FLOATING OCEAN PLATFORM

By

Dr. Ronald N. Kostoff
Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217
Phone: 703-696-4198
Fax: 703-696-4274
Internet: kostofr@onr.navy.mil

(The views in this report are solely those of the author and do not represent the views of the Department of the Navy or any of its components)

ABSTRACT

In FY90, Congress directed the Secretary of the Navy to commission a study by the National Academy of Sciences for the production of an integrated technology plan for the evolution of aircraft carriers in the first half of the twenty-first century. The House-Senate conferees emphasized "that the product of this study is to be a technology plan for the evolution of sea bases for the most efficient and economical accommodation of tactical air power in the first half of the twenty-first century".

Based on this broad charter of evaluating sea bases, an examination of the floating ocean platform concept was included in the study. The floating ocean platform is a generic description of a large, relatively stationary or slowly mobile, platform that can be positioned in most areas of the ocean, and can serve a variety of purposes.

The present report was the author’s input to the study. It was based on technical analyses, literature reviews and surveys, and discussions/visits with the main groups and organizations involved in developing the floating ocean platform. All discussion material was unclassified, as are the contents of this report. All the external inputs and discussions, too numerous to mention, made this report possible, and are greatly appreciated.

The first part of this report is the summary narrative that was submitted by the author to the Technology Group of the study. The second part is the vugraphs that were presented to the Technology Group by the author on 12 February 1991. The third part is a selected bibliography of studies on the floating ocean platform over the past two decades, with over three thousand references identified.

KEYWORDS: Floating Ocean Platform; Floating Platform; Mobile Offshore Base; Spar Platform; Offshore Platform; Megafloat; Floating Structure; VLFS; Foreign Bases; Floating Airport MOBS.
In FY90, Congress directed the Secretary of the Navy to commission a study by the National Academy of Sciences for the production of an integrated technology plan for the evolution of aircraft carriers in the first half of the twenty-first century. The House-Senate conferees emphasized "that the product of this study is to be a technology plan for the evolution of sea bases for the most efficient and economical accommodation of tactical air power in the first half of the twenty-first century". Based on this broad charter of evaluating sea bases, an examination of the floating ocean platform concept was included in the study. The floating ocean platform is a generic description of a large, relatively stationary or slowly mobile, platform that can be positioned in most areas of the ocean, and can serve a variety of purposes. The present report was the author's input to the study. It was based on technical analyses, literature reviews and surveys, and discussions/visits with the main groups and organizations involved in developing the floating ocean platform. All discussion material was unclassified, as are the contents of this report. All the external inputs and discussions, too numerous to mention, made this report possible, and are greatly appreciated. The first part of this report is the summary narrative that was submitted by the author to the Technology Group of the study. The second part is the vugraphs that were presented to the Technology Group by the author on 12 February 1991. The third part is a selected bibliography of studies on the floating ocean platform over the past two decades, with over three thousand references identified.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

18. NUMBER OF PAGES

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
</tr>
</tbody>
</table>

19. NAME OF RESPONSIBLE PERSON

<table>
<thead>
<tr>
<th>19. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostoff, Ronald</td>
</tr>
</tbody>
</table>

19b. TELEPHONE NUMBER

<table>
<thead>
<tr>
<th>International Area Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Code Telephone Number</td>
</tr>
<tr>
<td>703696-4198</td>
</tr>
<tr>
<td>DSN</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18
BACKGROUND

In FY90, Congress directed the Secretary of the Navy to commission a study by the National Academy of Sciences for the production of an integrated technology plan for the evolution of aircraft carriers in the first half of the twenty-first century. The House-Senate conferees emphasized “that the product of this study is to be a technology plan for the evolution of sea bases for the most efficient and economical accommodation of tactical air power in the first half of the twenty-first century”.

Based on this broad charter of evaluating sea bases, an examination of the floating ocean platform concept was included in the study. The floating ocean platform is a generic description of a large, relatively stationary or slowly mobile, platform that can be positioned in most areas of the ocean, and can serve a variety of purposes.

The present report was the author’s input to the study. It was based on technical analyses, literature reviews and surveys, and discussions/visits with the main groups and organizations involved in developing the floating ocean platform. All discussion material was unclassified, as are the contents of this report. All the external inputs and discussions, too numerous to mention, made this report possible, and are greatly appreciated.

The first part of this report is the summary narrative that was submitted by the author to the Technology Group of the study. The second part is the vugraphs that were presented to the Technology Group by the author on 12 February 1991. The third part is a selected bibliography of studies on the floating ocean platform, with over three thousand references identified.

For the present study, an offshore air base is examined with a surface area of (9,000 ft X 900 ft). Although this structure has about twice the area of the floating airfield designed by Bechtel in the mid-1980s, its ability to support a full forward base depends upon as yet undefined specific mission and design requirements. If it is used to store substantial numbers of large aircraft, as well as large amounts of material and personnel, the size requirements could easily double.

This ocean complex (hereafter termed the FB, or floating base) is viewed as an alternative to, or replacement for, foreign land bases, an application that is important for two reasons. There are a number of foreign bases that the U.S. may
have to surrender to the host countries in the forseeable future. This will greatly degrade the capability to support logistics and operational missions. In particular, it will be far more difficult in the Strategic Lanes of Communication and geographical regions now dependent on existing bases.

Second, as recent military operations have shown, even where the U.S. has foreign basing rights, there may be many restrictions on the types of military operations the U.S. can execute from these bases, which greatly limit options and effectiveness. Therefore, it would be desirable for these and many other reasons to have large bases under complete U.S. control that can be deployed in response to developing threats in important geographical areas.

The FB is not an alternative to the conventional aircraft carrier but is intended as a major component of a carrier overseas basing system, and as such the design must take into account system as well as component considerations. The main purpose of the FB is to serve as a logistics and forward deployment node with the capability of handling aircraft that are beyond the capacity of the conventional carrier (i.e., large aircraft such as B-52, C-5A, Condor, etc.) and are now supported from fixed bases. For some missions, the FB could serve as a logistic backup for the pre-deployed forces, for an Over-The-Horizon assault task force, or as a home base for large surveillance aircraft. The benefits of an FB as described above will accrue to all the military services, and the responsibility for FB development should be tri-service, not restricted to Navy. There are potential spinoffs to commercial activities, such as energy production, mining, and fishing support, and organizations that may eventually realize benefits from some of these spinoffs are candidates for contributing to FB development as well.

The requirements for this FB are vertical motion constraints that would allow large aircraft to land safely in weather conditions that would not otherwise inhibit tactical operations, location control, rotation control for wind direction orientation, cost effectiveness relative to alternatives, and adequate mobility to allow for relocation if desired. Additional features that could be of major tactical and strategic significance would be modularization for mission flexibility, and the ability to assemble modules on the high seas.

Specific technological issues, and recommendations for further examination of this concept, follow.

SYSTEM REQUIREMENTS
Specific requirements are mission dependent, and detailed system requirements await a more detailed mission and operational analysis. Some requirements can be estimated at this time.

-Size
In the mid-1980s, Bechtel examined a floating airport concept for coastal waters under sponsorship of the Japanese company Kumagai Gumi Co., Ltd. The largest concept examined was 472 ft x 8005 ft. For present estimates, a system of twice this size will be assumed. A number of studies of floating platform concepts (e.g., University of Hawaii floating city and the Bechtel floating airfield) have employed modular construction, with modules having dimensions of approximately 300 ft x 300 ft. Therefore, a 900 ft x 9,000 ft platform consisting of 30 elements having dimensions of 300 ft x 900 ft. (i.e., each element is 3 modules wide) will be assumed, with the understanding that modules of other dimensions could be used if shown to be more advantageous by detailed system designs.

-Capabilities
For handling large aircraft, a large, flat, stable top deck is required. For storing and handling substantial resources, a lower deck (as proposed by the Bechtel and other studies) is assumed. Most floating airport studies have concluded that the volumes that are required for buoyancy result in very large load-carrying capabilities. The displacement of the assumed FB, for example, will be approximately 5,000,000 tons.

However, when the flotation volume is used for storing materiel, the carrying capacity of the column is decreased, and the draft is increased. Therefore, only a small fraction of the weight reservation will be available for different uses, such as aircraft repair facilities, ship repair facilities, spare parts, shops and tender facilities, fuel storage, bulk commodities, ammunition, etc. Substantial self-defensive facilities will be required, but far less than that required for land based facilities. In fact, the original Mobile Ocean Basing System study, authorized by the Under Secretary of the Navy for R & D in 1969 and conducted by the Naval Underseas Center in San Diego (now NOSC) and the Naval Civil Engineering Laboratory in Port Hueneme, was proposed to cope with the problem of black market and enemy theft of military supplies in Vietnam.

If surface ships are the main vehicles used to transfer resources to and from the platform, berthing capabilities for large and small vessels will be required. This may pose severe problems. The relative motion between small ships and
Platforms even in moderate seas will make transfer difficult and in some cases impossible.

Because of momentum and energy conservation, the greater the absorption and reflection of waves by the structure, the less is the transmission of waves to the lee of the structure, but the greater are the forces and subsequent motions on the structure. One method of reducing wave impact on ship motion while minimizing wave interaction with the total FB is to construct a locally protected area where ships would berth and transfer resources to the FB. Ships that will operate with the platform may themselves require modifications to facilitate the mating process, although, because of the large number of ships relative to the small number of FBs, modification of the FB would be far preferable to any significant ship modifications. Dynamic motion compensation during the resource transfer process between ships, such as motion compensating cranes or use of helicopters, offers a possible solution. Some combination of motion compensation equipment and locally protected berthing may be the most cost-effective solution from a systems viewpoint.

Other supply options, such as aircraft or undersea vehicles, would alleviate this relative motion problem. However, most transport of materiel in bulk is by sealift; replacement by airlift would tend to increase logistics costs substantially. Use of undersea freighters would require a different merchant marine than configured presently.

Design for survival under severe storms is necessary. Once again the designer will be faced with the alternative of designing a structure that absorbs or reflects the full energy of the free surface disturbances or that minimizes the sea surface structure interaction by the utilization of the smallest waterplane area. A similar dilemma will be presented with respect to station keeping during a storm. While the small waterplane area structure would minimize the effects of waves on the FB, and may prove to be the most advantageous configuration for an FB application, by design the small waterplane restricts communication between the decks and the regions of the FB underwater. Transfer of materiel from underwater to the decks becomes more difficult in theory. However, waterplane area (the area through which material would be transferred from the subsurface regions to the decks) is small relative to total plane area, but is probably large relative to the size of most pieces of material that would be transferred through the waterplane. Therefore, in practice, material transferred to the decks would not be limited by the size of the support structures that cross the waterplane.
The Aquapolis (demonstration floating city in Okinawa) is located and moored at a location such that prevailing storms and hurricanes will carry the platform out to sea. It was planned to slip the moor in the presence of severe storms and to dynamically return to the original position after the storm subsided. This has never been required although it is a necessary feature of design. To date almost all of the designs for major floating complexes have rejected the notion of anchoring in favor of surrender of precise location during severe storms.

