of these rotations is important since ro-
tations do not commute. The component rotations are shown in Figure 1. The original
inertial axes are indicated by x, y, and z. The primes indicate intermediate axes of
‘subsequent rotations. The final rotating axes are indicated by x”°, y°°, and z>”. ‘
These component rotations may be expressed as

cos(¥) sin(y) 0
R, = | = sin(¥) cos() 0 3.1
0 0 1
cos(9) . . 0 - sin(0) .
R, = 0 . 1 0 ' (3.2)
'sin(0) 0 cos(9)
1 0 0
R¢ = 0 cos(d) sin(¢) . (.3.3)
' 0o . —-sih(¢) cos(-¢i ' )

1 Blakelock, John H., "Amomz_:_ﬁc-(}cntrol of Aircraft and Miﬁsil&s,f John Wiley and Sons, New York, 1965.

2 Etkin, Bernard, “Dynamics of Flight - Stability and Coatrol,” John Wiley and Soas, New York, 1965.

3 Etkin, Bernard, “Dynamics of Atmospheric Flight,” John Wiley and Sons, New York, 1972




Figure 1. Coordinate System
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-m w
0=é<2n, — =b6=", o< ¢y=w (3.4)
2 2

It is conventional to think of a rotation from the non-moving (e.g., inertial)
coordinates to the moving body-fixed coordinates in terms of a yaw followed by
a pitch and finally a roll. However, the more commonly used transformation in
simulations will be the inverse rotation from body-fixed to non-moving
coordinates. To find this transformation, we must reverse both the order of the
component subrotations and reverse the algebraic sign of the roll, pitch and yaw
angles. Thus the matrix rotation that transforms a vector from the rotating axes
to the inertial axes is obtained by evaluating the matrix product

T=R R R =

-y -8 -0
cos® cosy —cosd siny sind siny
+ sind sin® cosy +cosd sinb cosy :
(3.5)
cos® siny cosd cosy —sind cosy
+ sin¢ sin@ siny +cosd sinb siny
—sin® sind cos® cosd coso

Since this matrix is a rotation and therefore orthogonal, the inverse
transformation from inertial to rotating coordinates is obtained by taking the
transpose, i.e., interchanging rows and columns. Later on we shall distinguish
between various types of moving coordinate systems: body-fixed, plane-fixed,
and aeroballistic coordinates.

Another interesting set of expressions that is needed is the components of the
angular velocity Q0 of the coordinate axes in terms of the Euler angles and their
derivatives. This will be useful in the development of the equations of motion.
An uncritical guess might be that the components of () are nothing more than the
derivatives of the three Euler angles. While it is true that { is the vector sum of
the vectors associated with these Euler angle rates, these rate vectors are not
mutually orthogonal and so can not be the components. However, they can be
expressed in such a way that they can be resolved into orthogonal components in
the moving frame. In general, the rotation associated with £ can be considered
as consisting of three succéssive non-orthogonal rotations with angular velocities.
See Figure 2. In the following, a bar denotes a vector and a hat denotes a unit
vector.




ﬁ=ﬁ¢+ﬁe+ﬁ¢ (3.6)
=YiH+0F + i
We want to resolve this in moving-fixed coordinates, where we can write
Q=02 +0Q,. 5" +0, " (3.7)

The vector quantities on the right of (3.6) are not an orthogonal set whereas
those in (3.7) are orthogonal. The unit vectors £'', ¥’’’ and 7''" are
orthogonal. These may be resolved as follows. The vector Qw resolved in the
orthogonal coordinates in the moving frame is obtained by applying the partial

Euler rotation:
o )
tﬂw N , 0

Q = {0¢) =R R o
»

) 1 v
(3.8)

— ¢ sin(8) |

sin($) cos(8) {

cos ($) cos (8) }

I
|
| ¥

Likewise,

p——
(=)
N——

o

/—b-\ ——
L
jen)

(3.9)

10




| 0 |
[ . |
= i +6 cos(d) l
| —9 sin(¢) |

No transformation is needed for the components of Qé since it is parallel to the
x'’-axis. Thus ‘

(o ) _ :

l%)x,, - é (3.10)
(o ) - '
lnd,}y” = 0 (3.11)
'{ch} = 0 (3.12)

We can add vectorially (3.8) to (3.10) to obtain an explicit representation of
(3.6) resolved in the moving frame. Comparing this to (3.7) gives the result we

seek, viz.

Q. = —Usin(e) + ¢ (3.13)
Q. = ¥ sin(db) cos(8) + 8 cos(d) (3.14)
Q.. = §cos(d) cos(8) — 0 sin(b) (3.15)

These can be inverted for the derivatives of the Euler angles by the usual
algebraic techniques to get (dropping the primes) ‘

(0, sin(6) + 0, cos(d))

v o= A (3.16)
cos(8)

11




é = 0 + {Qy sin(¢) + Q cos(¢)}_ tan(0) (3.17)

6 = Q cos() = Q, sin(¢) (3.18)

In a computer simulation, equations (3.16) through (3.18) are numerically
integrated to update the three Euler angles. These are used in turn to update the
rotation matrix (3.5). Note that the above expressions have a singularity at =
w/2. Euler angles can be chosen so that the singularity occurs elsewhere, but
there is always a singularity. In simulations using Euler angles, care must be
taken that the vicinity of the singularity is avoided.

By inspection, (3.16) through (3.18) can be put into matrix form.

Q, 1 0 - —sin(0) ¢
Q = 0 cos(d) sin(¢)cos(6) 8 (3.19)
Q , 0 —sin(d) cos(d)cos(8) ¥

Likewise, (3.16) through (3.18) may be written from inspection as

é 1 sin(b)tan(8)  cos(d)tan(8) Q
) (3.20)
6 =10 cos(d) —sin(¢) Q,
b .1 0 sin(¢)/cos(6) cos(d)/cos(0) | Q,

Expressions (3.19) and (3.20) are not symmetrical or elegant. Note that the.
matrices in (3.19) and (3.20) must be inverses of one another. This can be
verified by taking the product of these two matrices and verifying that the unit
identity matrix results.

12




The choice for the coordinate frame angular velocity components Q.X, Q ,and

will depend on the application. Body-fixed coordinates are approﬂriat’e for
simulating a guided projectile, rocket or aircraft. In a guided projectile the
seeker, sensors and control mechanisms are fixed to the body. For this reason it
is easiest and simplest to describe these subsystems in a coordinate frame fixed to
the projectile body. The coordinate frame angular velocity components are then
equal to the analogous components of the body angular velocity, which are
conventionally denoted by P, Q and R. Thus in equations (3.13) through (3.20),
we make the substitutions

Q =P

X

o = Q (3.21)
Q = R

This is-the usual choice made for 6 DOF simulations of guided projectiles and
missiles.

For unguided projectiles, a non-rolling coordinate frame is often preferred. Such
a frame pitches and yaws with the projectile but does not roll with it. A non-
rolling frame might be defined by letting the x component of the frame angular
velocity, Q , vanish or by letting the time derivative of the roll Euler angle, ¢,
vanish. From (3.13) we see that these two approaches are not identical. The
coordinates obtained by the first approach are called aeroballistic coordinates and
the latter plane-fixed coordinates. The advantage of the former is he
simplification of the equations of motion since the coupling terms involving

drop out, as we shall see in Chapter 5. This approach is often taken with analytic
or closed-form solutions of the equations of motion. Equation (3.21) would be
modified by letting .Qx = 0.

The plane-fixed approach is often used for 6 DOF computer simulations of spin
stabilized projectiles. Spin stabilized projectiles have typical spin rates of
hundreds of revolutions per second. Using a body-fixed representation in a
computer simulation of such a projectile requires an extremely small integration
time step and, consequently, inordinately long computer run times. The time step
must be small so that the projectile roll is not appreciable during the time step.
Otherwise the effect of gravity is smeared across this angle. While aeroballistic
coordinates will help, a more useful solution is to require d/dt = ¢ = 0 for the
coordinate frame. We shall see in Chapter S that the y component of gravity is
rigorously eliiminated in the fixed plane approach. This eliminates sensitivity of

‘the integration to the projectile roll rate, though a similar sensitivity is still

present for the much slower pitch and yaw rates. This approach can speed up-
simulation run time by orders of magnitude.

All three approaches will be discussed further when developing the equations of
motion in Chapter 5. The plane-fixed coordinates are derived in the following

13




section from the physical view point of constraining one of the axes to move in a
single plane.

3.2 PLANE-FIXED COORDINATES

Plane-fixed coordinates pitch and yaw with the body but do not roll with the
body. Hence we define ¢ = 0 and d¢/dt =0. More precisely, one axis is
constrained to always remain in one plane, though it can rotate in that plane. For
example, the z-axis could be constrained to the vertical plane (original x-z
plane). This can be achieved in an inertial to moving (i.e., plane-fixed) frame
transformation consisting in a pitch about the original y-axis (which keeps the z-
axis in the original pitch plane, which is vertical) followed by a yaw about the
new z-axis, which leaves the z-axis unchanged and therefore still in the vertical
plane.

