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Abstract

In this paper, the Basic Bidirectional Associative Memory (BAM) is extended by choosing weights

in the correlation matrix, for a given set of training pairs, which result in a maximum noise tolerance set
for BAM. This optimized BAM will recall the correct training pair if an input pair is within the maximum
noise tolerance set. We define a hyper-radius, and we prove that for a given set of training pairs, the
maximum noise tolerance set is the largest, in the sense that at least one pair outside the maximum
noise tolerance set, and within a Hamming distance one larger than the hyper-radius associated with
the maximum noise tolerance set, will not converge to the correct training pair. A standard Genetic
Algorithm (GA) is used to calculate the weights to maximize the objective function which generates a
maximum tolerance set for BAM. Computer simulations are presented to illustrate the error correction

and fault tolerance properties of the optimized BAM.
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. INTRODUCTION

In 1968, Anderson [6] proposed a memory structure named Linear Associative Memory
(LAM), which can be used in hetero-associative pattern recognition. Since LAM is noise sensi-
tive, Optimal Linear Associative Memory was introduced by Wee [7] and Kohonen [8], which
extended the LAM by absorbing the noise. Although good results can be obtained using these
early approaches, many theoretical and practical issues such as network stability and storage
capacity were still unresolved. In 1988, Kosko [1] presented the theory of bidirectional associative
memory by generalizing the Hopfield network model.

As a class of artificial neural networks, Bidirectional Associative Memories (BAM) provide
massive parallelism, high error correction and high fault tolerance ability. However, to form a
good BAM, a good encoding strategy was required. This field has received extensive attention
from researchers and a substantial effort has been devoted to various learning rules. Kosko [1]
has provided a correlation learning strategy and proved that the BAM process will converge after
a finite number of interactions. However, the correlation matrix used by Kosko cannot guarantee
that the energy of any training pair is a local minimum. That is, it can not guarantee recall of
any training pair even for a very small set of training data.

During the following years, various encoding strategies and learning rules were proposed to
improve the capacity and the performance of BAM. In 1990, Wang, Cruz, and Mulligan [2]
introduced two BAM encoding schemes to increase the recall performance with a trade off of
more neurons. These are multiple training methods, which guarantee the recall of all training pairs
[3]. In 1993 and 1994, Leung [9] [10] present the Enhanced Householder Encoding Algorithm
(EHCA), which was improved by Lenze [11] in 2001, to enlarge the capacity. In 1995, Wang
and Don [12] introduced the exponential bidirectional associative memory (eBAM), which uses
an exponential encoding rule rather than the correlation scheme.

However, these methods have focused on the training set or capacity only. The noisy neighbor
pairs and the noise tolerance set of BAM have been ignored. In this paper, we are especially
interested in the approach proposed by Wang, Cruz, and Mulligan [2] [3] and extend the BAM
by choosing the weights for training pairs in the BAM correlation matrix, which can maximize
the noise tolerance set, for a given set of training pairs, such that any noisy input pair within

the tolerance set will converge to the correct training pair.
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Some basic concepts of BAM are reviewed in Section Il. Then, the multiple training concept
is extended in Section Ill with the optimization-based encoding strategy for constructing the
correlation matrix. Two lemmas and a theorem about the new encoding rule are proved in the
same section. These provide the foundation for constructing the maximum noise tolerance set. We
present a numerical example in Section IV to illustrate the effectiveness of the extended BAM.
In this example, a standard GA is used to resolve the nonlinear optimal problem and obtain the
optimum training weights. Finally, we draw conclusions and enumerate some possible future

extensions in Section V.

II. BIDIRECTIONAL ASSOCIATIVE MEMORY

BAM is a two-layer hetero-associative feedback neural network model first introduced by
Kosko [1]. As shown in Fig. 1, the input layér, includesn binary valued neuron@i;, as, . . . , a,)
and the output layeL s comprisesn binary valued componeni$,, b, ..., b,,). Now we have
Ly ={0.1}" and Lp = {0,1}". BAM can be denoted as a bi-directional mapping in vector

spaceM : R, <« R,,. The training pairs can be stored in the correlation matrix as follows:

Fig. 1. Structure of Bidirectional Associative Memory

N
M=> XY

i=1
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where X; andY; are the bipolar mode aofi; and B; respectively, i.e.