HULL DESIGN CONSTRUCTION AND SYSTEM ASSEMBLY

There appear to be a number of material and construction options (all steel, all concrete, concrete and steel hybrid, etc.). All previous studies have recommended a modular approach, with large mass and buoyancy region well below the water line and minimum water plane area to minimize response to wave motions. As discussed previously, the stability benefits of this small waterplane area design for the FB application probably offset its negative aspects of reduced speed, greater structural requirements, and reduced load-carrying capacity. Because of experience with large structures whose dimensions are comparable to those of the FB modules, no major module construction research issues appear as obstacles, and development and construction of the modules would be feasible but complex.

As of this date (1991), actual experience in hull design and construction has been almost exclusively in the oil industry, in science facilities related to deep sea drilling, or in large scale models. The diversity of concepts in use presently can be traced initially to structures that were based on the barge or displacement hull concept (Large waterplane area). The fixed platforms (known as "Old Shakeys") were joined by mammoth 'jack up' rigs, some taller than the Sears tower in Chicago. These have been supplemented by the dynamically positioned or tension moored semi-submersible with small waterplane area.

In addition to actual experience, there have been a number of "floating city studies". Architects have produced many concept designs based on displacement hulls. These concept designs have inevitably proved impractical in terms of structural forces and motions. Most detailed designs have been based on semi-submerged modules and most of these have been further optimized for stability by such techniques as "added mass anti-resonance" at resonant frequencies.

For the floating airport requirement, maintenance of vertical position and trim of the landing deck is crucial. If a modular design is employed for the FB, then the
components of the modules (substructure, deck, linkages between substructure and deck) must be arranged relative to each other such that the total deck surface remains sufficiently flat for aircraft landing. Because of the large number of degrees of freedom, there are many ways of configuring the modules and their components to achieve the desired goal of a flat landing surface.

At one extreme of module configuration are connections between modules that are as rigid as the modules themselves, as well as rigid connections between the substructure and the deck. This class of intermodule connections includes post-tensioning the modules together (stringing strong cables through holes in the modules and tightening the cables to form an essentially rigid structure) and, to a lesser extent in terms of rigidity, hinging the modules together. Connections that are as rigid as the modules themselves will result in a structure that is to all intents and purposes a continuous flexible beam. The linear distribution of buoyancy forces will be related to sea conditions and the loads on the 'beam' will be highly dependent on distribution of load and ballast throughout the structure. At this rigid connection end of the spectrum, the interconnecting forces and moments for a rigid structure will be large and highly cyclic.

At the other extreme of module configuration are connections in which the modules are coupled to each other less rigidly and the substructure is coupled to the deck less rigidly (analogous to shock absorbers and springs in a car). To keep all the components in the overall desired configuration, modern control theory and active 3-D positioning are utilized. Structural and environmental information is employed to continually adjust ballast in each module and adjust the flight deck dynamically (analogous to active suspensions in modern cars) such that vertical position and trim of each module are maintained within precise limits. Much of the stress on the module boundaries in the rigid body configuration is replaced by externally supplied forces in the actively controlled configuration.

However, the actively controlled system is more complex, would probably require more maintenance, would probably be more expensive, would probably be less reliable because of all the adjustable components, and its robustness to component failure is unknown at this time. Whether the tradeoffs of independent module control (and the potential for easier assembly/disassembly) for greater complexity are cost effective is an open question at this time, and obtaining a credible answer would require more detailed design and technology development than exists presently. Other technical disciplines use active control and adjustments to produce 'smart' buildings, 'smart' aerospace structures, 'smart' suspensions, with the same potential for additional complexity and its attendant
problems, but for some applications the benefits of 'smart' systems outweigh the costs. Whether the benefits (or even the feasibility at this stage) of 'smart' platforms outweigh the costs remains to be seen.

The coupling design will also determine the weather conditions under which assembly could be performed. For example, the 190 ton SWATH ship Kaimalino is able to support helicopter landings in a state 5 sea, whereas a large waterplane hull of similar displacement would have major difficulty with supporting helicopter landings in a state 3 sea. The coupling to the free surface will thus determine where the modules could be assembled, the assembly method, and possibly the operating location.

Finally, some hydrodynamicists believe that the accurate modeling of the response of the large assembled structure to the forcing functions of the wave field is an issue. There appears to be disagreement as to how accurately the full-scale assembled structure can be modeled using present techniques, with respect to 1) non-linear forcing that could occur due to combinations of currents, mean drift, and rough sea states as well as 2) relatively rare but finite probability very low frequency waves.

Present theory, and physical model testing capabilities, are addressing all the loading, linear and non-linear. The University of Hawaii, for example, is advancing from the hydroelastic analysis of single large modules to the motions and hydroelastic stresses of systems composed of 2 and 3 such modules in an NSF-sponsored study. Until these models are verified against at least two or three assembled modules in real-world environments, the validity of their extension to full-scale assembled platforms remains uncertain.

This uncertainty in the predictability of assembly configuration in rough seas could translate into uncertainty of predicting the effects of different assembly methods, and therefore would impact the selection of the best assembly methods.

In addition, design experts will disagree sharply, depending on their perspectives and training as surface ship architects, submarine architects, and air and space system architects. Some developmental work, or at least technical feasibility demonstration, would probably be required in the area of system assembly and system topology modeling.

TRANSPORT TO ASSEMBLY SITE

Potential construction sites range from one to many domestic sites, and could include many international sites. The number and location of sites would
significantly impact the construction time for the total system, and the sites should be selected only after a realistic system assembly and strategic deployment plan has been generated.

There appear to be many options for gathering the modules at an assembly site. The higher speed options range from transport of shallow draft designs by heavy lift semi-submersible ships to towing of modules in component form by tugs. These barges could eventually become integral elements of the modules during on-site assembly.

If the FP is modular, one type of desirable military system would consist of self-propelled modules that could self-position on the high seas and couple relatively rapidly and easily. Unfortunately, these autonomous modules would have greater complexity and cost due to the requirement for integrated propulsion systems, and these propulsion units would probably be very much underutilized once all the modules have been assembled. The cost-benefit of self-propelled modules should be examined in the feasibility study recommended at the end of this paper.

The most probable speed of a self-propelled option is about 4 knots (100 miles per day). Thus, transport times will be large relative to ship times when distances are measured in thousands of miles. For example, deployment times from Diego Garcia (7.2 S 72.25 E) to the Persian Gulf would be about 18 days. To reduce transport times, other options should be considered. These range from towing of some or all of the individual modules to the assembly site and doing final assembly in situ, to towing clusters of modules that have been assembled near the construction sites and assembling the clusters at the assembly site. In such instances, it is conceivable that towing vessels could achieve higher speeds, although speeds in the range of eight knots under tow are typically achieved by very large tugs with ship shaped barges, not by blunt shapes with deep drafts in a train.

In this instance, the resources (tugs, perhaps use of on-board power plants with additional steering capability, etc.) required for this towing and assembly operation are substantial. Careful, and probably time consuming, planning and sequencing of the assembly infrastructure would be required beforehand. While the operations involved here are large, time consuming, and complex, and while the design decisions are crucial, there appear to be no major research issues involved in any of the concepts.

STATIONKEEPING
Two major issues here are location control and direction control. The type of location control utilized depends somewhat on whether FB operation is in coastal water or deep water.

In coastal water, if some degree of permanence is projected, mooring (anchoring) would probably be utilized. Because of the massiveness of the total system, significant scaling up from present day anchors would be required. Preliminary studies suggest that the costs will be substantial and some approach such as that adopted in the Okinawa demonstration may be required. No new physics appears obvious, and scaling would probably be straightforward. If the platform is moored within the 200 mile limit of a country, the political issue of sovereignty may become very important.

Drag anchors could be used to about 2-3 million pounds. Beyond this, their efficiency would be very low and the ability to build them is questionable. Caisson-type anchors that are weighted after installation are a reasonable choice for very large mooring loads. If a dynamic penetration technique is desired, substantial development work will be required. Rock regions covered by heavy sediments would compound the difficulty substantially of this dynamic penetration operation.

If more mobility is required in coastal water, or if operation in very deep water (that would probably make mooring infeasible due to cable length and weight) is required, some type of 'dynamic positioning' (DP) would be necessary. This would involve the application of forces to the FB to counteract the effects of currents and other disturbing forces, and to keep the FB in a reasonably fixed area.

Unfortunately, the main method proposed to make the FB relatively insensitive to wave motion, namely, placing large mass and buoyant regions well below the waterline to minimize the water plane area, tends to increase the area exposed to current drag. In turn, this current drag disturbs the location of the FB, and must be countered by the DP system.

Since DP has been used for oil platforms 300 ft x 500 ft., there exists a substantial technology base on which to build. DP's application to multi-module systems remains to be demonstrated. However, depending on the specific platform design, the currents and winds in the region of interest, and the precision of FB location desired, fuel costs for DP could be problematical. Some studies
have been conducted examining the use of vanes and shape of the underwater structure so that the platform could 'sail' into the current. This appears feasible as does some hybrid form of thrust and environmental configuration assist.

The purpose of direction control is to align the FB runways with the wind to insure optimal landing conditions for aircraft. Direction control was considered in the Bechtel study, where the structure was required to 'weathervane' at a rate of 3 degrees per minute, but was single point moored in relatively shallow coastal waters. Again, breakthroughs in control theory or engines are not required to address this problem. Rather, an engineering study of control system requirements based on the chosen FB configuration is necessary to identify the severity of the DP fuel requirements.

VULNERABILITY TO ATTACK

As is the case with any permanent base, the FB would probably be more vulnerable to attack than a highly mobile base. In terms of an airborne attack, the FB would have roughly equal vulnerability to a non-stealthy ship, since both the FB and the ship are essentially stationary from the attacker's perspective. In terms of an undersea attack, the FB would be more vulnerable than a ship, since from the attacker's perspective the FB is stationary, but the ship is moving at comparable speeds to the attacker. The FB would not be subject to land-based infiltration and attack.

A key issue is the robustness of the FB to damage. Due to the sheer massiveness and construction (steel/ concrete) of the structure, it would be more damage resistant than a ship. Generally speaking, it should be relatively invulnerable to small missile attack. Because of the large number of buoyancy chambers in the total system, destruction of a few chambers would probably be manageable, but here again, this would depend on specific designs, and the degree of redundancy designed into the system. Depending on the ease of module assembly and disassembly and the number of spare modules near the FB, damaged modules could possibly be replaced by the spares. A substantial defense against both air and sea attack would be required, but substantial space would be available for defense systems.