Alternatively, the y-axis can be constrained to the horizontal plane (original x-y
plane). This is done by a yaw about the z-axis followed by a pitch about the y-
axis. We can construct the rotation matrix as before, using (3.1) and (3.2).
However, unlike before, the above recipe involves inverse transformations from
the inertial to the moving frame rather than from moving frame to inertial, as
was the case in the derivation of (3.5) for the body-fixed frame. Thus the above
transformation is comprised of the inverses of the matrix operators previously
used. Thus, recalling (2.15) and that the inverse of an orthogonal matrix is its
transpose,

-1 -1 _ -1 T T T T

T =Re R;j, "ReRq,:[RwRe] =T

or

T = R.,n, Re =

cosf cosy — siny sin® cosy
. (3.22)

cos9 siny cosy sin@ siny
—sin® " 0 cosH

14




This is the plane-fixed analog of (3.5). It is not surprising that this is equivalent
to making ¢ vanish in (3.5). Likewise (3.6) becomes

ﬁ=6¢+ﬁe=q}z’+éy' (3.23)

Egquation (3.8) becomes

i

—~—
=}
<
S N

<

]
I
)

(3.24)

} — ¢ sin(9) i
= | 0 |
| |
I !

+mi; cos(9)

Likewise, (3.9) becomes

| | (g )
‘ I lQe) 5 0
I X
- | (o) _
Qe = (ﬂe} ) = 8
I Yy
| 0 0

Equations (3.13) through (3;15) become

15




Q. = Ycos(®) (3.26)
Q. = 8 (3.27)

) ~§ sin(®) = —Q_,, tan(8) (3.28)

x'!

We have substituted (3.26) into (3.28). The primes on the subscripts of £ in
(3.26) through (3.28), as well as in (3.13) through (3.15) can be dropped since
the axes referred to are orthogonal. Inverting, with some algebra yields the
analogs of (3.16) through (3.18), viz.,

QZ —Qx
¥ - = -~ (3.29)
cos(9) sin(0)
é = 0 ' (3.30)
) = Q (3.31)

y

The analogs of (3.19) and (3.20) arec

Q, 1 0 —sin(6) 0
X (3.32)
Q= 0 - 1 0 - ;]
o 0 0 cos(b) ¥
and
0 1 0 tan(8) Q
8 |= 0 1 0 Q
- (3.33)
¥ 0 0  Vecos(6) Q. '

16




In summary, the representation of the rotation matrix T is unique no matter how
it is derived, although some methods may not always work because of
singularities. The rotation matrix T can be viewed as an operator which rotates a
vector in a fixed coordinate system or, conversely, as a rotation of the coordinate
system while the vector remains fixed. In the former point of view, the vector
has the same length but its components are changed because its direction in space
has changed due to the vector’s rotation. In the latter point of view, the vector
has the same length and direction in space but its components are different
because of the rotation of the coordinate frame.

If we take the latter point of view, we can see that the rotation matrix is just the
matrix of the direction cosines. Let i’ denote the three mutually orthogonal unit
basis vectors of the primed (rotated) coordinate system and I denote the three
basis vectors of the unprimed coordinate frame. T _ will be the elements of the
transformation from the unprimed to the primed frame. Then

L = qu { (3.34)

Taking the dot product and makmg use of the mutual orthogonality of the basis
vectors, we can write

i =T i-i ' ' (3.35)

Thus the elements of the rotation matrix could be obtained by taking the dot
products of the unit basis vectors of the unprimed coordinate frame with the
basis vectors of the primed frame.

17




4 QUATERNIONS

We will develop just enough of the algebra of quaternions as is needed for
understanding and writing six degree-of-freedom (6 DOF) simulations.
Quaternions are a quadruplet of numbers (strictly speaking operators) that can
be considered to be a generalization of complex numbers. Recall that the
quantity

i = V-1 (4.1)

may be best thought of as a rotation operator. Thus i is a 90 degree
counterclockwise rotation from the ‘‘real’ to the ““imaginary’’ axis. See Figure 3.
The "square” of i is two successive 90 degree rotations. This is equivalent to a
180 degree rotation. This takes us to the negative real axis. The cube of iis a
270 degree counterclockwise rotation from the positive real to the negative
imaginary axis. It is in this sense that i2 = -1 and i® = -i. The 4th power of i is
just a 360 degree rotation which gets us back to the real axis. ‘

For quaternions we define three such quantities, corresponding to rotations about
the x, y, and z axes respectively. As in the case of the conventional imaginary
number i, the operators i, j, and k -can be interpreted as 90 degree rotations
about the x, y, and z axes; and the squares correspond to a 180 degree rotation
about the appropriate direction, and so forth. These operators are sometimes
call hyperimaginary numbers. Just as the conventional complex numbers can be
used to provide'machinery for treating rotations in a plane, we might expect that
three ““imaginary” operators i, j, and k might be used to treat rotations about
three axes, i.e., in three dimensional space. Another useful property of
quaternions is that it permits us to multiply and divide vectors. This will be seen
to provide a much simpler mathematical treatment than matrices. :

Recall that rotations are not numbers but operators and do not commute. Thus ij
does not equal ji, and so forth. A little bit of thought and some experimentation
with rotations will convince the reader that the following elementary
relationships hold.

it= =k = | (4.2)
P ko= —ji (4.3)
jk =i = —kj (4.4)
ki =j = —ik (4.5)
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Figure 3. Imaginary Number i Interpreted as a Rotation Operator
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. We take a quaternion to be a quadruple Q = [ Q0 + in + jQ2 + kQ3 ]. Some

tedious algebra will verify that multiplying out two quaternions, taking all
possible products and simplifying using (4.2) through (4.5), gives the following
result.

W Q= [W+iW + W +kW, ][ Q +iQ +j0,+k0,] . (4.6)
= [W,0,~W,0,-W,0,-W.0.] + WliQ,+0,+kQ,] + Q [iW + W +kW.]
+i[ W2Q3 - W3Q2 ]+][ W3Q1 - W1Q3 ]+k[ W1Q2 - W2Q1 ]

Upon inspection of (4.6), we see that the first line after the last equality contains
expressions that resemble a dot product and a cross product. This suggests an
alternative formulation. We can treat i1, j and k not as rotation operators or
hyperimaginary numbers but as an orthogonal set of unit vectors and consider a
quaternion formally to consist of a scalar part and a vector part. This lets us
write the quaternion product expressed in (4.6) more compactly.
The quaternion product is equivalently defined as

WQ=([WQ ~W.Q0 W Q0+ QW+ WxQ1 (4.7
where

W=[W,, W]and Q=[0,,0] (4.8)

Furthermore, we can obtain still another alternate form since (4.6) can also be
rearranged into

waQ-= [WoQy— W, 0, -~ W,0, - W,0,]
+iW. 0, + W0, ~ W0, + W,0,) (4.9)
W0, + W0, +-‘W0Q2 - W0,

+ k[W3Q0 - W2Q1 + W1Q2 + Won]

This may be organized into the matrix form as




A, tW, -W, -W, -W, 2,
(4.10)

A, +W, +W, -W, +W, 0,
A, +W, +W, W, -W, 0,
A, +W, -W, +W, +W, 0,
0, -Q;, -2 ~Q; Wy

+Q, +tQ, *+0; ~Q, v,

) +0, —Q; +Q, *@Q, v,

+Q, +Q; —C, @ W

Compare (4.7) and (4.10) to (4.6). They are equivalent. (4.7) and (4.10) are
more compact than (4.6) but are arbitrary if used as a definition for quaternion
multiplication, as some authors do. On the other hand, (4.6) flows logically and
automatically from the properties (4.1) to (4.5), and gives insight into the
connection with rotations. We will use the approach that is the most convenient
in each case.

Some useful expressions follow. Define the conjugate

Q*E[QO,—Q] | (4.11)

Define the norm or absolute value squared

) * 2 - ®
lQI°=QQ =10, +02.0.0]1=Q Q ' (4.12)
Let us define an invese and verify it works.
Ql=1(0,.-C1/C0Q, +2.0)

. * . ;
- =Q /|Q] (4.13)

It follows that




QQ'=1(1,0] - (4.14)

If the norm vanishes, the quaternion is said to be singular and the inverse does
not exist. It is easy to show that the norm of a product equals the product of the
norms. The inverse of a product is the product of the inverses in reverse order.
The conjugate of a product is the product of the conjugates in reverse order.

Thus
1Q; Q,1 = 1Q,11Q,] (4.15)
-1 _ -1 -1
% % %
[Q;Q,1 = Q, ¢ (4.17)

In general, quaternion arithmetic will be familiar except for non-commutativity
of multiplication. Commutation breaks down for multiplication because of the
cross product term in (4.7). Otherwise all the other usual laws are obeyed.
Quaternion arithmetic is distributive and associative, but commutative only for
addition. Identity elements exist for both addition and multiplication, viz. (0,0)
and (1,0). Inverses also exist for addition for all quaternions. A multiplicative
inverse exists for any non-zero quaternion. See (4.13). The rules for
differentiation are the familiar ones, except care must be taken because
quaternions do not commute. As an example, consider the derivative of the
product of two quaternions.