Y, = 2B;,—1

If inputs X, X,,..., X are orthogonal to each other, i.e.

1, i=j
X,XT = J
0, i#]
then,
N N
XM =X,(3 X)) =xX[vi+ Y XX =Y
j=1 J=1,j#

To obtain higher accuracy for associative memory and retrieve one of the nearest training
inputs, the output” can be fed back to BAM. Starting with a pait,, 5,), determine a sequence
(a1, 51), (a2, 32), -+, until it finally converges to an equilibrium poirig, 5r). If BAM
converges for every training pair, M is said to be bidirectional stable.

The sequence can be obtained as follows:

1 , [Oz,-M]k > €k 1 R [ﬁZM]k > 5k
[Bialr = Gl [ = g [ctisa]i = il » [BiM]y = b
-1 , [OJZM]k < &g —1 , [6@M]k < (Sk

where [o].is the ky, element of the vectors, and ¢, and are two thresholds for the,
element ofa; and j3; respectively. If(c,6)T = (e1,€2,...,en,01,02,...,0x) = 0, then this
kind of BAM is called homogeneous. Others are called non-homogeneous BAM.

For each pair , the Lyapunov or energy function is defined as,

o { —aMBT (60T =0
—aMBT +acT + 65", (5,0)T #£0
Kosko [1] and Hainest al. [4] have proved that after a finite number of iteratioAs;onverges
to a local minimum, where the corresponding pair-, 5r) is a stable point.
McElieceet al. [5] have shown that if the training pairs are even coded (ith probability
0.5) andn-dimensional, the storage capacity of the homogeneous BAJZ\{@?. That means, if
L even-coded stable states are chosen uniformly at random, the maximum valuie ofder

that most of thel original vectors are accurately recalled24'§g.
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For the non-homogeneous BAM, Haines and Hecht-Nielsen [4] have pointed out that the
possible number of the stable states is between 12&§™™. However, since these stable
states are chosen in a rigid geometrical procedure, the storage capacity of the non-homogeneous
BAM is less than the maximum number. Haines and Hecht-Nielsen [4] also have shown that for
N same dimensional and uniformly randomly chosen training pairs (itiog; ) exactly entries
equal to+1 and (n — 4 — logy) entries equal to-1, if N < [loogj% then a non-homogeneous
BAM can be constructed so that approximate8j, of these chosen pairs can be stable states.

[11. ENCODING STRATEGY FORBAM WITH MAXIMUM NOISE TOLERANCE SET

In this new enhanced model, we start with a weighted learning rule of BAM similar to the
Multiple Training Strategy in [3]. For a given set of training pa{sX;, Y;)}¥,, the weighted
correlation matrix is

N
M= wXY; (1)

=1
where,

X = (%17%27'",%@)
Yi - (yihyin'”ayiP)

@ and P are the lengths of the input and output patterns respectiély: (w;,ws, - -, wy) IS
the vector of training weights. In [3], necessary and sufficient conditions are derived for choosing
W such that each training pair can be recalled correctly.

The energy of a training pairX;, Y;) is defined as

E(X,, Y M) = =X, MY;' 2)

If the energy of one training pair is lower than all its neighbors with one Hamming distance
away from it, then the training pair can be recalled correctly.
The neighbor pairs witm € I Hamming distance away from a pdiX;, Y;)is defined as
{(X )| Ho (X0, X) + H(Y,Y) =n} , n>0
(X3, Y:) , n<0
where H,(X;, X)is the Hamming distance between layexs and X, and H,(y;,y) is the

Q(sz }/iu n) =

Hamming distance between layérsandY’.
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Lemma 1If a training weight vectodV = [wy, ws, - - -, w,|" satisfies

[y, T+, Ty] "W >0 (3)
where,
Al AL

e W = AX]Y, B~ AEXTY,B]
B e

B1 1] J 4 7 7
U T 77iN

AF(BF) differs form A;(B;) only in the kth bit

nit o 0l

N
Then,3¥ € [, such that any paifX,Y) € U Q(X;,Y:,n), 1 <n < W has higher energy than

any pair(X',Y") € Q(X,Y,1)N U QX Y, n—1)|.