TOTAL SYSTEM COSTS

Estimation of costs in the absence of a detailed system design is extremely difficult and uncertain, and any numbers presented are questionable. However, for
an order of magnitude estimate, results from past studies will be extrapolated to the present FB system. Four studies (MOLI, Bechtel, MOBS, OSP) that examined large offshore platforms produced unit capital costs based on top deck surface area that ranged from $400-500 per square foot in FY 89 $. If the upper range of these costs is used for estimating the present FB system (900 ft x 9,000 ft) cost, then a capital cost of $4B results. Operating and maintenance costs would have to be added to the above capital costs. A decade ago, the use of knowledge-based systems would have added to the cost of the structure. Today, knowledge-based hardware is trivial in cost and potential savings in the structure as a result of knowledge-based hardware are available.

In addition, because the bulk of the mass and empty volume of the FB are used for flotation and stability purposes, it would probably be possible to use a small fraction of the load carrying capacity of the huge flotation empty volume to satisfy other requirements, either military or commercial. Depending on the other uses made of this empty volume, the costs could be allocated over the different applications, and the effective cost of the airfield could be reduced.

CONCLUSIONS AND RECOMMENDATIONS FOR ACTION

The FB could play a unique role in the U.S. defense capability by providing an alternative to foreign land bases. This role may be important in the early next century, when the tenure of the remaining foreign U.S. land bases may be uncertain. These FBs would be of value for logistics and large strike (and surveillance) aircraft operations.

However, there are many unknowns with respect to FB assembly and operation that raise questions as to its economic feasibility and with respect to the choice of design concept. Before any decisions can be made responsibly as to the feasibility of proceeding with construction of the FB, data has to be obtained to provide answers to the above questions. The following step-by-step approach is recommended for obtaining this technical and economic data.

1) **Convene a workshop of operational and technical experts for the purpose of identifying mission requirements and the key technological issues to be pursued in a feasibility study.** While ideally the workshop should be convened by the Defense Sciences Board to emphasize the tri-service importance of the FB concept, from a practical standpoint the workshop could be convened by the Naval Studies Board. Potential users and operators of the platform would play a key role in defining missions and requirements.
It is highly recommended that the Marine Board have strong participation in the workshop agenda and in the selection of the attendees and participants in the workshop, since the Board's close ties to the industrial state of the art in ocean engineering will enhance the credibility and objectivity of the workshop results. Since one option discussed in this paper for the FB was a 'smart' platform, with actively 3-D positioned modules and/or an actively adjusted deck, it is imperative to have representatives from other technical communities who have experience in designing and operating 'smart' systems (buildings, space stations, etc.).

2) Based on the workshop results, initiate a study to further define the specific missions of the FB, and to examine the key technology uncertainties for predicting performance and costs of the FB. The study would probably be in the $3-4 M range, and should be sponsored by DoD to emphasize the tri-service aspects of the FB. One of the outputs of the study would be the design of an experimental program that would reduce the uncertainties in projecting system technical and economic performance.

3) Assuming no fatal flaws for the FB concept are identified in the study, and assuming that a high payoff potential is shown on paper, initiate a step-by-step experimental program. Because the FB is projected to consist of a number of similar modules, it naturally lends itself to an orderly step-by-step experimental and developmental approach through the initially sequential (and perhaps eventually parallel) addition of modules if positive results are obtained in previous steps.

The first step would be construction of one of the modules. Because working at full scale always provides uncertainties for systems of this magnitude, probably a full scale module would be most useful. This experimental step would yield useful information on construction materials and processes, handling of large structures, mooring and dynamic positioning, and vertical motion prediction and control in high sea states. If a 'smart' deck is still a viable option at this stage, then landing of an STOL vehicle on a prototype 'smart' deck would provide initial feasibility tests of the concept.

The second step would be construction of a second module, and the mating of the two modules. In this step, one of the major uncertainties of the FB concept, the assembly technique, would be examined. It may be desirable to construct the faces of the modules such that a variety of assembly and dis-assembly approaches
can be tested. Also, data would be obtained for this two body problem on some of the issues examined in the first step, one body problem, namely, mooring and dynamic positioning, robotic handling of two large structures, vertical motion prediction and control in high sea states, and further feasibility tests of 'smart' deck alignment for two adjacent modules.

Later experimental steps would involve adding new modules to further constrain boundary conditions and simulate more realistically the multi-module FB. Success or failure in the module development program would provide the justification for acceleration or deferral of the program.

It should be noted, however, that the MOBS program was initiated during the Vietnam War. At the conclusion of that war, the mission requirement for floating bases was no longer valid. With the addition of Diego Garcia, the securing of Granada, and the stabilization of Panama, the Strategic Lanes of Communication were fully covered. It is now clear that these logistic support bases may not be available, or will be inappropriately located, in the near future. If the technological and economic feasibility of the FB are borne out by the experimental program, then the FB could become an important component in maintaining the security of the United States.
I) STATUS

*FIRST DRAFT PRESENTED AT LAST MEETING (4 REVIEWERS)

*FINAL DRAFT PRESENTED TODAY

-INCORPORATES SOME OF DR. CRAVEN'S COMMENTS

-INCORPORATES COMMENTS OF NINE EXTERNAL REVIEWERS
II) FLOATING PLATFORM CHARACTERISTICS

*LONG (~1 1/2 - 2 MILES)

*LARGE SURFACE AREA (~10 MILLION SQUARE FEET)

*FLAT DECK FOR AIRCRAFT LANDING

*SLOWLY RELOCATABLE
III) POTENTIAL MISSIONS

*ALTERNATIVE TO LAND BASES

*NOT ALTERNATIVE TO CARRIER

*SUPPLEMENTS CARRIER

-LARGE BOMBERS (B-52 SIZE)

-LARGE LOGISTICS TRANSPORTS (C-5A SIZE)

-LARGE SURVEILLANCE PLATFORMS (CONDOR SIZE)

-STAGING REGION FOR FORCES
IV) TECHNICAL ISSUES

*HOW ARE MODULES CONNECTED (IF MODULAR)
- RIGID (INTERNAL STRESS; LOW TECH; SLOW DISCONNECT)
- FLEXIBLE (EXTERNAL FORCES; COMPLEX; RELIABLE?; FAST DISCONNECT)

*HOW IS DECK KEPT FLAT FOR RUNWAY

- RIGID CONNECTIONS; NO DISCONTINUITIES
- FLEXIBLE COUPLINGS
 --ACTIVE BALLASTING OF MODULE FOR VERTICAL CONTROL
 --ACTIVE POSITIONING OF DECK WITH SPRINGS, SHOCK ABSORBERS, ETC.

*HULL DESIGN OPTIONS

- SMALL WATERPLANE AREA
 --STABLE
 --REDUCED SPEED
 --REDUCED LOAD CARRYING CAPACITY
 --GREATER STRUCTURAL REQUIREMENTS
 --MOST FB DESIGNS TEND TO BE SMALL WATERPLANE AREA

- MONOHULL
 --MORE SENSITIVE TO WAVE MOTION
*MATERIAL TRANSFER TO FLOATING PLATFORM

- SHIPS
 -- SWATH (EXPENSIVE; COST-EFFECTIVE FOR FB APPLICATION???)
 -- STABLE LEE
 -- MOTION-COMPENSATING CRANES
 -- HYBRID OF STABLE LEE/ CRANES

- AIRCRAFT
- HELICOPTERS
- UNDERSEA TANKERS

*HOW IS LOCATION CONTROLLED
- ANCHORING (SHALLOW WATER)
- DYNAMIC POSITIONING
*OPTIMAL ASSEMBLY
-ON-SITE
--SENSITIVE TO SEA CONDITIONS
--LARGE NUMBER OF TRIPS (ESPECIALLY IF COMPONENTS ASSEMBLED)
--LOGISTICS PROBLEMS
--RELATIVELY RAPID TRANSPORT PER TRIP
--TOWING SPEED DETERMINED BY TRANSPORTER CHARACTERISTICS

-OFF-SITE
--MORE CONTROLLED ASSEMBLY
--SLOW SPEED TOWING OF LARGE ASSEMBLIES
--TOWING SPEED DETERMINED BY MODULE CHARACTERISTICS

*VULNERABILITY TO ATTACK

-AIRCRAFT
--ESSENTIALLY ZERO FB SPEED; SIMILAR TO CARRIER, BUT LARGER TARGET

-SUBMARINES
--ESSENTIALLY ZERO FB SPEED; MORE VULNERABLE THAN CARRIER

-MISSILES
--RELATIVELY INVULNERABLE TO SMALL MISSILE ATTACK

-GROUND TROOPS
--UNLIKE LAND BASE, NO TROOP INFILTRATION

-ROBUSTNESS
--DEPENDS ON DESIGN
V) RECOMMENDATIONS

*CONVENE WORKSHOP TO DEFINE ISSUES FOR FEASIBILITY STUDY
-INVITE USERS, OPERATORS
-DEFINE MISSIONS AND REQUIREMENTS
-INCLUDE MARINE BOARD
-INVITE BUILDERS OF 'SMART' SYSTEMS FROM OTHER FIELDS
 --AEROSPACE, AUTOMOTIVE, BUILDINGS

*PERFORM FEASIBILITY STUDY
-IDENTIFY TECHNOLOGY UNCERTAINTIES
-ASSESS FEASIBILITY
-ESTIMATE COSTS
-IF FEASIBLE, OUTLINE EXPERIMENTAL PROGRAM

*CONDUCT EXPERIMENTAL PROGRAM
-ONE MODULE
 --CONSTRUCTION MATERIALS/ PROCESSES
 --HANDLING OF LARGE STRUCTURES
 --MOORING AND DYNAMIC POSITIONING
 --VERTICAL MOTION PREDICTION/ CONTROL
 --TEST OF 'SMART' DECK (IF FEASIBLE)

-TWO MODULES
 --ADD FEASIBILITY OF 'SMART' DECK ALIGNMENT BETWEEN TWO
 MODULES

-THREE MODULES, ETC.
SELECTED BIBLIOGRAPHY

Five sources of information were examined. These were the following.

1) Science Citation Index
This database accesses over 5600 journals in all areas of science, focusing on the premier fundamental science journals. Some meeting Abstracts are included.

2) Engineering Compendex
This database accesses over 2400 journals in all areas of science and technology, focusing on applied research and technology journals. Includes some conference proceedings.

3) DTIC Technical Reports
This database includes reports of research sponsored by the U. S. government. Contains almost two million reports.

4) VLFS Database
A targeted database containing over 500 documents.

5) NFESC MOB Page
A targeted database.

In searching the more general databases, the following query was used.

Floating platform* OR Mobile offshore base* OR Spar platform* OR Offshore platform* OR Megafloat OR Floating airport* OR Floating structure* OR VLFS

This is a platform-oriented query, and excludes the large non-platform-specific technology literature that forms the basis for platform development and improvement. To access and extract further information from this underlying technology literature, the reader is encouraged to use the main bibliography in this report as a starting point, then use the iterative relevance feedback information retrieval and analysis technique developed by the author and described in the following references.

The Floating Ocean Platform bibliography follows.

