Award Number: DAMD17-02-1-0338

TITLE: Prostasin Serine Protease as a Breast Cancer Invasion Marker and a Metastasis Suppressor

PRINCIPAL INVESTIGATOR: Karl X. Chai, Ph.D.
Li-Mei Chen, M.D., Ph.D.
Ying Zhang, Ph.D.
Stephanie L. Lowe, Ph.D.

CONTRACTING ORGANIZATION: University of Central Florida
Orlando, Florida 32826

REPORT DATE: May 2003

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)
2. REPORT DATE
 May 2003
3. REPORT TYPE AND DATES COVERED
 Annual (8 Apr 02 - 7 Apr 03)

4. TITLE AND SUBTITLE
 Prostatasin Serine Protease as a Breast Cancer Invasion Marker and a Metastasis Suppressor

5. FUNDING NUMBERS
 DAMD17-02-1-0338

6. AUTHOR(S)
 Karl X. Chai, Ph.D., Li-Mei Chen, M.D., Ph.D., Ying Zhang, Ph.D., Stephanie L. Lowe, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 University of Central Florida
 Orlando, Florida 32826
 E-Mail: kxchai@mail.ucf.edu

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
 Original contains color plates: All DTIC reproductions will be in black and white.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for Public Release; Distribution Unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words) (Abstract should contain no proprietary or confidential information)
 We have previously shown that membrane-anchored prostatasin serine protease was an in vitro suppressor of tumor cell invasion (1-3). The expression of prostatasin is down-regulated in prostate cancers (2), and invasive cancer cell lines of the human prostate and breast (1, 3). We hypothesized that the down-regulation of prostatasin is causal to breast cancer invasion and metastasis in vivo. Two highly invasive human breast cancer cell lines, the MDA-MB-231 and MDA-MB-435, were transfected with a prostatasin cDNA plasmid to restore prostatasin expression. The transfecants of MDA-MB-231 were used in the nude mice model to assess the metastatic potential. The results demonstrated a statistically significant difference of metastasis between cells that express prostatasin and the control cells. Prostatasin expression in the transfected cells was analyzed by immunocytochemistry and clones that express prostatasin more uniformly were obtained for repeat experiments in nude mice for the purpose of maximizing the effect of prostatasin.

14. SUBJECT TERMS
 Invasion/metastasis, animal model, prostatasin, serine protease

15. NUMBER OF PAGES
 8
16. PRICE CODE
 Unlimited

17. SECURITY CLASSIFICATION OF REPORT
 Unclassified
18. SECURITY CLASSIFICATION OF THIS PAGE
 Unclassified
19. SECURITY CLASSIFICATION OF ABSTRACT
 Unclassified
20. LIMITATION OF ABSTRACT
 Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION
Prostatin Serine Protease as A Breast Cancer Invasion Marker and A Metastasis Suppressor.
Karl X. Chai, Ph.D., Idea Award

We have previously shown that membrane-anchored prostatin serine protease was an in vitro suppressor of tumor cell invasion (1-3). The expression of prostatin is down-regulated in prostate cancers (2), and invasive cancer cell lines of the human prostate and breast (1, 3). For this project, we hypothesized that the down-regulation of prostatin is causal to breast cancer invasion and metastasis in vivo. Two highly invasive human breast cancer cell lines that have been used previously by others to evaluate breast cancer metastasis in vivo (4), the MDA-MB-231 and MDA-MB-435, were shown not to express prostatin due to promoter DNA methylation (3). The experimental design for testing our hypothesis was to restore prostatin expression via plasmid DNA transfection into these two cell lines and to use the nude mice model to assess the metastatic potential of transfected cells that now express prostatin.

BODY
Task 1. Evaluation of prostatin as a breast cancer invasion/metastasis marker (Months 1-36).
Task deleted per recommendation by the Programmatic Review.

Task 2. Evaluation of prostatin as a therapeutic agent for breast cancer metastasis (Months 1-36).