[Q,Q,)=0Q,Q,+Q,Q #Q,;'Q+ Q, Q (4.18)

Since the norm of a product equals the product of the norms, it would seem
plausible that a quaternion of unit norm could be useful to treat rotations since
rotations must preserve the length of vectors. We shall see later that this
conjecture is essentially correct. In anticipation of a quaternion formalism for
rotation, some relations for unit quaternions will now be provided.

Consider the unit quaternion (sometimes called a versor or Euler quaternion)

‘e=['e0,'e_]=[e0,eleze3] (4.19)

where |e |2 = [1, 0] See (4.12). Thus

2 2 2_1‘
€, +e1 te, +e3 = , (4.20)
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From (4.15), the “length’ or norm of a duaternion is preserved when multiplied
by a unit quaternion.

leQi=1Q] (4.21)

Since the norm of a unit quaternion is unity, (4.13) tells us that the inverse of a
unit quaternion is equal to its conjugate, i.e.

-1 - *

e =ley,—e)l=1le,,—e —e,—e,] =e | (4.22)
Alhso
e = {éo ,él é2 é3} (4.23)
By differentiating e e =1, »\;e obtain
-1 -1

el oy : (4.24)

(4.25)

Since the inverse of a unit quaternion is equal to its conjugate, the inverses in
(4.25) can be replaced by conjugation.

(4.26)

Vectors can be treated as quaternions with a zero scalar part. Note that




* % _

V =[(0,v] =[0,¥]=-V ' (4.27)

Some authors refer to a quaternion that has a zero scalar part as a pure
quaternion. Generally, the quaternion product of two pure quaternions (vectors)
is not a pure quaternion (vector) since the scalar part of the product is usually
not zero. Sometimes the product of two quaternions with non-zero scalar part
yields a pure quaternion. For example, from (4.26)

(4.28)

‘This is only possible if the above product is hyperimaginary, i.e., a pure
quaternion Or vector.

We now try to formulate a rotation operator in terms of quaternions operating
on a vector (i.e., a quaternion with a zero scalar part). The simplest thing to try
is multiplication of a vector from the right or left by a unit quaternion. A unit
quaternion is chosen since rotations preserve the length or norm of a vector, and
we can see from (4.21) that multiplication by a unit quaternion will not change
length. First we will try maultiplication from the left. We shall see that
multiplication from the left only (or from the right only) is unsatisfactory.

We choose for the rotation operator the unit quaternion

1 o] |
A= {)\0 , A } E | cos(B) . sin(B) A | (4.29)
where the “hat’’ denotes a unit vector and
T U I G
)\0 + o= 1sag + A ) )\3 (4.30)

For the vector we choose a quaternion representation with zero scalar part

q= {0,§] ' | | BNCED

Then we try representing a rotation by

{0 , zj} = (4.32)




ERwEery

For quaternion q’ to be a “vector”, the scalar part must vanish. But multiplying
a pure vector by a quaternion produces another quaternion with a_non-vector
component. Thus, unless we make an orthogonality assumption that A.g = 0 so
the scalar part vanishes, the quaternion multiplication does too much. But such
an assumption is too restrictive. Alternatively, we could try multiplying by A
from the right. This gives

[l — - __=-
g =qr= |0,q] {ho,h}= {—q-k,h0q+q><h} (4.33)
Note that, from (4.22) we can write
g = ar= (478, a7 + 77 | (434

The scalar parts of (4.32) and (4.34) have opposite sign. This suggests we might
try combining (4.32) and (4.33) into a similarity transformation in the hope that
we might be able to get the scalar part to drop out. This strategy turns out to be
a good one. We shall see that this approach does not require any restrictive
assumptions such as the orthogonality of the quaternion and the vector. In
addition, it will turn out to be equivalent to the matrix rotation operator

described in (3.5).

0 =xrgrt (4.35)
Expanding

@ =[x, X1[0,31(x,,-x]= (4.36)

—_— — — —_ 2 —_ —_ _— - - —_
{—)\Ok.q+)\0q.)\ + AXg.h, +A g + A AXg + Ag X — Ngg XN — Axéjx)\}

Y PR S (R (N y
Using the identities [AXBJ.A= 0 and AXBXC = BlA-CJ—-ClA-BJ, with the

normalization condition for the unit quaternion \, viz., (4.29), this becomes

2

0 (4.37)

| RS )

1}5 + 2{X.¢7)X + 2%, {Xxg)




Thus q' defined by (4.35) is still a vector or pure quaternion and its length is
preserved, as required for a rotation. We need to manipulate these terms so that
g appears on the right with some operator expression to its left. This vector part
can be written in matrix component form by using the following identities

| o S VU W I oa, |
)\3 O ')\1 | ; q2
I -\, N 0 I l q3|
=\g
Also,
M- -1 [(--7_]
LGN = X gh, = A hg = AN 7] =
| AN XX, AN | | e, |
l 1™ 172 173 ‘ ! 1 (4.39)
PR S T 1 4,
I AN NN, AN l ’ q, l

where the superscript T denotes the transpose (interchange of rows and
columns). Thus we can write

5 {{2)\ -—l)l + 2)\)\ + 2\ } (4.40)
Ao + A — % xlxz — Aoy MAs + A,
z- :' -
= 2 A, + A Aot A, — % Aohs = Agh, 7
2 2
INPNIESD WO W Mg+ AN, Ng + Ay —




z .z 2 2
®¥[Ag+N, =N, —A,] LN Y AAg + Aoh,
2z 2 z 2 _
=2 A, + A, %A= A+, —X;] Ay = AN q
Y3 2 2 2
AN = AA, Mg+ AGA, L WD P

where I is the identity or unit matrix. The second version of the matrix was
obtained using (4.29). The expression (4.35) which involves quaternion
operations is equivalent to (4.40) which involves matrix operations.

Alternatively, the quaternion nature of (4.35) may be used more directly as a
4x4 matrix by using the two expressions for quaternion multxphcanon given in
(4.10) and making use of the normalization condition (4.19).

1 *
g =AgqA =AgqA = (4.41)
I +x, =N =N, =Ny +hy A A A I] 0
T S S N SRR LT VR PR
T T ~x, +A, +A, -\, |la,
T VS VS W ~x, =, +A, +xy lay
1 0 0 0 0
0 eaZoanio)? NN, — A 2N M. + A
[0+ 1 2 3] [l 2 V] 3] [1 3 0 2] ql
2 2 2 2
0 L2, FAA] oA EA-A] 2 - A 7,
: : : 2 2 -2 2
0 2N, = A 20, + AN A=K A | g,

How do we see that (4.40) or (4.41) correspond to (3.5)?7 Let us start with
(4.29).




A= {cos(B) , sin(B) ﬁ} | (4.29)

where
)\0 = cos(B)
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sin(B) = {1— A |

N+ GN, + K

[~
i

sin(B)

We will establish the connection between (4.35), (4.40) and (3.5) by means of an
example rather than a comprehensive and rigorous proof, by dealing with a
rotation about a single one of the coordinate axes. Of course, a complete general
rotation can be built up by several such component rotations. Take the special
case where 1 lies along the y-axis. Then A ) = cos(B), A, = sin(B) and A, = A,
= 0.

The reader can readily verify by substitution into (4.40) that (3.3) will be
generated except for the curious fact that the angle ¢ is equal to 28! This
provides insight into the interpretation of the rotation associated with a
quaternion. An Euler quaternion generates a rotation about an axis determined
by the vector part. The half angle of rotation is determined by the arc tangent of
the ratio of the length of the vector part to the scalar part.

The matrix T is the rotation matrix from moving axes to inertial axes. It is
numerically identical to the much less symmetric and computationally more
complex expression in (3.5). But as simple as this quaternion form of the
rotation matrix appears to be, recall it is just the matrix and vector parts of
(4.37) under matrix algebra. But (4.37) is identical to (4.35), which is the
expression of a rotation of a vector represented as a quaternion with zero scalar
part. It is nothing more than a unit quaternion X multiplied by the vector
multiplied by the inverse of the unit quaternion A, where multiplication means
quaternion maultiplication. Examine (3.5) and note how cumbersome, and
computationally awkward it is. Then examine (4.40) and finally (4.35). How
deceptively simple, elegant and computationally efficient (4.40) and (4.35) are!
By now the reader should begin to have an appreciation for the power of the
quaternion formalism. There is a draw back, however. One can easily
intuitively grasp the Euler angles. The four quaternion components are not so
easily subject to intuition. '

Because of this, it is more convenient to define the initial conditions of a




simulation in terms of Euler angles rather than the quaternions themselves. We
can use the Euler angles to generate a rotation matrix T. It then remains to find
the quaternions that would generate the same rotation matrix. We already know
how to generate T from the quaternions A .. How do we do the inversion, obtain

the )\i from T?

The expression (4.35) can be inverted to give the quaternions in terms of the
rotation matrix T in (4.40). This inversion can be accomplished as follows.
From the diagonal elements of (4.40) and the unit quaternion normalization
condition (4.29), we obtain the following four simultaneous equations, where we
will be using the trace, Tr [ T ], which is defined as the sum of the diagonal
elements of the matrix T, viz., Tr [ T ] = T11+ T22+T33.