SCI Papers

Yan, HM Cui, WC Liu, YZ, Hydroelastic analysis of very large floating structures using plate Green functions, CHINA OCEAN ENGINEERING, 151-162 China Ocean Eng., 2003

Chen, XJ Ciu, WC Song, H Tang, XF, Numerical solution of membrane forces for a free-free floating plate with large deflection, CHINA OCEAN ENGINEERING, 163-176 China Ocean Eng., 2003

Liu, LM Duan, ML Qin, TY Liu, YB Liu, CT Yu, JX, A finite element method for cracked components of structures, CHINA OCEAN ENGINEERING, 177-187 China Ocean Eng., 2003

[Anon], More emphasis on offshore platforms, NAVAL ARCHITECT, 26-26 Nav. Archit., 2003

Paik, JK Thayamballi, AK, A concise introduction to the idealized structural unit method for nonlinear analysis of large plated structures and its application, THIN-WALLED STRUCTURES, 329-355 Thin-Walled Struct., 2003

Wang, JM Chen, SY Fu, GT Hou, ZC, Group decision making - Based fuzzy pattern recognition model for lectotype optimization of offshore platforms, CHINA OCEAN ENGINEERING, 1-10 China Ocean Eng., 2003

Zhang, SH Fujikubo, M, Reliability-based optimal design for very large floating structure, CHINA OCEAN ENGINEERING, 11-19 China Ocean Eng., 2003

Gagliardi, A Martinoli, A Wauters, L Tosi, G, A floating platform: a solution to collecting pellets when cormorants roost over water, WATERBIRDS, 54-55 Waterbirds, 2003

Fujikubo, M Xiao, TY Yamamura, K, Structural safety assessment of a pontoon-type

Chen, S Fu, G, A fuzzy approach to the lectotype optimization of offshore platforms, OCEAN ENGINEERING, 877-891 Ocean Eng., 2003

Bhattacharyya, SK Sreekumar, S Idichandy, VG, Coupled dynamics of SeaStar mini tension leg platform, OCEAN ENGINEERING, 709-737 Ocean Eng., 2003

[Anon], 92mm-diameter rope for Far East floating platform, NAVAL ARCHITECT, 25-25 Nav. Archit., 2003

Nielsen, FG, Comparative study on airgap under floating platforms and run-up along platform columns, MARINE STRUCTURES, 97-134 Mar. Struct., 2003

Wallis, RJ Ali, N Barnes, P Khan, F Whitfield, O, Redevelopment of the Brighton Marine Field, Trinidad ... the early days, PETROLEUM GEOSCIENCE, 327-337 Petrol. Geosci., 2002

Augusto, OB Andrade, BL, Anchor deployment for deep water floating offshore equipments, OCEAN ENGINEERING, 611-624 Ocean Eng., 2003

Hajiyev, CM Caliskan, R, An approach to improve the offshore platform coordinates accuracy by using multichannel Kalman filtering, ISA TRANSACTIONS, 53-61 ISA Trans., 2003

Agarwal, AK Jain, AK, Dynamic behavior of offshore Spar platforms under regular sea waves, OCEAN ENGINEERING, 487-516 Ocean Eng., 2003

Agarwal, AK Jain, AK, Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves, OCEAN ENGINEERING, 517-551 Ocean Eng., 2003

Song, H Cui, WC Liu, YZ, Comparison of linear level I Green-Naghdi theory with linear wave theory for prediction of hydroelastic responses of
Wang, SQ Li, HJ Ji, CY Jiao, GY, Energy analysis for TMD-structure systems subjected to impact loading, CHINA OCEAN ENGINEERING, 301-310 China Ocean Eng., 2002

Liu, CT Qin, TY Duan, ML, Finite element analysis of deformed legs of offshore platform structures, CHINA OCEAN ENGINEERING, 311-320 China Ocean Eng., 2002

Li, HJ Wang, SQ Yang, YC Wang, Y, Vibration characteristics of an offshore platform and its vibration control, CHINA OCEAN ENGINEERING, 469-482 China Ocean Eng., 2002

Kreuzer, E Wilke, U, Mooring systems - A multibody dynamic approach, MULTIBODY SYSTEM DYNAMICS, 279-297 Multibody Syst. Dyn., 2002

Ponti, M Abbiati, M Ceccherelli, VU, Drilling platforms as artificial reefs: distribution of macrobenthic assemblages of the "Paguro" wreck (northern Adriatic Sea), ICES JOURNAL OF MARINE SCIENCE, S316-S323 ICES J. Mar. Sci., 2002

Castro, JJ Santiago, JA Santana-Ortega, AT, A general theory on fish aggregation to floating objects: An alternative to the meeting point hypothesis, REVIEWS IN FISH BIOLOGY AND FISHERIES, 255-277 Rev. Fish. Biol. Fish., 2001
Ceschini, G Mugnaini, M Masi, A, A reliability study for a submarine compression application, MICROELECTRONICS RELIABILITY, 1377-1380 Microelectron. Reliab., 2002

Vegueria, SFJ Godoy, JM Miekeley, N, Environmental impact in sediments and seawater due to discharges of Ba, Ra-226, Ra-228, V, Ni and Pb by produced water from the Bacia de Campos oil field offshore platforms, ENVIRONMENTAL FORENSICS, 115-123 Environ. Forensics, 2002

Angeles-Ch, C Mora-Mendoza, JL Garcia-Esquivel, R Padilla-Viveros, AA Perez, R Flores, O Martinez, L, Microbiologically influenced corrosion by Citrobacter in sour gas pipelines, MATERIALS PERFORMANCE, 50-55 Mater. Perform., 2002

Vegueria, SFJ Godoy, JM Miekeley, N, Environmental impact studies of barium and radium discharges by produced waters from the 'Bacia de Campos' oil-field offshore platforms, Brazil, JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 29-38 J. Environ. Radioact., 2002

Curry, R, Safety - a primary theme for all, NAVAL ARCHITECT, 31-32 Nav. Archit., 2002

Kjersem, G, Floaters in the offshore industry - a brief perspective, NAVAL ARCHITECT, 35-36 Nav. Archit., 2002

Ditlevsen, O, Stochastic model for joint wave and wind loads on offshore structures, STRUCTURAL SAFETY, 139-163 Struct. Saf., 2002

Kashiwagi, M, Wave-induced local steady forces on a column-supported very large floating structure, INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 98-104 Int. J. Offshore Polar Eng., 2002

Li, HJ Wang, SQ Ji, CY, Semi-active control of wave-induced vibration for offshore platforms by use of MR damper, CHINA OCEAN ENGINEERING, 33-40 China Ocean Eng., 2002

Anton, O Hidalgo, R Rivera, R Tomasel, FG, Simple swept-sine analyzer for excitation and measurement of dynamic response in ocean structures, OCEAN ENGINEERING, 1209-1217 Ocean Eng., 2002

Takagi, K, A theoretical approach to the slamming impact pressure acting on the

Piper, WH Meyer, MW Klich, M Tischler, KB Dolsen, A, Floating platforms increase reproductive success of common loons, BIOLOGICAL CONSERVATION, 199-203 Biol. Conserv., 2002

O' Kane, JJ Troesch, AW Thiagarajan, KP, Hull component interaction and scaling for TLP hydrodynamic coefficients, OCEAN ENGINEERING, 513-532 Ocean Eng., 2002

Kang, HG Liu, W Zhai, GJ Xu, FC Feng, S, Multi-objective fuzzy optimum design based on reliability for offshore jacket platforms, CHINA OCEAN ENGINEERING, 467-477 China Ocean Eng., 2001

Falzarano, JM Clague, RE Kota, RS, Application of nonlinear normal mode analysis to the nonlinear and coupled dynamics of a floating offshore platform with damping, NONLINEAR DYNAMICS, 255-274 Nonlinear Dyn., 2001

Cui, WC Song, H, An improved simplified method for predicting the hydroelastic response of mat-like

Wang, ZJ Li, RP Shu, Z, A study on hydroelastic response of box-type very large floating structures, CHINA OCEAN ENGINEERING, 345-354 China Ocean Eng., 2001

Chandrasekaran, S Jain, AK, Dynamic behaviour of square and triangular offshore tension leg platforms under regular wave loads, OCEAN ENGINEERING, 279-313 Ocean Eng., 2002

Kashiwagi, M Yoshida, S, Wave drift force and moment on

[Anon], Model testing of truss spar platforms at MARINTEK, NAVAL ARCHITECT, 24+ Nav. Archit., 2001

Campos, MCM Satuf, E de Mesquita, M, Intelligent system for start-up of a petroleum offshore platform, ISA TRANSACTIONS, 283-293 ISA Trans., 2001

Dong, S Li, HJ Takayama, T, Suppression of wave-excited vibration of offshore platform by use of Tuned Liquid Dampers, CHINA OCEAN ENGINEERING, 165-176 China Ocean Eng., 2001
Fang, HC Duan, ML Wu, YN Fan, XD Xu, FY, An integrated approach to fatigue life prediction of whole system for offshore platforms, CHINA OCEAN ENGINEERING, 177-184 China Ocean Eng., 2001

Marques, FCR Martins, MVM Topp, DA, Experiences in the use of ACFM for offshore platform inspection in Brazil, INSIGHT, 394-398 Insight, 2001

van Agthoven, R de Raad, JA, Ultrasonic inspection of risers - a simple and affordable alternative to self-contained pigging, INSIGHT, 399-403 Insight, 2001

Veith, E Bucherie, C Lechien, JL Jarrousse, JL Rattoni, B, Inspection of offshore flexible risers with electromagnetic and radiographic techniques, INSIGHT, 404-408 Insight, 2001

Li, HJ Hu, SLJ Takayama, T, Optimal active control of wave-induced vibration for offshore platforms, CHINA OCEAN ENGINEERING, 1-14 China Ocean Eng., 2001

Campos, MCM Satuf, E, Intelligent fuzzy system helps offshore platform start-up, OIL & GAS JOURNAL, 45-49 Oil Gas J., 2001

Smith, RJ MacFarlane, CJ, Statics of a three component mooring line, OCEAN ENGINEERING, 899-914 Ocean Eng., 2001

Deudero, S Morales-Nin, B, Surface mesozooplankton in open waters of the Western Mediterranean, OPHELIA, 1-13 Ophelia, 2001

Spencer, P, Precision handling of heavy loads, NAVAL ARCHITECT, 50+ Nav. Archit., 2001

Gudmestad, OT, Challenges in requalification and rehabilitation of offshore platforms - On the experience and developments of a Norwegian operator,

Feng, S Song, YP Zhang, RX, Optimum design of structure shape for offshore jacket platforms, CHINA OCEAN ENGINEERING, 435-445 China Ocean Eng., 2000

Kashiwagi, M, Research on hydroelastic responses of

[Anon], Petrobras installs Foundation (TM) fieldbus systems on its oil and gas offshore platform, CONTROL ENGINEERING, A9-A9 Control Eng., 2000

[Anon], Offshore platform tension string anodes, MATERIALS PERFORMANCE, 48-48 Mater. Perform., 2000