Proof: Wang, Cruz, and Mulllgan [2] have proved that if a training weight vettosatisfies
condition (3), then all training pairs can be recalled correctly. Since a trainingFHpaan be
recalled correctly if and only if; is a local minimum on the energy surface, any gai Y) €
QQ(XZ-,Yi, 1) has higher energy than any pak’,Y’) € Q(X,Y,1)N [QQ(XZ-,YZ-,O) . So,

N
at leastd¥ = 1 satisfying that any paifX,Y) € U Q(X;,Y;,n),1 <n < V¥ has higher energy
=1

N
than any paif X', Y’) € Q(X,Y,1)N | U Q(X;,Y;,n — 1)]. u
i=1

Definition 1 For a BAM(W, M) satisfying condition (3), we define the maximwinas the
energy well hyper-radiug’ which satisfies the following:

1) Felt

2) any pair(X,Y) € U Q(X;,Yi,n),ne I andl <n < F has higher energy than any pair

(X, Y") € Q(X,Y,1)N

l—|

U (X, Yin 1)
3) at least one paifX,Y) € U Q(X;,Y;, F+1) has energy lower than or equal to that of at

least one paif X', Y’) € Q(X,Y,1)N [ U Q(XZ»,Yi,F)}.
i=1

Lemma 2 Given a desired training pair sdt(X;,Y;)}Y,, a weight vectorlV satisfying

condition (3), for the associated energy well hyper-radiusif we define V;(F' — 1, M) =
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{(X,Y)|H,(X,X;) + H,(Y,Y;) < F — 1} for eachi, 1 <i < N, then,

1) any input pair in the set;(F' — 1, M) converges to the training paitX;, Y;);

2) for anyi andj such thatl <i # j < N, we haveV;(F — 1, M)NV;(F —1,M) = 0;
3) an upper bound of the energy well hyper-radii§\/) is

- 1
F= {2 min( min _ H,(X;, X), min Hy(Yi,Y)> —I—lJ

0<i#j <N 0<i#j<N

Proof: From Lemma landDefinition 1, sincel satisfying (3), its associated energy well
hyper-radiust’ > 1.
1) Kosko [1] has pointed out that when a pair is input to a BAM, the network quickly evolves
to a system energy local minimum. For any input pail4gF' — 1, M), there is a high energy
"hill” around it. So it is guaranteed that BAM evolves to some p@ait,Y) € V;(F — 1, M).
Since (X}, Y;) is the only system energy local minimum, any input pair in thelsgt’ — 1, M)
converges to the training paftX;, Y;).
2) Foranyl <i# j < N,if Vi(F-1,M)NV;(F —1,M) # O, then there is at least one pair
(X,Y) e V,(F-1,M)NV;(F—1,M). From conclusion 1) which we have just provéd], Y')
converges to the training paitX;, Y;) and (X;,Y;). It implies that(X;,Y;) = (X;,Y;) which
is inconsistent with the condition that=# j. So, for anyi and j such thatl < i # j < N,
Vi(F =1, M)NV;(F —1,M) = Q.
3) From the conclusion 2) that for anyand anyj, 1 < i # j < N, we haveV;(F —
L,M)NV;(F —1,M) = @, then we obtainF' — 1 < Imin(H,(X;,X),H,(Y;,Y)) , so an
upper bound for the energy well hyper-radius is

.1
F:{min< min _H,(X;, X), min Hy(Y;,Y)>+1J

2 0<i#j<N 0<iAj<N

Definition 2 For a given training pair sef(X;,Y;)}Y, with a weight vectoriW and the
associated energy well hyper-radits> 1, we defineV (M) = G Vi(F — 1, M) as thenoise
tolerance sebf BAM(W,M). -

Any pair in V(M) input to BAM(W,M) converges to the correct training pair.