L2 2 2 2
T11~h0+)\1—h2—)\3
T, =2 = A + 2\ =]
2 "o M 2 73
2 2 2 2 (4.42)
T33=)\0—)\1—)\2+)\3
.2 2 2 2
1 =X+ A+ A+
These can be solved simultaneously to give the following.
172
Ay = E¥[1+ Tr(T)]
: 12
A= 2R+ 2T, - Tr(T)]
’ 1/2 (4.43)
A, = %[ 1+ 2T, — Tr(T)]

1/2
A, = x%[1 + 2T33 — Tr(T)]

There is a sign ambiguity to resolve. The chief constraint on the algebraic signs
of the \ is that the rotation matrix T from which the A were generated should be
regenerated when these \ are substituted in (4.40). Note that no negative matrix
elements can arise if all the A have the same sign, whether positive or negative.
Thus the choice of sign is not trivial. The diagonal elements of T pose no
constraint since the A occur only as squares in the diagonal. The off-diagonal
elements appear as cross terms and are the key to our task. From (4.40), we can
take all possible combinations of Tiji Tji, i#j.
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AAy = BT, + Ty
Ahy = KT, = T,
Mhy = %[T 3+ T, (4.44)
Mok, = 4T3 = T;)
);2)\3 = %[723 + T32]
Ak = %75, = Tyl

In generating these expressions to investgate the sign ambiguity, we see that
(4.44) provides an alternate form for determining the A, providing that one of
the A . is known. For example, suppose we obtain xo from (4.43). Then )\1, )\2,
and X, can be obtained from (4.44) by dividing the appropriate expressions in

(4.44)’by . Thus we obtain

A, = :%{1 + 7ri7y |
1
M= {Tsz - Tzs} (4.45)
4\
0
1
- —Ir 71
Ay =7 [T13 Tslj
4N
0 .
1
- —r 71
Ay = lT2] lej
4)\0

This hybrid solution combining (4.43) and (4.44) has an unexpected advantage.
The sign ambiguity remains only for A\ . This sign ambiguity is not significant
since changing the sign of A, will change the sign of all the A\ .. But the
quaternions always appear as products of pairs of quaternions or the équare of a
quaternion. Thus the rotation matrix is invariant under a sign change for A_.
See (4.40). Although the _sign convention doesn’t matter, it is conventiona]fy
chosen to be positive. -

The above inversion can have numerical problems in computation, however.
The N for i=1,2,3, become ill-defined when the A in the denominator vanishes.
This will occur if the trace of the rotation matrix equals -1, which would happen




when ¢ = 0 and ¢ = — w radians or 180 degrees. Furthermore, numerical round
off errors occur in the immediate neighborhood of this region when using (4.45)
for computation.

It is not difficult to avoid this problem since we did not have to start with A_ in
(4.43). Another choice could have been made before invoking (4.44) for the
other 3 )\i. This could be done by evaluating all four A, in (4.43), picking the
largest and then using this dominant A, to find the other A in (4.44). We would
again obtain results that would be insensitive to sign ambiguity but would now be
insensitive to computational round off errors as well by putting us far away from
any singularity.

This algorithm is described in Table 1 with two modifications. For consistency,
the signs are examined at the end of the algorithm. If A/ is negative, the signs of '
all A are reversed to keep N\ positive, according to our convention. We have
alrea'dy seen that changing the overall sign of all four quaternions has no effect
on the rotation matrix. Secondly, evaluating all four quaternions using (4.43) is
computationally wasteful. It is sufficient to compare the trace and the three
diagonal elements of T to select the dominant quaternion. The complete
algorithm is shown in Table 1.

In order to use the quaternions we must have a scheme for determining the time
rate of change of the quaternions so that these rates can be integrated to provide
updated quaternions as the system evolves in time. These would be expressions
that play a role completely analogous to (3.16) through (3.18) for the Euler
angles. This derivation could have been accomplished by standard matrix
algebraic techniques. However, the derivation would have been exceedingly long
and tedious. Using quaternions, it is rather simple and straight forward.

Since q and q’ are vectors or pure quaternions, they obey the transformation .
law given in (4.35),

-1 -1
qQ =AqgA q =N q A

(4.46)

. S . L -1,
q'=AgA qg=X\x q'A

Now we wish to take the time derivative of q in the moving coordinate frame. As
is well-known, a term must be added due to the angulér velocity Q of the

rotating coordinate frame. Taking the derivative
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Table 1. Obtaining the Quaternions from the Rotation Matrix T

® Define TOO =Tr[T]
e Compare Tii where 1 = 0,1,2,3.

Find the dominant duaternion {most positive or least negative.)
The index of the dominant Tii determines the dominant A i to be used in (4.43).

® Determine the other three Aj , J # iin (4.44).

The four cases, with the dominant \ first are

A, = =41 +Tr(T))"” A = =81 427, - Tr(T)”
1 2
A= a, [Taz - Tza] . A = o, [Taz - Tz;]
By | 2
A, = ax, [Tu - Tn] ’ A= an [Tu *7T,
1 2
N [7..- Tu] b= [Tu + r”]
A, = zu[1427, - T (T)]" A, = =%[1 ¥ 2T, + (1))
1 1
Ao = ;:z- [Tu - Tn] A= :): [sz - sz]
1 L
A= ‘A [112 * 12\ R )‘\ = 4)\3 [7.-1: * Tn] .
A= “ [Tza+ T:z] A =7 a, [Tzz+ Ty

® Examine th(; algebraic sign of )‘0' If negative, change the sign of all four )\j.
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dq d _, -
="M q A +[0,0xq]

drt dt

--1 -1. -1 ¢ = _
= N @AX+X @'+ X qg'A+[0,0xq] (4.47)

All these terms are pure quaternions or vectors. Since

A laa=a g =g (4.48)
we conclude that

" a2 g A= —[0,0xG]=+[0,qx0]
or (4.49)

-1 -1 -1 -1 - =
A AgA A+ X AgMh A= +[0,qxQ]

-1 -1
=X ANq + g\N A
-1 —_ e ~1 ' -1-
P Differentiating A A = [1,0] gives A\ X = — X \. Thus from (4.7)

. -1 s u
[0.Gx21=aX 'A=A 'Nqg=2[0,gxl\ X)) (4.50)

_1 -
Recall from (4.28) that A\ ~ \ is a pure quaternion or vector. Thus
— Q=X A ) (4.51)

We use the i, j, k notation described in (4.1) through (4.6), since this formalism
! .makes it easier to group terms and find a matrix operator equivalent. We obtain

a = 0=

[0,ﬁ]=[0+i01+j02+'k0.3]= | (4.52)

N ONE NS NES W CONE R WIS D VAR 3 9 O




1 ]

[ . . . . ‘l'_ . . . —* .
2 IR F AR TR FR |+ 26 =N R F R F XA, —hh |+
] [

2]l—h2)\0—h3)\1+)\0)\2+)\1)\3j + 2kl )\3)\0+)\2)\1 )xl)\2+)\0)\3j

This may be expressed into the matrix form (recall equation 4.10)

0 TS S S S N
0 1 2 3 o (4.53)
Q _, R VRS WS VRS W 'y
Q, —X, =N, N, HA A,
Q ~N, N, —h HA A,

The top element in the column matrix for the angular velocity can be seen to
vanish by taking the time derivative-of the normalization condition on X, viz.,
(4.29). Similarly, the first line of (4.52) can be quaternion-multiplied from the
right by A to yield

A= B0 =
BN, + PN+ N, FEAN0 + 0+ R+ k0] = | (4.54)

% [ J\OO~)\IQX—)\QQ)'-)\3QZ] + %i[)\10+)\091—_)\3ﬂy+)\202 ]
| + ¥y [ )\20+)\30x+}\oﬂy—)\102] + %k[)\SO— )\ZQX+)\IQ)'+)\OQZ ]

This may be organized into the matrix form using (4.10)

X, +r, —A, —h, —A 0

. FA FN. —A. +X Q .

1 N 1 - 0 3 2 X

: =% N (4.55)
)\2 +)\2 +)\3 +)\0 —)\1 Qy

)\3 +)\3 —)\2 +)\1 +)\0 Qz




See equation (4.10) Note that both (4.53) and (4.55) are free of singularities,
unlike their analogs (3.19) and (3.20). Both matrices (4.53) and (4.55) are equal
to a unit matrix times )\o added to an antisymmetric matrix. These matrices are
inverses of one another as well as transposes of one another. Hence they are
orthogonal and preserve the length of the vectors they operate on. Thus the
vectors ( A, A, A_ A, )and (00 Q Q ) are related by a rotation in 4-space
. 1 2. 3 x y z ) .
with the latter ]havmg only a three-vector part. Compare these elegant properties
and the simplicity and low computational burden associated with the use of these
equations versus (3.19) and (3.20). If the above derivation is not simple enough
for you, the matrix in (4.55) may be obtained by realizing it is the inverse of the
matrix in (4.53), and can be obtained by substituting into the matrix in (4.53) the
inverse of the unit quaternion . But from (4.22) we realize that the inverse of a
unit quaternion is obtained merely by changing the sign of the last three (
‘““vector-like’’) components of the quaternion. Thus all that needs to be done to
invert this matrix is to change the sign of the off-diagonal elements. There is
something here for everyone: the mathematician, the physicist, the engineer and
the programmer.