Fang, HC Duan, ML Xu, FY Shen, ZH Liu, YB, Reliability analysis of ice-induced fatigue and damage in offshore engineering structures, CHINA OCEAN ENGINEERING, 15-24 China Ocean Eng., 2000
Li, HJ Jiang, JT Cao, HS Ji, CY Takayama, T, Optimal design of TMD under long-term nonstationary wave loading, CHINA OCEAN ENGINEERING, 25-32 China Ocean Eng., 2000

Bingham, HB, A hybrid Boussinesq-panel method for predicting the motion of a moored ship, COASTAL ENGINEERING, 21-38 Coast. Eng., 2000

MacDonald, CD Mitsuyasu, CA, Regulatory setting for very large floating platforms in Hawaii, OCEAN & COASTAL MANAGEMENT, 65-85 Ocean Coastal Manage., 2000

Venkatesan, VV Leigh, N, Steam system improvement: A case study, ENERGY ENGINEERING, 16-29 Energy Eng., 1999

Niedzwiecki, JM van de Lindt, JW Gage, JH Teigen, PS, Design estimates of surface wave interaction with compliant deepwater platforms, OCEAN ENGINEERING, 867-888 Ocean Eng., 2000

Riggs, HR Ertekin, RC, Response characteristics of serially connected semisubmersibles, JOURNAL OF SHIP RESEARCH, 229-240 J. Ship Res., 1999

[Anon], Prototype floating airport, IRONMAKING & STEELMAKING, 402-402 Ironmak. Steelmak., 1999

Connell, SD, Effects of surface orientation on the cover of epibiota, BIOFOULING, 219-226 Biofouling, 1999

Danziger, BR Costa, AM Lopes, FR Pacheco, MP, Back analysis of offshore pile driving with an improved soil model, GEOTECHNIQUE, 777-799 Geotechnique, 1999

Habib, MA Said, SAM El-Hadidy, MA Al-Zaharna, I, Optimization procedure of a hybrid photovoltaic wind energy system, ENERGY, 919-929 Energy, 1999

Hornafius, JS Quigley, D Luyendyk, BP, The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions, JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 20703-20711 J. Geophys. Res.-Oceans, 1999

Qian, K Wang, YY Wang, DZ, Response characteristics of load on vessels in waves, CHINA OCEAN ENGINEERING, 301-307 China Ocean Eng., 1999

Song, YP Feng, S Kang, HG, Optimum design of jacket platforms considering structure-pile- soil interaction, CHINA OCEAN ENGINEERING, 309-316 China Ocean Eng., 1999

[Anon], Remote power systems used for unattended offshore platforms, PIPELINE & GAS JOURNAL, 10-10 Pipeline Gas J., 1999

Kral, R Kreuzer, E, Multibody systems and fluid-structure interactions with application to floating structures, MULTIBODY SYSTEM DYNAMICS, 65-83 Multibody Syst. Dyn., 1999

Li, HJ Hu, SLJ Takayama, T, The optimal design of TMD for offshore structures, CHINA OCEAN ENGINEERING, 133-144 China Ocean Eng., 1999

Gonzalez, R Carrillo, F, Analysis of the metallurgy and mechanics of the fracture in the HAZ in a submerged arc process, REVISTA DE METALURGIA, 155-165 Rev. Metal., 1999

de Rivals-Mazeres, G Yim, W Mora-Camino, F Singh, SN, Inverse control and stabilization of free-flying flexible robots, ROBOTICA, 343-350 Robotica, 1999

Wang, YY Zhu, RC Miao, J, Computation of design load and motion for floating structures navigating in waves, CHINA OCEAN ENGINEERING, 93-100 China Ocean Eng., 1999

Dyson, S, Offshore platform operations benefit from shared data access, OIL & GAS JOURNAL, 65-68 Oil Gas J., 1999

Goolsby, AD Wolfson, SL, Extended cathodic protection monitoring of an offshore platform, MATERIALS PERFORMANCE, 26-31 Mater. Perform., 1999

Yang, SG Xu, T Meng, ZY Ren, GY, Calculation of hydro-dynamic stability of the soil inside bucket in the process of bucket foundation penetration, CHINA OCEAN ENGINEERING, 427-434 China Ocean Eng., 1998

Vasconcellos, J, A decision support system for floating platform design, OCEAN ENGINEERING, 865-889 Ocean Eng., 1999

E, XQ Shao, CP Gao, YX, Study on current-random wave forces acting on a framework, CHINA OCEAN ENGINEERING, 265-274 China Ocean Eng., 1998

Whyte, D, Overcoming the fear factor: Workforce involvement and health and safety offshore, PUBLIC MONEY & MANAGEMENT, 33-40 Public Money Manage., 1998

Krouse, J, 'Virtual ocean' computer simulation - Using offshore oil technology, computer model of world's largest floating structure 'goes to sea' to test simulations, visualizations of mobile offshore base, SEA TECHNOLOGY, 64-65 Sea Technol., 1998

Pate-Cornell, ME Regan, PJ, Dynamic risk management systems: Hybrid architecture and offshore platform illustration, RISK ANALYSIS, 485-496 Risk Anal., 1998

Comeau, S Boisclair, D, Day-to-day variation in fish horizontal migration and its potential consequence on estimates of trophic interactions in lakes, FISHERIES RESEARCH, 75-81 Fish Res., 1998

Zhang, LY Hu, YC Li, XJ, Reliability-based optimum design of a simple offshore platform based on genetic algorithms, CHINA OCEAN ENGINEERING, 43-52 China Ocean Eng., 1998

Yale, GE Agrawal, BN, Lyapunov controller for cooperative space manipulators, JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 477-484 J. Guid. Control Dyn., 1998

Kjellen, U, Adapting the application of risk analysis in offshore platform design to new framework conditions, RELIABILITY ENGINEERING & SYSTEM SAFETY, 143-151 Reliab. Eng. Syst. Saf., 1998

Irving, B, Orbital tube welding boards used on offshore platforms, WELDING JOURNAL, 75-75 Weld. J., 1998

[Anon], EC adopts offshore platform dumping ban, OIL & GAS JOURNAL, 46+ Oil Gas J., 1998

Boothby, PJ Johnstone, CD, Fibre-reinforced caissons for offshore applications, COMPOSITE STRUCTURES, 141-149 Compos. Struct., 1997

Twachtman, R, Offshore-platform decommissioning perceptions change, OIL & GAS JOURNAL, 38-41 Oil Gas J., 1997

Soylemez, M, Non-linear restoring forces of an offshore platform, OCEAN ENGINEERING, 105-118 Ocean Eng., 1997

Li, HN Ma, BC, Seismic response reduction for fixed offshore platform by tuned liquid damper, CHINA OCEAN ENGINEERING, 119-125 China Ocean Eng., 1997

Couch, AT Conte, JP, Field verification of linear and nonlinear hybrid wave models for offshore tower response prediction, JOURNAL OF OFFSHORE

Deng, HZ Sun, Q, Reliability analysis for offshore platform structural systems, CHINA OCEAN ENGINEERING, 1-10 China Ocean Eng., 1997

Luo, CX Wu, ZP, Stochastic response analysis of piled offshore platform excited by stationary filtered white noise, CHINA OCEAN ENGINEERING, 29-42 China Ocean Eng., 1997

Lewis, CH Griffin, MJ, Evaluating the motions of a semi-submersible platform with respect to human response, APPLIED ERGONOMICS, 193-201 Appl. Ergon., 1997

Mitcha, JL Morrison, CE DeOliveira, JG, Concrete colossus, CIVIL ENGINEERING, 36-39 Civil Eng., 1997

Atadan, AS Calisal, SM Modi, VJ Guo, Y, Analytical and numerical analysis of the dynamics of a marine riser connected to a floating platform, OCEAN ENGINEERING, 111-131 Ocean Eng., 1997

PateCornell, ME Murphy, DM, Human and management factors in probabilistic risk analysis: The SAM approach and observations from recent applications, RELIABILITY ENGINEERING & SYSTEM SAFETY, 115-126 Reliab. Eng. Syst. Saf., 1996

Turnipseed, SP, Offshore platform cathodic protection retrofits, MATERIALS PERFORMANCE, 11-16 Mater. Perform., 1996

Murphy, DM PateCornell, ME, The SAM framework: Modeling the effects of management factors on human behavior in risk analysis, RISK ANALYSIS, 501-515 Risk Anal., 1996

PateCornell, ME, Global risk management, JOURNAL OF RISK AND UNCERTAINTY, 239-255 J. Risk Uncertain., 1996

[Anon], Wind power for offshore platforms, PIPELINE & GAS JOURNAL, 20-20 Pipeline Gas J., 1996

[Anon], Shipbuilders set megafloat schedule, AVIATION WEEK & SPACE TECHNOLOGY, 35-35 Aviat. Week Space Technol., 1996

Raine, A, ROV weld inspection - The next stage, INSIGHT, 406-409 Insight, 1996

[Anon], Cost effective way to reuse offshore platforms at new locations, PROFESSIONAL ENGINEERING, 37-37 Prof. Eng., 1996

Grinius, VG Mooney, JB Mills, TRJ, Articulated stable offshore platforms, SEA TECHNOLOGY, 63-& Sea Technol., 1996

[Anon], JAPANESE SHIPBUILDERS DEMONSTRATE MEGAFLOAT, AVIATION WEEK & SPACE TECHNOLOGY, 32-32 Aviat. Week Space Technol., 1995

[Anon], FIRST-EVER ELECTROCHLORINATION SYSTEM SUPPLIED TO VIETNAM FOR OFFSHORE PLATFORMS, MATERIALS PERFORMANCE, 45-45 Mater. Perform., 1995

HAHN, GD, CONCEDELIMA, BSLP JACOB,, EBECKEN, NFF BENJAMIN, AC, PORTABLE FORTRAN PROGRAMMING TOOLS IN THE DEVELOPMENT OF A STRUCTURAL-ANALYSIS PROGRAM, COMPUTERS & STRUCTURES, 1109-1125 Comput. Struct., 1995

58

SUCHITHRA, N KOOLA, PM, A STUDY OF WAVE IMPACT ON HORIZONTAL SLABS, OCEAN ENGINEERING, 687-697 Ocean Eng., 1995

[Anon], MEGAFLOAT SEEN AS TOKYO SAVIOR, AVIATION WEEK & SPACE TECHNOLOGY, 30-30 Aviat. Week Space Technol., 1995

ROBINSON, R, BULLWINKLES BIG BROTHER, CIVIL ENGINEERING, 4447 Civil Eng., 1995

VANDENBERG,, HENEGOUW, CNV BUISMAN, TCJ, MOSES, A PROMISING CONCEABELL, JP, THE TRIDENT EXPLOSIVES HANDLING JETTY, ROYAL NAVAL ARMAMENTS DEPOT, COULPORT - FROM CONCEDUNN, J, GIANT RIGS FACE BURIAL AT SEA, PROFESSIONAL ENGINEERING, 10-11 Prof. Eng., 1995