We want to find the optimal training weight vectd¥™* which can generate a correlation

matrix M* with the maximum energy well hyper-radids® and the optimum noise tolerance
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setV*(M*) D any V(M). In [3], Wang et al. just considered neighbors with one Hamming
distance, corresponding 6 = 1, andV (M) = {(X;,Y;)},. Their method does not provide
any information for determining a noise tolerance 8éf\/) > {(X;,Y;)} Y.

For each training paifX;, Y;) in a training set{(X;, Y;)}, and M formed from the training

set by equation (1), we define the energy of any neighbor

EP (ki koy - skt te, -ty M) = —[ X[ (ky, ko, - - - ,k’m)]M[YiP(thhf"atp)]T 4)

where,
(X;m(kla k27 Ty km)7 )/;jp(tla t27 e 7tp)) € Q(XZ, Y;;, m +p>
(k1, k2, - - -, ki) @re the position indices that the bits with the complementary values (in bipolar

mode, the complementary value of -1(+1) is +1(-1); in binary mode, the complementary value
of 1(0) is 0 (1)) for the input patterrcx;

1<k <Q and ki#£kif1<i#£j<m (5)

while (¢1,1,,---,t,) has a similar meaning for the output pattéfn

Also define
X0 = X
1, x>0
v =Y, o(x) = (7)
0, <0

EY = E(X;,Y;, M)
Then, for a fixed weight vectol” = (wy, ws, - - -, wy), the object function is defined as

fW)=>_Ei(M) (8)

1=1

_ N
where;(M) is a weighted sum of energy difference between any (&) € U Q(X;,Yi, n),

=1

~ N
1 <n < Fandany paif X' Y') e Q(X,Y,1)N [ U QX Y, n—1)|.
i=1

F F—m
E’L<M): Z Z ,ym,pZZE?l’p(k‘th?".7km;t17t27”'7tp;M) (9)
m=0 p=max(0,1—m) (5) (6)
where,
>~ > means all combinations df;, ks, - - -, k,, andty, s, - - -, ¢, which satisfying condition (5)

(5) (6)
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and (6) respectively.

if m > 2 andp > 2 then,

11 ¢
(ko Kokl ) C (1,2, km)
II ¢

(tll7t/27"'7t;;71)c(t17t27"'7tp)

if if m=1andp =1, then,

B (st M) = (BN (st M) + XM ()] ) 6B (st M) + X (k) MY,T)

if if m =0 andp =1, then,

EM (1 M) = (= XiM [y (1)]T — E°)

if if m=1andp =0, then,

EMP(ky ko, Kty to, - - sty M)
Eim’p(k‘l,k’% kit e, ety M)_
Em_Lp(k,luk,Q?'” k' 'tl,tQ,"',tp;M)

7 » Pm—1>

Ezn’p(k‘l,k'za oo kit te, e i M)_
Ezmw_l(kl;k% e 'akm;tllvté’ T ’t;—l;M)

(2

E (ks M) = ¢( = X} (k) MY, = E}?)

and

1 , >0

Vimp(T) =

-Hpyp , <0

The seriesH, can be generated by the following formula,

Hpyy = —1

Hp=1

F A A
Hoy=NY(Hi+1)("%)  1=FF-1-2

i=l

where (Z) = ml(n—m)l

m!

‘foranynzmzo,ne[,me[

It is obvious that seriegd, is strictly decreasing.
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Maximum Noise Tolerance Theoref@iven a set of training pair§(X;,Y;)}~, and at least
one IV satisfying the condition ofemma 1 and if W* denotes théV' that maximizesf (W),

where f is given in (4) - (12),

W* = arg max fw) (13)
then,
1) The BAM(IW*, M*) has the maximum energy well hyper-radius. F* = r < F, wherer
uniquely satisfies,

Nﬁ(@;ﬂ NZH<@+P>gf(w*>gN2<Q+.P>-1—Hr+l (14)

j=r+1 J
N

2) V¥(M*) = U Vi(F* —1,M*) D anyV(M), i.e. for anyF’ > F*, there is at least one pair
i=1

(X",Y") e LAJ[ Vi(F" —1, M) such that if it is input to BAM, the output layer will not converge
to the corrZe:ét training pair.

