Investigating the Three-Dimensional Effect on Crack Growth Behavior in an Incompressible Material

C.T. Liu (AFRL/PRSM); C.W. Smith (VA Polytech)

Air Force Research Laboratory (AFMC)
AFRL/PRSM
10 East Saturn Blvd.
Edwards AFB CA 93525-7680

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

Approved for public release; distribution unlimited.

For presentation at the International Conference on Advanced Techniques in Experimental Mechanics in Nagoya, Japan, taking place 12 September 2003.

20030812 217

Unclassified

Unclassified

Unclassified

A

13

(661) 275-5015

Leilani Richardson
Investigating Three-Dimensional Effect on Crack Growth Behavior in an Incompressible Material

C. T. Liu
AFRL/PRSM
Edwards AFB CA 93524-7680, USA

C. W. Smith
ESM Dept.
Virginia Polytechnic Institute & State University
Blacksburg, VA 24061, USA

Approved for public release; distribution unlimited.
Objective:

- Investigate the effect of crack location on the crack growth behavior in centrally perforated cylinders under internal pressure.
Specimen Dimensions and Crack Locations

length of cylinder 376 mm

* Path of crack to maximum depth
Fringe Patterns Near Critical Loci at Fin Tip
Contour Plot of Stress σ_{yy}
(No Crack)
Two-Dimensional Crack Growth Tests

A

B
Two-Dimensional Crack Growth Tests

A
Crack initiated at the center of the fin

B
Crack initiated at the corner of the fin
Typical Off-Axis Inclined Crack Which is Perpendicular to the Fin Surface

D – camera view of the photograph

FS – fin surface
C – crack front

S

Eliminating shear mode
Starter crack
Eliminating shear mode

Section S - S

magnification factor 3.68
Stress Distribution at Crack Tip

growth modes at crack tip

I = Normal Stress (Mode I)
II = In-Plane Shear (Mode II)
III = Out-of-Plane Shear (Mode III)
Typical Off-Axis Straight Crack Which is Parallel to the Fin Axis

Section S-S

Fin surface
C - crack front
D - camera view of the photograph

Magnification factor: 1.73
Typical Symmetric Crack Which is Near the Fin Axis

\[a_0 \text{ - initial crack} \]
\[a \text{ - final crack} \]
Conclusions:

- When the crack is perpendicular to the fin surface, a significant three-dimensional effect occurs during crack turning.
- During crack turning, normal mode (Mode I) and shear modes (Mode II and Mode III) are developed at the crack tip.
- After the crack turning process is completed, the crack grows under normal mode (Mode I loading).
- When the crack is parallel to the fin axis, there is no crack turning observed and the crack grows under normal mode only.
- Crack turning induces a significant reduction in crack growth rate.