WEBSTER, WC, MOORING-INDUCED DAMPING, OCEAN ENGINEERING, 571-591 Ocean Eng., 1995
BOCCOTTI, P, A FIELD EXPERIMENT ON THE SMALL-SCALE MODEL OF A GRAVITY OFFSHORE PLATFORM, OCEAN ENGINEERING, 615-627 Ocean Eng., 1995

KIM, HM BARTKOWICZ, TJ SMITH, SW ZIMMERMAN, DC, HEALTH MONITORING OF LARGE STRUCTURES, SOUND AND VIBRATION, 18-21 Sound Vib., 1995

FERREIRA, JM PEREIRA, AH BRANCO, CM, A FRACTURE-MECHANICS BASED FATIGUE LIFE PREDICTION FOR WELDED- JOINTS OF SQUARE TUBES, THIN-WALLED STRUCTURES, 107-120 Thin-Walled Struct., 1995

[Anon], ADVANCED FATIGUE ANALYSIS PROGRAM FOR FIXED STEEL PLATFORMS, INSIGHT, 426-427 Insight, 1994

CHE, XL RIGGS, HR ERTEKIN, RC, COMPOSITE 2D 3D HYDROELASTIC-ANALYSIS METHOD FOR FLOATING STRUCTURES (VOL 120, J. Eng. Mech.-ASCE, 1994

HENDAWI, S FRANGOPOL, DM, SYSTEM RELIABILITY AND REDUNDANCY IN STRUCTURAL DESIGN AND EVALUATION, STRUCTURAL SAFETY, 47-71 Struct. Saf., 1994

FRANGOPOL, DM HENDAWI, S, INCORPORATION OF CORROSION EFFECTS IN RELIABILITY-BASED OKIM, MH CHEN, W, SLENDER-BODY APPROXIMATION FOR SLOWLY-VARYING WAVE LOADS IN

MENZ, V DRUDE, L SCHONIAN, U HERZUM, M BETHGE, C MAISCH, B, LOFFLER FIBROPLASTIC ENDOCARDITIS AND INFECTIVE ENDOCARDITIS SIMULTANEOUSLY, HERZ, 138-143 Herz, 1994

ANCTIL, F DONELAN, MA DRENNAN, WM GRABER, HC, EDDY-CORRELATION MEASUREMENTS OF AIR-SEA FLUXES FROM A DISCUS

HAHN, GD, INFLUENCES OF WAVE STRETCHING ON THE RESPONSE OF WAVE-EXCITED OFFSHORE PLATFORMS, OCEAN ENGINEERING, 507-5017 Ocean Eng., 1994

NADIM, F GUDMESTAD, OT, RELIABILITY OF AN ENGINEERING SYSTEM UNDER A STRONG EARTHQUAKE WITH APPLICATION TO OFFSHORE PLATFORMS, STRUCTURAL SAFETY, 203-217 Struct. Saf., 1994

LEE, CP, DRAGGED SURGE MOTION OF A TENSION LEG STRUCTURE, OCEAN ENGINEERING, 311-328 Ocean Eng., 1994

MATEER, MW KENNELLEY, KJ, DESIGNING ANODE RETROFITS FOR OFFSHORE PLATFORMS, MATERIALS PERFORMANCE, 32-34 Mater. Perform., 1994

WEN, YK, RELIABILITY-BASED DESIGN UNDER MULTIPLE LOADS, STRUCTURAL SAFETY, 3-19 Struct. Saf., 1993

VIRGIN, LN ERICKSON, BK, A NEW APPROACH TO THE OVERTURNING STABILITY OF FLOATING STRUCTURES, OCEAN ENGINEERING, 67-80 Ocean Eng., 1994

GARDNER, B WIEBE, P, OFFSHORE PLATFORMS - AN OPPORTUNITY TO CONTRIBUTE TO GLOBAL SCIENCE, MARINE TECHNOLOGY SOCIETY JOURNAL, 3-4 Mar. Technol. Soc. J., 1993

KURIAN, VJ IDICHANDY, VG GANAPATHY, C, HYDRODYNAMIC RESPONSE OF TENSION-LEG PLATFORMS - A MODEL, EXPERIMENTAL MECHANICS, 212-217 Exp. Mech., 1993

LI, YS KAREEM, A, PARAMETRIC MODELING OF STOCHASTIC WAVE EFFECTS ON OFFSHORE PLATFORMS, APPLIED OCEAN RESEARCH, 63-83 Appl. Ocean Res., 1993

WOLFE, LH BURNETTE, CC JOOSTEN, MW, HYDROGEN EMBRITTLEMENT OF CATHODICALLY PROTECTED SUBSEA BOLTING ALLOYS, MATERIALS PERFORMANCE, 14-21 Mater. Perform., 1993
HU, YR CHEN, BZ MA, JP, AN EQUIVALENT ELEMENT REPRESENTING LOCAL FLEXIBILITY OF TUBULAR JOINTS IN STRUCTURAL-ANALYSIS OF OFFSHORE PLATFORMS, COMPUTERS & STRUCTURES, 957-969 Comput. Struct., 1993

BAI, Y PEDERSEN, ERTEKIN, RC RIGGS, HR CHE, XL DU, SX, EFFICIENT METHODS FOR HYDROELASTIC ANALYSIS OF VERY LARGE FLOATING STRUCTURES, JOURNAL OF SHIP RESEARCH, 58-76 J. Ship Res., 1993

MEIMON, Y, MODELS FOR THE BEHAVIOR OF OFFSHORE STRUCTURE FOUNDATIONS .2. APPLICATIONS TO STRUCTURAL DESIGN AND

CHITRAPU, AS ERTEKIN, RC PAULLING, JR, VISCOSOUS DRIFT FORCES IN REGULAR AND IRREGULAR WAVES, OCEAN ENGINEERING, 33-55 Ocean Eng., 1993

GONIK, AA, ONCE MORE ABOUT FIRE CIRCUMSTANCES ON THE OFFSHORE PLATFORM, NEFTYANOIE KHOZYAISTVO, 42-42 Neftyanoe Khozyaistvo, 1992

THAMPI, SK NIEDZWECKI, JM, FILTER APPROACH TO OCEAN STRUCTURE RESPONSE PREDICTION, APPLIED OCEAN RESEARCH, 259-271 Appl. Ocean Res., 1992

JIANG, Q WANG, X, 3-DIMENSIONAL STOCHASTIC RESPONSE OF OFFSHORE TOWERS TO RANDOM SEA WAVES, COMPUTERS & STRUCTURES, 385-390 Comput. Struct., 1992

PATECORNELL, ME BEA, RG, MANAGEMENT ERRORS AND SYSTEM RELIABILITY - A PROBABILISTIC APPROACH AND APPLICATION TO OFFSHORE PLATFORMS, RISK ANALYSIS, 1-18 Risk Anal., 1992

SELLERS, LL NIEDZWECKI, JM, RESPONSE CHARACTERISTICS OF MULTI-ARTICULATED OFFSHORE TOWERS, OCEAN ENGINEERING, 1-20 Ocean Eng., 1992

NIEDZWECKI, JM HUSTON, JR, WAVE INTERACTION WITH TENSION LEG PLATFORMS, OCEAN ENGINEERING, 21-37 Ocean Eng., 1992
PAWLOWSKI, M, SOME INADEQUACIES IN THE STABILITY RULES FOR FLOATING PLATFORMS, NAVAL ARCHITECT, E89- & Nav. Archit., 1992

CALKINS, DJ, LONGITUDINAL FLOATING STRUCTURES - NEW CONCEBOEF, WJC, LAUNCH AND IMPACT OF FREE-FALL LIFEBOATS .1. IMPACT THEORY, OCEAN ENGINEERING, 119-138 Ocean Eng., 1992

BOEF, WJC, LAUNCH AND IMPACT OF FREE-FALL LIFEBOATS .2. IMPLEMENTATION AND APPLICATIONS, OCEAN ENGINEERING, 139-159 Ocean Eng., 1992

BEA, RG, PILE CAPACITY FOR AXIAL CYCLIC LOADING, JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 34-50 J. Geotech. Eng.-ASCE, 1992

NAKAMURA, M KOTERAYAMA, W KYOZUKA, Y, SLOW DRIFT DAMPING DUE TO DRAG FORCES ACTING ON MOORING LINES, OCEAN ENGINEERING, 283-296 Ocean Eng., 1991

OGILVY, RD CUADRA, A JACKSON,

BRITTON, JN, STRAY CURRENT CORROSION DURING MARINE WELDING OPERATIONS, MATERIALS PERFORMANCE, 30-33 Mater. Perform., 1991

NIEDZWECKI, JM WHATLEY, CP, A COMPARATIVE-STUDY OF SOME DIRECTIONAL SEA MODELS, OCEAN ENGINEERING, 111-128 Ocean Eng., 1991

IDICHANDY, VG GANAPATHY, C, MODAL PARAMETERS FOR STRUCTURAL INTEGRITY MONITORING OF FIXED OFFSHORE PLATFORMS, EXPERIMENTAL MECHANICS, 382-391 Exp. Mech., 1990

PATECORNELL, ME, ORGANIZATIONAL ASPECTS OF ENGINEERING SYSTEM SAFETY - THE CASE OF OFFSHORE PLATFORMS, SCIENCE, 1210-1217 Science, 1990

YATES, C, SCADA SYSTEMS FOR OFFSHORE PLATFORMS, CONTROL AND INSTRUMENTATION, 69-& Control Instr., 1990

[Anon], DEMOLITION AND REMOVAL OF OFFSHORE PLATFORMS, ERDOL & KOHLE ERDGAS PETROCHEMIE, 330-331 Erdol Kohle Erdgas Petrochem., 1990

VIANNA, RD DAFONSECA, CR, ANODE REPLACEMENT ON OFFSHORE PLATFORMS BY BRACELET ATTACHMENT, MATERIALS PERFORMANCE, 19-22 Mater. Perform., 1990

HAALAND, O, OFFSHORE PLATFORM DOCUMENTATION - A SYSTEMATIC-APPROACH TO SOLVING LINGUISTIC PROBLEMS IN THE NORWEGIAN OIL INDUSTRY, INTERNATIONAL FORUM ON INFORMATION AND DOCUMENTATION, 18-21 Int. Forum Inf. Doc., 1989

LANDES, SH, OFFSHORE PLATFORMS SHOULD BE DESIGNED TO THE PRICE OF OIL, WORLD OIL, 49-& World Oil, 1989

[Anon], PROCESS MONITOR SLASHES OFFSHORE PLATFORM MAINTENANCE, INTECH, 56-56 Intech, 1989

APPLEFORD, D LAVER, WG BARLTROP, NDP MIDDLETON, CI BLAIRFISH, P DAWSON, JM VANDERSTAP, ACM GLYNWOODS, DE CARRUTHERS, DR,

THIBODEAUX, J, A PLC-BASED OFFSHORE PLATFORM SHUTDOWN SYSTEM, INTECH, 18-21 Intech, 1988

WENNINK, CJ, OFFSHORE PLATFORM COLLISION EXPOSURE TO PASSING SHIPS, JOURNAL OF NAVIGATION, 212-221 J. Navig., 1988

LAVER, WG BARLTROP, NDP MIDDLETON, CI, OFFSHORE PLATFORMS - DESIGN OF 2 SOUTHERN NORTH-SEA JACKETS, PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS PART 1-DESIGN AND CONSTRUCTION, 21-41 Oil Gas J., 1987