Proof. We divide the proof into three parts. The first one is to show thatiquely satisfies
inequality (14). The second is to prove thiat = r is the maximum energy well hyper-radius.
The last one is to show that*(M*) = G Vi(F* —1,M*) D any V/(M).

Firstly, given a training weight vethT);V and energy well hyper radiug’, f(W) depends
on the training pair sef(X;,Y;)}¥,. Since for any pai(X,Y) € U Q(X;,Yi,n),n > 1 we
put a penalty value- H,, on the object function if X,Y") has energy lower than or equal to
that of any neighbor paifX’,Y’) € Q(X,Y,1)N [ti(Xi,Yi,n —1)] and is f, a strictly
decreasing series, the object functigii’) takes the largest value when only one neigh-

N
bor pair (X,Y) € U Q(X,,Y;,F + 1) has energy lower than or equal to that of one pair
=1
N
(X,Y) e QX,Y,1)N [ U Q(Xi,Yi,F)} . On the other hand, when any neighbor gair, Y')
i=1
N
U QX;,Y;,n), n > F + 1 has energy lower than or equal to that of any pair’,Y’) €
=1

N
QX Y, 1)N [ U Q(Xi,Yl-,n)}, f(W)takes the lowest value. So, inequality (14) holds.
=1
It can be shown by contradiction that only one uniqusatisfies the inequality (14).
If there is+/, 1 < r’ # r < F that satisfies inequality (14),

NZ<Q+P>—N ZF: Hj<QerP><f(W* <NZ<Q+P>—1—HTI+1 (15)

j=r'+1 i=1 t
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then,1<r' 4r<F=F>r>r+1lorr+1<r<F.
if 77> >r+ 1, from the right part of (14),

) = Ni(QfP>_1 HT+1<NZ<Q+P>—1—H,,/

=1 ¢

_ N'f:(QTLP)—pN sz (Hj+1)<QJ.rP>

i=1 ! j*r’—&—l J
NS <Q+P> N Z H<Q+P>
i=1 t =41 J
< Nr <Q+P> N Z H<Q+P>§f(W*)
1=1 j=r'+1 J

This is inconsistent with the fact thgt(1V«) = f(IV*).
if ¥ +1<r<F, the right part of (15)

v = NZ<Q+P) 1- Hrﬂgzvi(Q*.P)_l_Hr

_ Ni<Q+P>—1—N i(Hj—Fl)(Q;rP)
=1 j=r+1

- Ny <Q+P>—1—N Z H(QHD)
i=1 j=r+1 J

< g (017 (®) ) o
i=1 j=r+1

This is inconsistent with the fact thgt(11x) = f(1V*).
Hence, inequality (14) is satisfied by a unique

Secondly, ifF* = r = F, then F* is the maximum energy well hyper-radius.A¥ = r < F,

then the conclusion that™ = r is the maximum energy well hyper-radius can be proved by

contradiction as follows.

If there is a(W™**, M**) pair, with the energy well hyper-radius™ =e ,1 <r <e < F, then,

ba
Jov) < NZ(QjP)—l—HTH
=1
< Ni(QjP)—l—He
=1
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— Ni(QjP> H.+ N Z <Q+P>—1

=1 j=e+1 J
while
f(W**)ZNZ<Q+P> N Z H(Q+P>
i=1 ¢ j=e+1 J
SO,

JOVT) = fw=) < Né(@ﬂ?) H.+N Z <Q+P> 1

i=1 ! j=e+1 J

- Ps()- ()

Jj=e+1 J

F
- N Y (Hj+1)<Q+,P> “H, -1
j=e+1 J

= —-1<0
Then we obtainf(W**) > f(W™*) which is inconsistent with equation (13) that defifi&€s as
the optimal solution. Sd&™ is the maximum energy well hyper-radius.