1). Investigation of prostatin’s role in controlling spontaneous metastasis of human breast cancer in animal model: Injection of human breast cancer cells MDA-MB-435/Pro (expressing recombinant human prostatin) or MDA-MB-435/Vec (vector-transfected control) into the mammary fat pad of nude mice

Months 1-6: Establishment of sublines MDA-MB-435/Pro and MDA-MB-435/Vec, and in vitro testing of invasiveness, using cell lines provided by Dr. J. E. Price

Months 7-36: Three repeat experiments are planned for the 12-week with-tumor study of prostatin’s effect on spontaneous metastasis

Progress: The MDA-MB-435 cell line was received from Dr. Price, cultured and tested in the laboratory for prostatin expression. We have confirmed a lack of prostatin protein or mRNA expression in this cell line by methods previously described (3) (data not shown), similar to what we had observed for the sub-line, the MDA-MB-435s (3). The MDA-MB-435 cell line was then transfected with the prostatin cDNA plasmid as described to obtain a mixture of ~100 colonies (3). Expression of prostatin protein in the mixed colony was confirmed by western blot analysis (data not shown). We then further evaluated the expression of prostatin protein in the mixed transfectants by immunocytochemistry using a previously described method (1). The result showed a varying level of prostatin protein expression in the transfected cells, approximately 50% of the cell population produced an intense immunostaining for prostatin (data not shown). This observation was quite different from that with the 293/Pro cells (1), in which ~100% of the mixed population of cells express the prostatin protein in a uniformly strong pattern. As our recombinant protein expression in the cancer cell lines was established with an episomal mechanism (2,3) and the cells are intended for injection into animals for an observation period
of ≥12 weeks, we decided to screen for clones with the most intense prostates staining before commencing the animal experiments.

We then set up a new round of transfection with the control plasmid vector, and the prostates cDNA plasmid. For each transfection, the previously described procedures were followed but the transfectants were cultured in 100-mm dishes with 800 μg/ml G418 for three weeks, or until colonies sized between 2-8 mm in diameter appeared. To pick the colonies, the culture media was removed and the cells were washed once with 1x PBS (pH 7.4). Single colonies were dislodged with the end of 200-μl pipette tips filled with 50 μl of warm trypsin (0.25% with 1 mM EDTA). The colonies were then withdrawn into the pipette tip and mixed on a sterile surface with pipeting motion, before they were cultured in 24-well plates with 1 ml of media containing G418 (800 μg/ml). Once the cells grew to confluence in the wells, they were trypsinized and placed onto glass coverslips for immunocytochemistry (using 10% of the cells). The remaining cells are expanded to larger culture areas. In Figure 1, we show the results of the immunocytochemical staining for prostates in two independently selected colonies/clones, which are representative of the types of clones we have screened. Type-1 clones (upper panels) display an intense membrane signal of prostates protein expression while ~100% cells are uniformly stained. For Type-2 clones (lower panels), only a very small percentage of cells display an intense membrane signal of prostates protein expression while a great majority of cells are only stained weakly for prostates expression.

For mammary fat pad injection, we have selected six Type-1 clones and mixed at equal cell numbers. This mixture of Type-1 clones will be designated MDA-MB-435/Pro. From a separate transfection with the control plasmid vector, six independent clones were selected and mixed at equal cell numbers, and designated MDA-MB-435/Veg. The injection will be carried out in the immediate phase following this report.

2). Investigation of prostates’s role in controlling experimental metastasis of human breast cancer in animal model: Injection of human breast cancer cells MDA-MB-231/Pro (expressing recombinant human prostates) or MDA-MB-231/Veg (vector-transfected control) into the tail vein of nude mice
Months 1-6: Establishment of sublines MDA-MB-231/Pro and MDA-MB-231/Veg, and in vitro testing of invasiveness, using cell lines provided by Dr. J. E. Price
Months 7-36: Three repeat experiments are planned for the study of prostatin’s effect on experimental metastasis.

Progress: The MDA-MB-231 cells received from Dr. Price were also confirmed for absence of prostatin protein and mRNA expression by previously described methods (3). Transfection was carried out to establish mixed colonies (~100) MDA-MB-231/Pro (expressing recombinant human prostatin) and MDA-MB-231/Vec (vector-transfected control). As these cells were assessed to be the same as those that were previously described, we by-passed the in vitro assays and directly proceeded to the animal experiments.