CHAN, HSY, EARTHQUAKE RESPONSE SPECTRUM ANALYSIS OF OFFSHORE PLATFORMS, ENGINEERING STRUCTURES, 272-276 Eng. Struct., 1987

SKJONG, R MADSEN, HO, PRACTICAL STOCHASTIC FATIGUE ANALYSIS OF OFFSHORE PLATFORMS, OCEAN ENGINEERING, 313-324 Ocean Eng., 1987

ABULAZM, AG WILLIAMS, AN MAU, ST, INFLUENCE OF STRUCTURAL FLEXIBILITY AND WAVE INTERFERENCE ON DYNAMIC BEHAVIOR OF IDEALIZED OFFSHORE PLATFORM, OCEAN ENGINEERING, 233-254 Ocean Eng., 1987

LO

[Anon], WEIGHT PROBLEM AFFECTS OFFSHORE PLATFORMS, NEW SCIENTIST, 20-20 New Sci., 1986

FANG, MC KIM, CH, TWO-DIMENSIONAL ANALYSIS ON THE LATERAL DRIFTING FORCE BETWEEN 2 FLOATING STRUCTURES, JOURNAL OF SHIP RESEARCH, 194-200 J. Ship Res., 1986
FINKEL, VS FILHO, LS, APPLYING PLCS AND PCS IN OFFSHORE PLATFORM SAFETY SHUTDOWN SYSTEMS, INTECH, 61-64 Intech, 1986

ARANHA, JAP PESCE, CP, EFFECT OF THE 2ND-ORDER POTENTIAL IN THE SLOW-DRIFT OSCILLATION OF A FLOATING STRUCTURE IN IRREGULAR WAVES, JOURNAL OF SHIP RESEARCH, 103-122 J. Ship Res., 1986

KANJIKAONKAR, HB HALDAR, A RAMESH, CK, FATIGUE ANALYSIS OF OFFSHORE PLATFORMS WITH UNCERTAINTY IN FOUNDATION CONDITIONS, STRUCTURAL SAFETY, 117-134 Struct. Saf., 1986

REHAK, ML DIMAGGIO, FL SANDLER, IS, INTERACTIVE APPROXIMATIONS FOR A CAVITATING FLUID AROUND A FLOATING STRUCTURE, COMPUTERS & STRUCTURES, 1159-1175 Comput. Struct., 1985

LEONARD, JW YOUNG, RA, COUPLED RESPONSE OF COMPLIANT OFFSHORE PLATFORMS, ENGINEERING STRUCTURES, 74-84 Eng. Struct., 1985

SUNDER, SS TING, SK, FLEXIBILITY MONITORING OF OFFSHORE PLATFORMS, APPLIED OCEAN RESEARCH, 14-23 Appl. Ocean Res., 1985

CHAUDHURY, GK DOVER, WD, FATIGUE ANALYSIS OF OFFSHORE PLATFORMS SUBJECT TO SEA WAVE LOADINGS, INTERNATIONAL JOURNAL OF FATIGUE, 13-19 Int. J. Fatigue, 1985

BEA, RG HONG, ST MITCHELL, JS, DECISION-ANALYSIS APPROACH TO OFFSHORE PLATFORM DESIGN - CLOSURE, JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 236-238 J. Struct. Eng.-ASCE, 1985

LARSSON, B MELLSTROEM, R, SPECIAL STAINLESS-STEELS FOR TOPSIDE EQUIPMENT ON OFFSHORE PLATFORMS, CIM BULLETIN, 47-47 CIM Bull., 1984

DAS, PK FRIEZE, PA FAULKNER, D, STRUCTURAL RELIABILITY MODELING OF STIFFENED COMPONENTS OF FLOATING STRUCTURES, STRUCTURAL SAFETY, 3-16 Struct. Saf., 1984

KRIGER, GA PIERMATTEI, EJ WHITE, JD KING, B, RISK ANALYSIS APPLIED TO OFFSHORE PLATFORMS DURING THE UNPILED INSTALLATION PHASE, OFFSHORE, 92-92 J. Struct. Eng.-ASCE, 1983

[Anon], PROGRAMS PREDICT STRUCTURAL FATIGUE FOR OFFSHORE PLATFORMS, OIL & GAS JOURNAL, 134-134 Oil Gas J., 1983

[Anon], FLEXIBILITY MONITORING HELPS DETERMINE STRUCTURAL INTEGRITY OF OFFSHORE PLATFORMS, SOUND AND VIBRATION, 6& Sound Vib., 1983

MITCHELL, WW, EARTHQUAKE DESIGN CONSIDERATIONS FOR FIXED OFFSHORE PLATFORMS, OIL & GAS JOURNAL, 87-92 Oil Gas J., 1983

[Anon], RECOMMENDED PRACTICE - CORROSION CONTROL OF STEEL, FIXED OFFSHORE PLATFORMS ASSOCIATED WITH PETROLEUM PRODUCTION, MATERIALS PERFORMANCE, 9-36 Mater. Perform., 1983

YEE, AA, INNOVATIVE STRUCTURES - HONEYCOMB UNITS FOR BARGES AND FLOATING PLATFORMS, STRUCTURAL ENGINEERING PRACTICE, 89-93 Oil Gas J., 1982

WILL, SA, CONVENTIONAL AND DEEP-WATER OFFSHORE PLATFORMS, CIVIL ENGINEERING, 58-59 Civil Eng., 1982

CROHAS, H LEPERT, P, DAMAGE-DETECTION MONITORING METHOD FOR OFFSHORE PLATFORMS IS FIELD-TESTED, OIL & GAS JOURNAL, 94- & Oil Gas J., 1982

FURNES, O LOSET, O, SHELL STRUCTURES IN OFFSHORE PLATFORMS - DESIGN AND APPLICATION, ENGINEERING STRUCTURES, 140-152 Eng. Struct., 1981

BEA, RG AUDIBERT, JME AKKY, MR, PLATFORMS IN EARTHQUAKES .1. OFFSHORE PLATFORM ELASTIC RESPONSE IS ANALYZED, OIL & GAS JOURNAL, 135-139 Oil Gas J., 1981

CAZEAU, L, PROGRAM ANALYZES OFFSHORE PLATFORM JACKET TEMPLATE, OIL & GAS JOURNAL, 55-61 Oil Gas J., 1980

FFRENCHMULLEN, T, AN IMPRESSED CURRENT SYSTEM FOR THE PROTECTION OF OFFSHORE PLATFORMS, MATERIALS PERFORMANCE, 15-19 Mater. Perform., 1980

FINCHER, L GRIFFIN, FD, ROD PUMPS ON OFFSHORE PLATFORMS LIFT EMERAUDE FIELD PRODUCTION, OIL & GAS JOURNAL, 68-71 Oil Gas J., 1980

HAECK, RD PHELPS, B SMITH, AA, DEVELOPING CONSUMABLES AND PROCESSES FOR WORK ON OFFSHORE PLATFORMS, WELDING AND METAL FABRICATION, 441-& Mater. Perform., 1980

MODI, VJ MISRA, AK, RESPONSE OF AN INFLATABLE OFFSHORE PLATFORM TO SURFACE-WAVE EXCITATIONS, JOURNAL OF HYDRONAUTICS, 10-18 Geophysics, 1980

RODABAUGH, EC, REVIEW OF DATA RELEVANT TO THE DESIGN OF TUBULAR JOINTS FOR USE IN FIXED OFFSHORE PLATFORMS, WELDING RESEARCH COUNCIL BULLETIN, 1-83 Control Instr., 1980

BORSE, E, DESIGN BASIS ACCIDENTS AND ACCIDENT ANALYSIS WITH PARTICULAR REFERENCE TO OFFSHORE PLATFORMS, JOURNAL OF OCCUPATIONAL ACCIDENTS, 227-243 J. Sound Vib., 1979

[Anon], WORLDS TALLEST OFFSHORE PLATFORM STANDS IN 1025-FT OF WATER, CIVIL ENGINEERING, 53-53 Civil Eng., 1979

DODDS, RG, SLANT RIGS OFFER WIDER REACH FROM OFFSHORE PLATFORMS, OIL & GAS JOURNAL, 211-& Oil Gas J., 1978

GLEASON, JD, IMPRESSED CURRENT CATHODIC PROTECTION FOR LARGE OFFSHORE PLATFORMS, MATERIALS PERFORMANCE, 9-12 Mater. Perform., 1978

HASTINGS, RW OGREN, LH MABRY, MT, OBSERVATIONS ON FISH FAUNA ASSOCIATED WITH OFFSHORE PLATFORMS IN NORTHEASTERN GULF OF MEXICO, FISHERY BULLETIN, 387-402 Fish. Bull., 1976

[Anon], PARTIAL FAILURE OF A FIXED OFFSHORE PLATFORM, METAL CONSTRUCTION, 312-314 J. Eng. Ind.-Trans. ASME, 1976
WIGGINS, JH, PROBABILISTIC RESPONSE OF OFFSHORE PLATFORMS TO SEISMIC EXCITATION IN GULF OF ALASKA, GEOPHYSICS, 380-380 Geophysics, 1976

IDRISS, IM DOBRY, R POWER, MS, SOIL-RESPONSE CONSIDERATIONS IN SEISMIC DESIGN OF OFFSHORE PLATFORMS, JOURNAL OF PETROLEUM TECHNOLOGY, 244-251 J. Pet. Technol., 1976

[Anon], LARGEST OFFSHORE PLATFORMS ARE SET FOR UK NORTH-SEA, WORLD OIL, 84-& World Oil, 1972

Compendex Papers

Huang, Yen (San Tai Int Corp); Kim, M.H., Motion analysis of a new semi-dode multi-purpose offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 219-226

Suzuki, H. (Dept. of Envrn/Ocean Engr., Graduate School of Engineering, University of Tokyo), Safety target of very large floating structure used as a floating airport, Marine Structures, v 14, n 1-2, 2001, p 103-113

Tajima, Hirohisa (Electronic Navigation Research Inst.); Asakura, Michihiro, Flight experiments of DGPS approaches and landings on a megafloat airport model, Transactions of the Japan Society for Aeronautical and Space Sciences, v 45, n 147, May, 2002, p 66-68

Takagi, K. (Dept. of Naval Arch. Ocean Eng., Osaka University); Nagayasu, M., Hydroelastic behavior of a mat-type very large floating structure of arbitrary geometry, Oceans Conference Record (IEEE), v 3, 2001, p 1923-1929
Ma, Q.W. (Dept. of Mechanical Engineering, University of College London); Patel, M.H., On the non-linear forces acting on a floating spar platform in ocean waves, Applied Ocean Research, v 23, n 1, February, 2001, p 29-40