Since quaternions are not as intuitive as Euler angles, it is sometimes desirable to
move back and forth between the Euler angle and quaternion representations.
Going from Euler angle to quaternions representation can be achieved by using
the Euler angles to evaluate the transformation matrix using equation (3.5). The
transformation matrix T can then be put into (4.41) to obtain the quaternions.
Note that after (4.41), it was noted that the sign for )\D is not important. Why
this is so becomes apparent shortly. From the first row and last column of (3.5),
and (4.40)

sin® = —T31 = 2[)\0)\2—)\1)\3] -nw/2 =6 = w/2

T21 2[N A+ )\0)\3]
tany = = —m<¥y=x (4.56)

T 2 2__ 2_ 2
11 )\O'*‘)\l )\2 )\3

T32 2[x2x3+x0x1]
tand = o= 0 =¢ < 2w

T | '2__ 2 2 2
33 )\0 )\1 )\2+)\3

Note that theta can only be defined in this way over a-range w where the arcsin is
_ defined, viz. between + /2 and —=w/2. However, ¢ and ¢ can be found over a
full 360 degrees or 2 w radians by taking into account the sign of the numerator
and the sign of the denominator of the last two expressions. See the algorithm
programmed in Table 2. Note further that either sign selection for A = made in
(4.41) will yield back the same Euler angles in the above expression. Thus the
sign choice is arbitrary. .
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Table 2. Evaluation of ARCTAN (A ,B) Over All Four Quadrants

IF B>0 tan—l(A{B)

IF B=0, A>0 w2

IF B=0, A<0 — /2

IF B<0 m + tan (A/B)

The denominator in two of the expressions given in (4.56) can vanish when ¥ or
9 are at = w/2. The algorithm in Table 2 will treat this correctly.

We shall see ih the next chapter that plane-fixed coordinates will require ¢ = 0.
When applied to the expression for tah ¢ in (4.56), this constraint will further
require

)\2)\3 + )\0)\1 =0 | (4.57)
A note of caution should be addressed, viz., the necessity for renormalization.

Round off error in a computer simulation gradually causes the normalization
condition (4.20) or (4.29) to fail. Thus the quaternions need to be regularly

renormalized in a simulation.
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5 EQUATIONS OF MOTION

In this section, the rigid body equations of motion will be developed for three
types of coordinate systems: body-fixed, aeroballistic and plane-fixed. Body-
fixed coordinates rotate (roll, pitch, yaw) with the body of a projectile. Hence
the angular velocity { of the coordinate axes is equal to the angular velocity o of
the projectile body. See (3.13) through (3.15). For body-fixed coordinates

0 =0 =P=-{§sind+ ¢ (5.1)
.Qy=myE =d:sin¢cose+écos¢
Qz=szR=>q}cos¢cose—ésin¢

Recall that in aerodynamics the components of the angular velocity of the
projectile body @ are conventionally denoted by P, Q and R. These coordinates
are the natural choice for guided projectiles since the seeker and sensor outputs,
actuator parameters, and, so forth are most simply and naturally expressed in
body coordinates. However, for spin stabilized projectiles, a very small
integration time step is required. Otherwise the coordinate system will roll
through too great an angle during the time step and smear the direction of forces
such as gravity. To deal with this, plane -fixed coordinates are utilized. These
coordinates pitch and yaw with the projectile but do not roll with it. In
particular, one axis is constrained to remaining in a single plane. In our case, the
y-axis will be constrained to the horizontal plane. See equations (3.22) and
following. This implies that the roll Euler angle of the plane-fixed frame satisfies
the relations

do/di =0, ¢ =0 ' (5.2)

Thus, although the projectile is rolling, the fixed plane coordinate system is not
rolling, in the sense that ¢ vanishes for the fixed plane axes. However, the x
component of the angular velocity of the frame, viz.  does not vanish and
of the frame does not equal P (the x component of the projectile angular
velocity). These relations may be found in equations (3.26) through (3.28).

.Q.x = —xi; sin = —R tanf
Qy'E 0-="0 : (5.3)
O = q; cosd

Comparing this expresswn for @ with (5.1), we see that ¢ is the roll rate of the
projectile with respect to pfane fixed coordinate frame. (5.1) cam be
reconstructed from (5.3) by adding ¢ to (5.3) and rotating with (3.3). This
expression in useful if the Euler angle representation is used. With the
quaternion representation for plane-fixed coordinates, we make use of (3.5),
(4.40) and ¢ = O to obtain
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-2 {)\1)‘3 — A )\2}

- 0
T4
tanf = = (5.4)
T S
33 Ao = A T A, 3
Thus
[ _ ]
2R l)\l)\3 )‘Oxzj
o = (5.5)
2 2 2 2
)\0 - )\1 - )\2 + )\3

The denominators in (5.4) and (5.5) can vanish, corresponding to 6 = *7/2. In
defining plane-fixed coordinates, we had to impose Euler angle type algebra on
the quaternions and have corrupted them with Euler angle type singularities.
Thus, gquaternions in plane-fixed coordinates should not be used in vertical
trajectories. Use body-fixed coordinates instead. This is not burdensome
computationally since the direction of gravity is along the axis of roll. Finally,
we could choose QJr = 0 in (5.1) for aeroballistic coordinates. This choice will

simplify equations of motion

In the following development, results will be derived using the term Q . This
will allow all three coordinate formalisms to be developed simultaneously. *At the
end, the results can be specialized to one or the other by letting O. equal P for
the body-fixed case or equal zero for the aeroballistic ("zero P’ ) case or equal
— R tan® (or its quaternion equivalent - see (5.3) and (5.5)). .Q Q and Q =
R for all three cases. From (3.13) we see that the definitions for aeroballistic
and body-fixed frames are not equivalent but become the same in the limit of
small 8 or small d{y/dr. The advantage of choosing plane-fixed coordinates for a
non-rolling system is that it has no y component of gravity in a flat earth model,
thus eliminating the possibility of gravity smearing due to roll during integration
of the equations of motion. (This will be shown in equation (5.10) below.)

In summary, the body-fixed coordinates roll, pitch and yaw with the projectile
and act as if physically attached to the projectile. Plane-fixed coordinates pitch
and yaw with the projectile but do not roll with it. The y-axis is constrained to
“move in the horizontal plane. See the discussion for equations (3.22) to (3.33).
The Euler angle rotation matrix for the plane-fixed case can be obtained from
the body-fixed matrix (3.5) by letting ¢ = 0. Equivalently, (3.3) is replaced by
the unit identity matrix.

1 ‘Vaughn, Harold R., "A detailed Development of the Tricyclic Theory,” Sandia Laboratories, SC-M-67-2933,
Albuquerque, NM, 1968.

38




The form of Newton’s law F = dmv/dt is valid only in inertial (i.e., non-
accelerating) coordinate frames. If the coordinate system is rotating, Newton s
law will not be valid because a rotation is an acceleration. However, the law can
be amended for rotational frames. As is well-known, Newton’s law for linear
accelerations and forces in a rotating frame takes the form (the superscript M
denotes the moving frame, body-fixed, plane-fixed or aeroballistic)!234

d .
— M — o — - - —
F+mg = "mV+QumV = mV+mV (5.6)

dt

F contains applied forces such as thrust and aerodynamic forces. Since the
coordinate system is non-inertial, it also contains "fictitious” terms such as
centrifugal and Coriolis "forces”. Denvatlves of mertlal properties such as mass
will be omitted in this development®. Defining v =1, V = V,and V= W,

the components of the above vector equation is now

M -
F +mg = mU +m[QW — RV
M .
Fy+mgy = mV+m[RU—-QxW] (5.7)

F +mg! = mW+mlQ V—-QU]
Rearranging

U= —"+g —QW+RV

1 jomn H. Blakelock, "Automatic Control of Aircraft and Missiles,” John Wiley and Sons, New York, 1965.

2 Keith K. Symon, "Mechanics,” Addison-Wesley, Reading, Mass, 1960.

3 Goldstein, Herbert, "Classical Mechanics", p 136, Addison Wesley, Reading, Mass, 1959.

4 Landau, L. D., and E. M. Lifshitz, “Classical Mechanics”, p 128, Addison Wesley, Mass, 1960.

3 The thrust of a reaction engine that is measured in a test stand already contains the effects of the rate of change of the
mass. Since this information is usually available for input into a simulation rather than nozzle pressures, derivatives of
the- mass do not appear in the equations of motion. However, if the thrust is to be-reconstructed from pressure
measurements at the nozzle, mass derivative terms and the velocity of the exhaust gases would have to be taken into
account in the equations of motion. This will be discussed in detail in a future report.
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F .
V= ""4g -RU+QW (5.8)

<.
i

+g =0 V+QU
m

The components for g can be obtained by multiplying the gravity vector in the
earth frame by the appropriate T matrix. For the special case for a flat earth, g
only has a vertical or z component pointing downward. (Coriolis and centripetal
acceleration corrections should be made since a flat earth is not really inertial
since the earth rotates. If distances flown and time of flight are short, these
corrections are negligible.)