Thirdly, since F* is the maximum energy well hyper-radius, for ahy > F*, there is at

N
least one neighbor pairX,Y) € U Q(X;,Y;,n), F*+1 < n < F’ which has energy lower
=1

N
than or equal to that of one pafiX’,Y’) € Q(X,Y,1)N [ U Q(X;, Yi,n— 1)}. Then if this
=1
neighbor pairX’, Y is input to BAM, the output pair will not be the correct training pair. Since
N N F'—1 N
U Vi(F'=1,M) = U [ U Q(X,,Y;,j)]and(X",Y") € Q(X,Y,1)N | U QX;,Yi,n—1)],F*+
=1 i =0 =1

=1 j=

N
1 <n < F’, we can obtain thatX’,Y’) € U V;(F'—1, M). So, there is at least one input pair

=1

N
(X", Y") e U Vi(F'—1,M) , such that if it is input to BAM, the network does not converge to
i=1

N
the correct training pair. Hence, the optimum tolerance sétis\/*) = U V;(F*—1,M*). &
i=1

N
Remarks The optimum noise tolerance set(M*) = U V;(F* — 1, M*) will be called the
i=1
maximum noise tolerance sétis for a fixed training pair set. It is possible to find some method,
such as the dummy augmentation in [2] to change the set of training pairs to one with increased

separation between the training pairs but with the same information content. Intuitively, this can
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increase the probability of finding a larger maximum noise tolerance set due to an increased
energy well hyper-radius upper bound.

There are three types of neighbors for BAM: 1) the ome$™(M*) , whose output pairs
converge to the correct training pairs; 2) the ones, whose deviations are beyond the upper
bound ' = F min (og@ij%]v Hx(Xi’X)70§rir71£i]‘%N Hy(Yi,Y)> + 1| , whose output pairs will
not converge to correct training pairs; 3) others that may or may not be recalled correctly.

Since our approach is based on the energy surface, using different energy definitions, it can
be applied to obtain max noise tolerance sets for the higher capacity BAM [9]-[12] rather than

the basic BAM only.

IV. COMPUTERSIMULATIONS

A numerical example is given in this section to evaluate the performance of the extended BAM
with optimized training weights. Suppose one wants to distinguish three pattern pairs shown in
Fig. 2. X, =(1,-1,-1,-1,-1,-1-11,-1,-1,-1,2,2,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1)

Fig. 2. Three Training Pairs

Y, =(1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1)
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X, =(@1-1-1-111-1-1-1-1-1,1-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,1)

Yo =(21,111,-1,-1,-1-1-1,-1,-1,1,1,1,-1,-1,-1,-1,-1,-1,1,1,1,1,1)

X3=(1-1-1,-11,-1-1,-1,-1-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,1)

Y;=(31,1,11-1-11-1-11,-11,-11,-1,-1,2,-1,-1,1,1,1,1,1)

So,

H. (X1, Xs) =12, H,(Y1,Y3) =8

Hy (X1, X3) =8, Hy(Y1,Y3) = 16

H,(Xo, X3) = 8, H,(Ys,Y3) =8

F=8/2+1=5

In this example, to find the optimum training weights, the objective function defined in equation
(8) is used as the fitness function of Genetic Algorithm (GA). The results obtained from GA

are optimal with high probability. This is acceptable in real applications.
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Fig. 3. Fitness Plot and Training Weights

W* = (wy,ws, ws) = (14,14, 15), and F* = 2. All training pairs have been recalled correctly
and all noisy input pairs with one Hamming distance away from the training pairs have converged

to the correct training pair.

V. CONCLUSION

We extended the Basic BAM, using an optimization-based training strategy. For a given set of

training pairs, we determined the weights for the training pairs in the BAM correlation matrix
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that result in the maximum noise tolerance set. Any noisy input pair within the tolerance set
will converge to the correct training pair. We proved that for a given set of training pairs, the
maximum noise tolerance set is the largest in the sense that at least one pair, with Hamming
distance one larger than the hyper radius associated with the optimum noise tolerance set, will not
converge to the correct training pair. A standard Genetic Algorithm (GA) was used to calculate
the weights to maximize the object function.

For BAM applications, the speed of encoding is relatively less important than that of the
decoding because the encoding can be calculated offline. However, if adaptive encoding is needed
to apply to some new desired pairs in real time simulation, the training time should be as short as
possible. In the example of this paper, a standard GA algorithm was used. This GA worked well
but performed relatively inefficiently, as calculation times were quite long with many generations
and fitness values needed to find the optimal solution. Improving the performance of the BAM

weight optimization is another future research direction.
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