The animal experiments were carried out as proposed. Thirteen (13) female nude mice (5 and 1/2 weeks old) were used in the control group (receiving MDA-MB-231/Vec) as well as the prostatin group (receiving MDA-MB-231/Pro). Cells were cultured to near confluence, trypsinized, and washed with 1x HBSS. For each mouse, injection was carried out with a 27-gauge needle through the tail vein, using 3 x 10^6 cells, as described previously by Dr. Price (4). At four weeks following the injection, several animals appeared moribund and all animals were sacrificed. Lungs were removed from the animals for fixation and histological analysis. Both lungs from each animal were sectioned and stained with H/E for inspection of metastasized tumor. Representative sections of the two groups are shown in Figure 2, and Table 1 shows the average of metastatic loci in the two groups. The data of the two groups were analyzed by ANOVA (using Microsoft Excel), and the difference of metastatic loci between the two groups was statistically significant (p < 0.05).

![MDA-MB-231/Vec](image)

![MDA-MB-231/Pro](image)

Figure 2. Histological staining of lung sections from nude mice injected with MDA-MB-231/Vec or MDA-MB-231/Pro. The tissues were removed, processed, and stained with H/E as described previously (2). For each animal consecutive sections were examined and those with the most metastatic loci were analyzed. The sections were viewed under a Zeiss Axioskop 2 equipped with a Sony DXC-950 camera and Zeiss Axiosvision 3.1 software. The upper panel shows a representative section of the tissue from a mouse receiving the control cells (MDA-MB-231/Vec), and the lower panel shows that of an animal from the prostatin-treated group (MDA-MB-231/Pro) (magnification: 50 x). Metastatic tumor loci are marked with a boldface capital letter “T”.

(Next page) Table 1. Metastatic loci (average) in mice receiving MDA-MB-231/Vec or MDA-MB-231/Pro. The data in each row represent the average metastatic loci in two separate areas of the tissues examined from each animal. For each group, 13 animals were used.
Table 1. Metastatic loci (average) in mice receiving:

<table>
<thead>
<tr>
<th>Animals</th>
<th>MDA-MB-231/Vec</th>
<th>MDA-MB-231/Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

During the interim of the animal experiments using the MDA-MB-231 cells, the immunocytochemistry results on the MDA-MB-435 transfectants were obtained (see above). We then performed a similar experiment on the MDA-MB-231 transfectants (the MDA-MB-231/Pro), and found out that the mixed colonies show approximately 50% intense staining (similar to the Type-1 clones shown in Figure 1, data not shown). We have since performed transfection of MDA-MB-231 again, and identified clones that show uniform and intense prostatin staining (Type-1). In the repeat experiments we plan to use mixtures of six (6) independent clones for both the MDA-MB-231/Pro (Type-1) and the MDA-MB-231/Vec.

KEY RESEARCH ACCOMPLISHMENTS

- We have shown that prostatin re-expression in the MDA-MB-231 metastatic human breast cancer cell line can reduce the experimental metastasis to the lungs in nude mice.
- We have observed that the prostatin transfectants of human breast cancer cells, unlike the 293/Pro cells previously reported (1), do not express prostatin uniformly. Steps were taken to obtain mixed clones that express prostatin uniformly for use in animal experiments with long periods of observation.

REPORTABLE OUTCOMES

At this time, we have accumulated parts of the data that were anticipated, but no formal reports such as manuscripts have been prepared.

CONCLUSIONS

The progress in the first year of the planned research has confirmed our working hypothesis that prostatin is a potential metastasis suppressor of breast cancer in vivo.

“SO WHAT”: Confirmation of an in vivo anti-metastasis role for prostatin serine protease will justify testing the potential of using prostatin or its interactive proteins as a therapeutic lead for patients who are already diagnosed with invasive breast cancer.
REFERENCES

APPENDICES

N/A