We need the inertial to body transforrhation ( from the inverse of (4.40) ) and
the representation of the gravity vector in a flat earthas (0,0,g)

g = 2[)‘1)\3—)‘0)‘213

g = 2[)\2)\3+ )\0)\1]g ‘ for flat earth (5.9

2 2 2 2
g = =N =X tN]g

If the user wishes, the components for g in the‘éeroballistic, plane-fixed or
body-fixed frames for a flat earth could be obtained in terms of the Euler angles

-1 T
instead of quaternions by using the expression for 7 =T in (3.5) instead of

(4.40).
M .
g, = —8 sin®
M .
g, = +g sing cosd for flat earth (5.10)
M
g = tgcosd cosb




Note that there is no plane-fixed y-axis component of gravity since sin ¢ for
plane-fixed coordinates. -advantage of the definition of plane-fixed coordinates
adopted in this development. It would not be true if .Qx = 0 was chosen. In
general, if g has x or y components in inertial coordinates, the full rotation
matrix T would have to be used. See (3.5) and (4.40).

Recalling that Q is the angular velocity of the coordinate frame with respect to
the inertial frame, w is the angular velocity of the body itself with respect to the
inertial frame, and the moment of inertia tensor is symmetric, ie, I = 1_;
Newton’s laws for angular velocities and moments are of the form Y g

M=L+ OxL =Ilo + Qx[lo] (5.11)
| M | | +71 -1 I e |
l X I I xx X)’ p o4 “ X '
iMm | = | -1 +7 -7 e |
o | > % S A
| m | | -1 -1 +1_ o, |
¥ 4 X zZy V44 2
VAN

Time derivative of the angular velocity of the body

Angular velocity of coordinate system

l
\V
| @ | | +1 - -~ J o |
l X I | XX Xy Xz " X |
+ o | x | -1 +1 -1 o |
| Yy | I yx yy yz " y '
| o | I —1 ~1 +1 | o |
z zx zy zz z
A I\

cross product Angular velocity of the body
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In aerodynamic conventional notation,

M =1L w =P

X X

My=M u)y=Q : (5.12)
MZ=N 0 =

Body-fixed, aeroballistic and plane-fixed coordinates can be developed
simultaneously by writing .Q = P for body-fixed, & = 0 for aeroballistic and

by writing for plane-fixed coordinates
2 2 2 2
Qx = 2R [x1x3—)\0)\2] / [)\0—-)\1 —)\2+)\3] (5.13)
= —R tan8

See (5.2) or (5.5).

L | L+, -1, =1 P
| I | ¢ [
lm | = | -1 +1 -1 ol
| | | » i
I I B PR A R
(5.14)
R S A B
Yo [l el
+ Q X -1 +1 -1 Q
| I » S
I O B S A A




{ Q-1 P-1.Q+I RI-R[-I_P+I QI R] }
} RI+I_P -1 Q-1 R]- Q [-I P10 +I R] g
| o I

[—Iny +Iny -—IyzR 11— 0 +IHP —Iny —lsz ]

P 4

This may be written

L=1P : (5.15)

XX

+ [1 2 Iyy } QR  <- Vanishes with axial symmetry

[

[ ] ) .
+Iyz [RZ—Q21+IH [~ QP —R}+Ixy {RP—QJ <- Vanish if products of inertia vanish

M=1PR+1 O0—-1RQ
xx yy 2z x

[ 1., |

. 2 .
+ Iyz {QQX — R} + [xz leP - R J +]xy l— OR - P} <- Vanish if products of inertia vanish

N=-IPO+I QQ+IR

[

+Iyz {—QxR — Q} +Ixz {QR - P} +Ixy |.Q 2_pr} <- Vanish if products of inertia vanish




If Qx is replaced by P, equations (5.14) or (5.15) are the general equations of
motion for the angular velocity components of a rigid body in body-fixed
coordinates. For convenience in programming, terms that vanish when the
products of inertia vanish have been grouped together. Body-fixed coordinates
are appropriate for unsymmetric bodies and for guided projectiles, since the
sensors and control system are naturally described in body-fixed coordinates that
roll with the body. Note that the components of the moment of inertia tensor I

will not change due to the rotation of the body-fixed ‘coordinates.

For axially-symmetric spin-stabilized projectiles, plane-fixed coordinates are
more appropriate. If body-fixed coordinates are used with rapidly spinning spin
stabilized projectiles, the integration time step in a 6 degree-of-freedom
simulation is driven to be very small, increasing the simulation run time. This is
necessary to keep the roll angle during the integration time step small. This
avoids smearing gravity in the expressions for x, y and z. See (5.7) or (5.8).
With plane-fixed coordinates and axial symmetry, the products of inertia I, I,
and I vanish, and I = I_. Q_is replaced using (5.13) in (5.14) or {5.1%.
Note that the compone):%ts of the moment of inertia tensor I would generally vary
with time if the projectile were rotating but the frame were not. Not only would
this be a complication but it would drive down the integration time step and
increase integration time. Similarly for the aerodynamics. Since the motivation
for plane-fixed coordinates is greater computational speed, it is pointless to
eliminate gravitational smear and substitute inertial or aerodynamic smear. Thus
axial symmetry in mass properties and aerodynamics is generally assumed.

After one more result is obtained, these formulae will be collected in Tables 3 to

8. From (4.55), using the appropriate expression for .Qx, we can write down the

time derivatives of the quaternions for these frames.




For body-fixed,
A, = % -—P)\1 - Q)\2 - R)\s_

A =% _+P)\0 - Q)\3 + haJ

A =% _+P)\3 + Q)\O - R)\l.

A, =% ‘—F’)\2 + QA F R)\O_

For plane-fixed, using (4.55) and (5.5)

_ X A=A oA,
Np = %{—2“1 A B 2P R)\S}
Ng—A; = Ay +25]
A R
3
= -%|\0 +
2 2z z
[xo—xl—xzn—xgj
N A= Ah,
A, = 1,a{+212>\0 — - OX 4+ Rx,]
[)\0—)\1~)\-+)\3]
A, R
z
= -%|\0 + 1
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N A=Ak,

) M7 Aoha

A, = %{+2RA

: M2 2 2 2
Ag—A = A +A,]

+ O\, - R)\l}

AR

1

(
= +%| A0 +
2 2 oz, 2]
[xo—xl—xzﬂs]J

. A= Agh,

A, = %{—zm\.,[ ] + O\ + Rxo}

. .2 2 T2 oz
=2 = Ay +);]

Ay R

0

= +%|\0 +
z 2 2 .2
[xo—)\l—)\2+>\3]]

‘

A singularity wili occur if the denominator vanishes. From (3.22) and (4 40),

this denominator is just T__, = cos(8), which vanishes for 8 = *x/2. This is the
same singularity dxscu5533 after (5.5). It is not advisable to use plane-fixed

coordinates for near vertical trajectories. Use body-fixed coordinates instead. -
For vertical trajectories, gravity smearing due to roll rate is not the problem it is
for other trajectories..

All the quaternion and Euler angle results for the linear and angular equations of
motion are collected in the following tables for body-fixed and for plane-fixed
coordinates respectively.

For - completeness, we note that the aeroballistic frame equations of motion can
be obtained by letting  vanish in (5.8) and (5.15), and letting Q@ vanish in
(4.55) or P vanish in (5 16). As with plane-fixed coordinates, ‘Wwe further
simplify by neglecting the products of inertia. This form will be found in Table
5. Further simplification results from assummg axial symmetry and constant
mass. See Tables 5 and 6.
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Table 3. Body-Fixed Equatibns

. Fx M
U =""+g —QW+RV
m
F .
. y M
V = _+gy —RU + PW (5.1), (5.8
m
F
. z M
W =""+g —PV+QU
m

The components of gravitational acceleration are obtained using T .
For the flat earth approximation, use (5.9) and (5.10).

L=1_P
xx
+ {I_,_Iy),]QR <- Vanishes for axial symmetry (5.15)
(2 o] ] AU Tt R
+Iyz lR -Q J+Ixz - QP—RJ+1xy lRP-—QJ <- Vanish if products of inertia vanish

- el =7 1
M=+ Q0+ ~I |RP

] [

[ 2 2 -
[P —R J+[xy |~ QR —P|  <-Vanish if products of inertia vanish

+1 {QP—K’}+IXZ

- -7 1 :
No= I =1, |PQ+ IR

[ 1

[ - -] [ 2 2
+Iyz _l_PR“QJ’LIxz [QR—PJ+IXy |@ —P |  <- Vanish if products of inertia vanish
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Table 4. Time Development of the Body-Fixed Transformation
Matrix Parameters

Ny = % :—le - o\, - R)\Bi
N =% L+Px0 — QN+ sz:
N, = %:+P)\3+ on—m\l: | (5.16)
N, = % :—sz + QA+ R)\0:
or

{Q sin(¢) + R cos(d))}

y = _ (3.16)
cos (8)

¢ = P+ {Q sin(é) + R cos(tb)} tan(9) (3.17)

) = 0 cos($) — R sin(d) (3.18)

(The expressions (3.16) and (3.17) have a singularity at = w/2. This singulariry
does not occur in the quaternion expression (5.16). See discussion in text.)
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Table 5. Plane-Fixed Equations

(Axial Symmetry, Iyy=lzzElx’ products of inertia vanish)

. Fx M

U=""+g"—ow+rv
m

. Fy

V= ""+g -RU+Q W (5.8)
m

- Fz M

W= "—4+g"-0v+ou
m

: -1
The components of gravitational acceleration are obtained using 7 .
For the flat earth approximation, use (5.9) and (5.10).

L=1P
XX
M=1Q+1_PR-IRQ (5.15)

N = ltR - IHQP + I‘O.XQ

where Qx is obtained from

)} = —R tan® (5.3)

X

or

2R {)\1)\3 - }‘O)‘Z}

Q = (5.5)
)\2 2 2 2
0 7\1 - )‘2 + )‘3
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Table 6. Time Development of Plane-Fixed Transformation
Matrix Parameters

_ ( Ay R
o= —%| A0 + 1
{xi—xf—xfﬂf]“

_ ( A\, R
N, = %) N0+ 1
x

2 2 2 2]
=M =h ]

. ( A R
A= B[N0 + 1
2 2 20z
[’\o"\l‘)‘z“s]jj

or

¢ =
cos(9)

6 = 0

(5.17)

(3.16)

(3.18)

(The above expression.§ (5.17) and (3.16) are singular near the vertical. Use body-

fixed coordinates instead. See the discussion in the text.)




Table 7. Aeroballistic Equations

These are obtained by letting ! = 0, and assuming no products of inertia. A
= Izz = Il (axial symmetry). -

further simplification can be made by letting Iyy

. Fx M
U= ""+g —QW+RV
m
F
. y M
vV = —+gy —RU (5.1), (5.8)
m
F .
. z M
W = —+gz + QU
m

1

The components of gravitational acceleration are obtained using T
For the flat earth approximation, use (5.9) and (5.10).

(5.15)

X
I

+I'Q+IXXRP

N = +IIR—IHPQ
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Table 8. Time Development of the Aeroballistic Transformation
Matrix Parameters

. _ l'— _ 7
Ny = B[ = 0N, — R)
A= % ~ QM + RA

A =%!+ QN — RX (5.16B)

N, = %]+ QN + RA

or
(. . | ) |
. @ sin(d) + R cos(d) )
= y (3.16)
cos(0)
b = (Q sin(d) + R cos(d;)} tan (8) (3.17),(5.1)
= Ysin(0)
8 = .0 cos(d) — R sin(d) (3.18)

(The Euler angle expressions (3.16) and (3.17) have a singularity at *1/2.)

Equation (5.16B) comes from letting P=0 in (5.16).
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6. INTEGRATION OF EQUATIONS OF MOTION

6.1 Plane-Fixed Equations

Recall for the plane-fixed case, the force equations from Table 5 are

F
. x M
U =""+g —QW+RV
m
Fy
V= ""4g -RU+QW (6.1)
m |
F
. z M
W= —+g' -Q V+QU
m.

M
where Q,X is given by (5.13) and g is given by (5.9) for a flat earth 6r more
M -1 7 i
generally by ¢ =T g , where the subscript I refers to an inertial frame.

These expressions are readily integrated numerically.

For the plane-fixed case, the moment equations from Table 5 can be put into an

uncoupled form for integration, where I = va =1 .
. L
P ="
I
xx
- = ]
Q=" lM—Ix;R'P +]{R\Q;J (6.2)
: ! ‘ _
t
R = i[N+I oP—100 |
; | xx ey

t

These are readily integrated numerically.




6.2 Body-Fixed Equations

For body-fixed case, .Qx = P and from (5.8)

. Fx M
U= ""+g, —QW+RV
m
F)’
V= T+, M_RU +PW (6.3)
m
- Fz B
W =""+g —PV+QU
m

which are readily integrated numerically.

For the body-fixed case, equations (5.15) may be written

. 1
P = } {L-l—l Q+I R f [P 0O.,R }
S 1]
0= T M+ P+I R-f, (PQR )] (6.4)
I)’)’
S | Y1
R =" 1 lN+1 P+I Q f3[PQR J

where

I [ 2 2]
fi= L1, JOR+1, IR Q" |-1_QP+I_RP




I' ’ ] [ 2 2]‘
f2 = ll —Izz JRP +IyzQP +sz |P —R J—InyR (6.5)
= [1 -1 ]P —I PR+I QR+I [ 2.—PZI
f3 lyy xxJ Q yz sz xy I-Q J

As written, these equations are coupled. If the products of inertia vanish, the
numerical integration is straight forward because the equations become
uncoupled in the derivatives, as in (6.2) above. Even if they do not vanish, the
products of inertia I .1 and I are generally quite small. This suggests a
simple approximation?' The equativons could be solved by using the derivatives
dP/dt, dQ/dt and dR/dt on the right side of equation (6.2) from the previous time
step. Since the products of inertia are typically small, this approximation should
be adequate in practice. For more precision, the results could be iterated. That
is, the results for the derivatives dP/dt, dQ/dt and dR/dt on the left side could be
put back into right side to obtain a better approximation before performing an
integration. '

If the products of inertia are not small or if one wishes to avoid this

approximation, equations (6.4) and (6.5) can be put into the form
L—f1 = +InP-—Iny—Isz
— - = > + . — > X
M f2 IxyP Iny IyzR (6.6)

N=fy=—-I_P-I Q+I R

They can be solved simultaneously to uncouple the derivatives of P,Q and R by
inverting the matrix of moment of inertia components. Formally we can write
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-1
i | i+ln -1 -1, | iL—1 i
= -—lxy “,y —Iyz | M~-f, (6.7)
IR‘ |—1 -1, +I, | llv—f3 I

Evaluating this inverse is somewhat tedious but the procedures for inverting a
matrix are well known 1. If we denote the matrix to be inverted by J

2
1 I 1 I 1 1
yy zz yz Xz yz Xy xy yz Xz yy
-1 -1 2
J = [det]] Ixz )z xylu Inlzz I z Ixylxz+lxxlyz (6.8)
2
I 1 +I I I 1 +1 1 I 1 —1
xy yz Xz yy Xy xz xx yz XX yy xy
where
, 2 - 2 2-
detJ=111 -1 11 111 —T11 —11 —191.1 ‘ (6.9)
xx yy zz xy yz xz xz xy yz yy xz 2z xy xx yz

1 Gelb, Arthur, ef al., Applied Optimal Estimation Théory", p 17, MIT Press, Cambridge, Mass, 1974,




6.3 Aeroballistic Equations

Recall for the aeroballistic case, the force equations from Table 7 are

F

. x M ’

U = '+gx—QW+RV
m
F

. y M

V = _+gy —RU
m
F

. z M

W = +g. +QU
m

The moment equations from Table 7 are

) L
P=—
IXX
Ly ]
I

1
> = — I 1

!

These are readily integrated numerically.

(6.10)

(6.11)




APPENDIX

ALGORITHMS FOR IMPLEMENTATION
OF THE EQUATIONS OF MOTION
IN SIX DEGREE OF FREEDOM COMPUTER SIMULATIONS




TRANSITIONS BETWEEN EULER ANGLES AND QUATERNIONS

The Initialization Problem

- Since most people are more intuitively comfortable with- Euler angles than with

quaternions, the Euler angie to quaternion transformation can be used to input
initial conditions in Euler angle format for the convenience of the user and
convert to quaternions for internal use in a simulation if so desired. Conversely, -
quaternions used internally by a simulation can be converted to Euler angles
prior to generating output, for the convenience of the user.

QUATERNIONS TO EULER ANGLES:

The Euler angles can be evaluated directly from the quaternions or indirectly
from a rotation matris that had been developed from the quaternions. Use
(4.56). : » .-

-~

Note that the denominator of the expressions for ¢ and for 6 in (4.56) ¢an
vanish. The algorithm in Table 2 in this document can handle this case correctly.

EULER ANGLES TO QUATERNIONS:

1) Evaluate the transformation matrix T from the Euler angles using (3.5).
(With plane-fixed coordinates, the roll Euler angle ¢ must be set to zero:
Alternatively, (3.22) can be used.)

2) Evaluate the quaternions using Table 1.
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TRANSITIONS BETWEEN BODY-FIXED, PLANE-FIXED
AND AEROBALLISTIC COORDINATES

Plane-fixed coordinates are more efficient for modeling spin-stabilized,
unguided, rotationally symmetric projectiles. There is no component of gravity
outside of the x-z plane in a flat earth model. Thus these coordinates are
insensitive to gravity smearing because of roll. However, plane-fixed
coordinates have a singularity for vertical trajectories and body-fixed coordinates
are preferred for such trajectories. Body-fixed coordinates are also more
appropriate for guided stages or other stages that don’t have the required
symmetry. Similarly, aeroballistic coordinates are also more efficient for axially-
symmetric, spin-stabilized projectiles than body-fixed coordinates. Furthermore,
the equations of motion are simpler for this choice than the other two candidate
coordinate frames.

This document permits the development of a 6 degree of freedom simulation in
which the coordinate frame can be changed from one stage to another to use the
coordinate frame that is most appropriate or efficient in each particular stage of a
trajectory simulation. Generally, other than changing the equations of motion,
nothing special needs to be done when transitioning between one type of frame
and another. There is an exception for transitioning to plane-fixed coordinates
from other frames.

When transitioning to plane-fixed coordinates there is a discontinuous
change in the orientation of the coordinate system, since & must vanish in
plane-fixed coordinates. This requires the following adjustments:

1) The projectile angular velocity vector (P,Q,R) must be temporarily
transformed to non-moving (i.e., inertial) coordinates using the last value
of the rotation matrix.

2) A new rotation matrix T must be generated. (If the quaternion
representation is being used, the equivalent Euler angles must be
regenerated first, as shown in (4.56).) Set coordinate frame Euler roll
angle ¢ to zero, retaining the regenerated pitch and yaw angles.
Recalculate the rotation matrix with these new Euler angles using (3.5) or
(3.22). ) '

3) Use this matrix to rotate the projectile angular velocity vector in the
non-moving frame back to t}}e moving (plane-fixed) frame to obtain the

new P, Q and R.

4) If using the quaternion formalism, regeneraté the quaternions from the
rotation matrix using Table 1.

Resume calculations using the appropriate equations of motion for the type of
coordinate frame being used, for either the Euler angle or quaternion




representations described elsewhere in this document. The pitch 8 and yaw ¢
Euler angles for the body and for plane-fixed axes will be identical. The plane-
fixed frame roll Euler angle ¢ is a constant and identically zero. The roll Euler
angle for the aeroballistic frame is not constant but generally will not vary much
from its value when transition occurred. '

When using plane-fixed or aeroballistic coordinates, the body angular velocity
component P must be reconstructed for use with the aerodynamics. When
transitioning back to body-fixed coordinates, a roll angle can be restored by first
constructing the inverse (i.e., transpose) of the roll rotation matrix from (3.3).
The new full roation matrix is obtained by taking the matrix product of the
existing plane-fixed rotation matrix and the roll matrix, in that order. This
procedure will not corrupt the other variables in the equations of motion.
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BODY-FIXED COORDINATES USING QUATERNIONS
Rotation matrix from body-fixed to inertial coordinates:

Calculate T( )\0, )\1, )\2, h3) from (4.40).

" “The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained

by taking the transpose of this matrix.

Time derivatives of the quaternions:

Calculate )‘0’ )tl, )\2,_ h3 from (5.16).

Other Equations of Motion (See Tables 3 and 4.)

a) Force equations: Use (5.8) with .Qx = P.

See (5.1). Obtain components of gravity.in body-fixed frame from the inertial

-1
frame by using T . For flat earth, use (5.9).

b) Moment equations: Use (6.4) and (6.5) or (6.9) to (6.11).
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PLANE-FIXED COORDINATES USING QUATERNIONS
Rotation matrix from plane-fixed to inertial coordinates:
Calculate T( )\0, )\1, )\2, )t3 ) using (4.40)

The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained
by taking the transpose of this matrix.

Time derivatives of the quaternions:

Calculate )\0, )‘1’ )‘2’ )\3 from (5.17).

with
[ _ ]
2R lx1x3 )‘Okzj
O.x =
2 2 2 2
)\0 - )‘1 - )\2 + )\3

from (5.5). There is a constraint in (4.57).

Other Equations of Motion (See Tables 5§ and 6):

a) Force equations: Use (5.8) with Qx from (5.5). See above..

.. . . -1
See (5.1). Obtain components of gravity in body-fixed frame by using T . For
flat earth, use (5.9). Because of the constraint (4.57), there is no y component
of gravity.

b) Moment equations: Use (6.2).
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 AEROBALLISTIC COORDINATES USING QUATERNIONS
Rotation matrix from body-fixed to inertial coordinates:

Calculate T( )\0, )\1, )‘2’ )\3) from (4.40).
The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained

by taking the transpose of this matrix.

Time derivatives of the quaternions:'

Calculate Xo’ )-\1, ).\2, );\3 from (5.16B), or (5.16) with P=0.

Other Equations of Motion (See Tables 7 and 8.)

a) Force equations: Use (5.8) with Qx = P.

See (5.1). Obtain components of gravity in body-fixed frame from the inertial

-1
frame by using T . For flat earth, use (5.9).

b) Moment equatidns:'Use (6.11).




BODY-FIXED COORDINATES USING EULER ANGLES
Rotation matrix from plane-fixed to inertial coordinates:
Calculate T( ¢, 0, ¢ ) from (3.5).

 The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained
by taking the transpose of this matrix.

Time derivatives of the Euler angles:

Q =P Q =0Q £ =R (5.1

x y z

(Q sin(é) + R cos(é) )

by = (3.16)
cos(6)

¢ = P + {Q sin () + R cos(cb)) tan (0) (3.17)

0 = Q cos(d) — R sin(db) (3.18)

Other Equations of Motion (See Tables 3 and 4.)

a) Force equations: Use (5.8) with QX = P.

See (5.1). Obtain components of gravity in body-fixed frame by using T | For
flat earth, use (5.10). T

b) Moment equations: Use (6.4) and ¢6.5) or (6.7)-(6.9).
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PLANE-FIXED COORDINATES USING EULER ANGLES
Rotation matrix from plane-fixed to inertial coordinates:
Calculate T( ¢=0, 6, ¥) from (3.5).

The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained.
by taking the transpose of this matrix. Note that ¢ is zero in (3.5).

Time derivatives of the Euler angles:

Use & = ¢ = 0 instead (3.17) and @ =QandQ, = R.

: R

L\ = from (3.16).
cos(8)

0 = Q from (3.18)

Other Equations of Motion (See Tables 5 and 6.)

a) Force equations: Use (5.8) with .QX from (5.3).

See (5.1). Obtain components of gravity in plane-fixed frame by using T_l. For
flat earth, use (5.10) with ¢ =0.

"b) Moment equations: Use (6.2).
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AEROBALLISTIC COORDINATES USING EULER ANGLES
Rotation matrix from plane-fixed to inertial coordinates:
Calculate T( ¢, 6, ¥ ) from (3.5).

The inverse rotation matrix, from inertial coordinates to body-fixed, is obtained -
by taking the transpose of this matrix.

Time derivatives of the Euler angles:

Q =0 Q =0Q Q =R (5.1)

x Ty z

{Q sin(¢) + R cos(tb)}

by = (3.16)
cos (8)
é = {Q sin(é) + R cos(¢)) tan (8) " (3.17)
= sin(0)
6 = Qcos(¢) — R sin(4) | (3.18)

Other Equations of Motion (See Tables 7 and 8.)

a) Force equations: Use (5.8) with Qx = 0.

-1
See (5.1). Obtain components of gravity in body-fixed frame by using T . For
flat earth, use (5.10).

b) Moment equations: Use (6.11).

67




CONSTRAINTS, LIMITATIONS AND PRACTICAL REQUIREMENTS
I. Normalization constraint on quaternions:
) 2 2 2 2 :
We require )‘o + )\1 + }‘2 + )\3 = 1 from (4.29).
At each integration time step (or at least at frequent intervals),

normalize by dividing each ki by

-172

[

2 2 2 2]
N = l)‘0+}‘1+)\2+x3]
I1. Constraint for plane-fixed coordinates:
We require )\2 h3 + )\0 )\} = 0 from (4.57).
Check this constraint regularly. If it begins to fail:
a) regenerate the Euler angles from the matrix T using (4.56),

b) set ¢ = 0, and
¢) regenerate quaternions from (4.42).

II1. Euler angle singu_larity:'

Terminate simulation if 8 is too close to =90 degrees because of the singularity
at that angle. See (3.16) and (3.17). (N.B., the Euler angle rotations of roll,
pitch and yaw may be chosen to move the singularity to occur along the
horizontal rather than the vertical axes. A better solution is to use quaternions

with “body-fixed coordinates. For plane-fixed coordinates, see paragraph IV
below. .

IV. Quaternion singularity for plane-fixed coordinates:

This singularity is similar to III except it only occurs for plane-fixed coordinates

and not for body-fixed or aeroballistic coordinates. Body-fixed coordinates

chould be used for vertical trajectories rather than plane-fixed.




V. Axial symmetry requirement for plane-fixed and aeroballistic
coordinates:

a) Iyy = Izz

b) Products of inertia | N Y Y A |
xy’ ‘xz’ "yz’ yx  zx  zy

all vanish.

c) Aerodynamic coefficients do not depend on roll angle.
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