Zueck, Robert (Naval Facilities Engineering Service Cent); Palo, Paul; Taylor, Robert; Remmers, Gene, Mobile offshore base: Research spin-offs, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 10-16

Bender, William J. (Central Washington Univ); Ayyub, Bilal M., Assessment of the construction feasibility of the mobile offshore base, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 34-41

Takaki, M. (Faculty of Engineering, Hiroshima University, Department of Naval Architecture); Lin, X., Statistical study of working conditions on construction of a very large floating structure in Tokyo bay, Marine Structures, v 14, n 1-2, 2001, p 59-68

Ohmatsu, Shigeo (Ship Research Inst); Takai, Ryuzo; Sato, Hiroshi, On the wind and current forces acting on a ultra large floating platform, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 1, n Part A, 1995, p 475-481

Falzarano, Jeffrey M. (School of Naval Architecture, University of New Orleans); Clague, Robert E.; Kota, Ravikiran S., Application of nonlinear normal mode analysis to the nonlinear and coupled dynamics of a floating offshore platform with damping, Nonlinear Dynamics, v 25, n 1-3, July, 2001, p 255-274

Kagemoto, Hiroshi (Univ of Tokyo); Fujino, Masataka; Zhu, Tingyao, On the estimation method of hydrodynamic forces acting on a very large floating structure, Applied Ocean Research, v 19, n 1, Feb, 1997, p 49-60

Wang, Z. (School of Naval Arch. and Ocean Eng., Shanghai Jiao Tong University); Li, R.; Shu, Z., A study on hydroelastic response of box-type very large floating structures, China Ocean Engineering, v 15, n 3, 2001, p 345-354

Shibuta, Shigeto (Sumitomo Heavy Industries, Ltd); Kado, Masaharu; Negayama, Hiroshi; Sato, Chiaki, Principal design concept for 1000-m class floating experimental model, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 35-42

Hara, Shoichi (Ship Research Inst); Yamakawa, Kenji; Hoshino, Kunihiro; Yukawa, Kazuhiro, At-sea towing of mega-float unit, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 26-33

Okamura, Hideo (Ship Research Center of Japan), Prospect of Mega-Float, Theoretical and Applied Mechanics, v 50, 2001, p 3-9

Yoshimoto, Hirofumi, At-sea measurements of directional wave spectra. 1st Report. Study of the measuring technique, Senpaku Gijutsu Kenkyusho Hokoku/Papers of Ship Research Institute, v 26, n 5, Sep, 1989, p 101-120

Fogel, Lawrence J. (ORINCON Corp, San Diego, CA, USA), Evaluating alternative very large floating structures, Oceans (New York), v 2, Ocean Technologies and Opportunities in the Pacific for the 90's, 1991, p 1106-1108

Inoue, Yoshiyuki (Yokohama Natl Univ); Zhang, Xuangang; Tabeta, Shigeru, Numerical study of the hydrodynamic forces on huge floating structures in waves and ocean currents, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 221-228

Deitz, Dan, Modeling a virtual ocean, Mechanical Engineering, v 120, n 5, May, 1998, p 66-68

Krouse, John (Mechanical Dynamics Inc), `Virtual Ocean' computer simulation, Sea Technology, v 39, n 11, Nov, 1998, p 64-65

Mantrom, David D. (Lawrence Livermore Natl Lab); Jones, Holger E.; Chambers, David H., Near-surface current meter array measurements of internal gravity

Ismail, Raafat E.S. (Alexandria Univ), Coupled free vibration analysis of module-linked floating structures using Fe-Be combination method, AEJ - Alexandria Engineering Journal, v 37, n 4, Jul, 1998, p C75-C84

Sueoka, Hidetoshi (Mitsubishi Heavy Industries, Ltd); Sato, Chiaki, Phase II research of mega-float, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 10-16

Korsmeyer, Tom (Massachusetts Inst of Technology); Klemas, Tom; White, Jacob; Phillips, Joel, Fast hydrodynamic analysis of large offshore structures, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 27-34

Utsunomiya, Tomoaki (Kyoto Univ); Watanabe, Eiichi; Eatock Taylor, Rodney, Wave response analysis of a box-like VLFS close to a breakwater, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4331, 8pp

Fujikubo, Masahiko (Graduate School of Engineering, Hiroshima University); Xiao, Tao-Yun; Yamamura, Kazuhiro, Structural safety assessment of pontoon-type VLFS considering damage of breakwater, Proceedings of the International

Takagi, Ken (Osaka Univ); Kohara, Katsuyuki, Application of the ray theory to hydroelastic behavior of VLFS, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 72-77

Kashiwagi, M. (Research Inst. for Applied Mechanics, Kyushu University); Yoshida, S., Wave drift force and moment on VLFS supported by a great number of floating columns, International Journal of Offshore and Polar Engineering, v 11, n 3, September, 2001, p 176-183

Kashiwagi, Masashi (Kyushu Univ); Furukawa, Chie, Mode-expansion method for

Kashiwagi, Masashi (Kyushu Univ), Wave drift force and moment on a VLFS supported by a great number of floating columns, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 49-56

Kim, Jang Whan (Univ of Hawaii at Manoa); Ertekin, R. Cengiz, Hydroelastic response of mat-type VLFS: effects of non-zero draft and mass assumptions, Oceans Conference Record (IEEE), v 1, 2000, p 541-547

Yoshimoto, Hirofumi (Ship Research Inst); Hoshino, Kunihiro; Ohmatsu, Shigeo; Ikebuchi, Tetsuro, Slamming load acting on a very large floating structure, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 233-240

Murai, Motohiko (Univ of Tokyo); Zhu, Tingyao; Kagemoto, Hiroshi; Fujino, Masataka, Hydrodynamic and hydroelastic analyses of a very large floating structure in waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 171-178

Torii, Tadashi (Civil Engineering & Marine Construction Div); Ohkubo, Hiroshi; Hayashi, Nobuyuki; Matsuoka, Kazumi; Kanai, Hisashi, Development of a very large floating structure, Nippon Steel Technical Report, n 82, Jul, 2000, p 23-34

Watanabe, Eiichi (Kyoto Univ); Utsunomiya, Tomoaki; Tanigaki, Shinkichi, Transient response analysis of a Very Large Floating Structure by Finite Element Method, Structural Engineering/Earthquake Engineering, v 15, n 2, Oct, 1998, p...

Irani, Mehernosh B. (Texas A&M Univ); Rouckout, Thomas; Johnson, Robert P., Dynamics of a spar platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 261-268

Takagi, Ken (Dept. Naval Archi./Ocean Eng., Osaka University), Hydroelastic response of a very large floating structure in waves-a simple representation by the parabolic approximation, Applied Ocean Research, v 24, n 3, June, 2002, p 175-183

Wang, Dayan (Univ of Hawaii at Manoa); Riggs, H. Ronald; Ertekin, R. Cengiz, Three-dimensional hydroelastic response of a very large floating structure, Proceedings of the First International Offshore and Polar Engineering Conference, 1991, p 399-408

Du, S.; Ertekin, R. C., Dynamic response analysis of a flexibly joined, multi-module very large floating structure, Oceans (New York), v 3, Ocean Technologies and Opportunities in the Pacific for the 90's, 1991, p 1286-1293

Wang, Zhi-Jun (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiaotong Univ.); Li, Run-Pei; Shu, Zhi, Hydroelastic response of box-typed very large floating structure in irregular waves, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, v 35, n 10, October, 2001, p 1477-1480

Yoo, Hyungsuk (Univ of Texas at Austin); Weggel, David C.; Powers, Edward J.; Roesset, Jose M., First- and second-order wave forces on a large spar platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 215-220

Phan, T.S. (Ship Science, School of Engineering Sciences, University of Southampton); Temarel, P., Hydroelastic responses of pontoon and semi-submersible types of very large floating structure in regular head waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 2, 2002, p 753-763

Wang, Minglun (Univ of Hawaii at Manoa); Du, Shuangxing; Cengiz Ertekin, R., Hydroelastic response and fatigue analysis of a multi-module Very Large Floating Structure, Fatigue Fract Steel Concr Struct ISFF 91 Proc, 1991, p 1277-1291

Takagi, Ken (Osaka Univ); Shimada, Kiyoshi; Ikebuchi, Tetsuro, Anti-motion device for a very large floating structure, Marine Structures, v 13, n 4-5, Jul, 2000, p 421-436

Ikoma, Tomoki; Maeda, Hisaaki; Rheem, Chang-Kyu, Slowly varying wave drifting force on a very large floating structure in short crested waves, Oceans Conference Record (IEEE), v 1, 2000, p 533-539

Wang, Zhi-Jun (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiaotong Univ.); Li, Run-Pei; Shu, Zhi, Effect of structural stiffness on hydroelastic response of box-typed very large floating structure, Chuan Bo Li Xue/Journal of Ship Mechanics, v 7, n 1, February, 2003, p 56-62

Hirayama, T. (Yokohama Natl Univ); Ma, N., Dynamic response of a very large floating structure with active pneumatic control, Proceedings of the International

Source: Offshore, v 57, n 7, 1997, p 85, Jacking system for spar assembly: Heavy lift push-up system used for assembly of spar platform hull sections is ideal for high winds regions of globe,

Koike, Takeshi (Construction Materials Cent); Hiromoto, Takashi; Sato, Chiaki, Seismic response analysis of very large floating structure and dolphin system, Kawasaki Steel Technical Report, n 39, Oct, 1998, p 79-83

Maeda, Hisaaki (Univ of Tokyo); Ikoma, Tomoki; Masuda, Koichi; Rheem, Chang-Kyu, Time-domain analyses of elastic response and second-order mooring force on a very large floating structure in irregular waves, Marine Structures, v 13, n 4-5, Jul, 2000, p 279-299

Girard, Anouck (Univ of California at Berkeley); Misener, James; Sousa, Jaao; Hedrick, Karl, Control and evaluation of mobile offshore base operations, Proceedings of SPIE - The International Society for Optical Engineering, v 3693, 1999, p 87-97

Lin, Woei-Min (Science Applications Int Corp); Treakle, Thomas; Weems, Kenneth; Zhang, Sheguang, Air gap predictions of a Mobile Offshore Base (MOB)

Spry, Stephen (Univ of California); Hedrick, Karl, Centralized control strategy for a Mobile Offshore Base, Proceedings of the American Control Conference, v 2, 1999, p 1482-1486

Rognnaas, G. (Aker Maritime ASA); Xu, J.; Lindseth, S.; Rosendahl, F., Mobile offshore base concepts concrete hull and steel topsides, Marine Structures, v 14, n 1-2, 2001, p 5-23

Nichelson, John T. (Univ of San Diego), Case for a floating airport, Sea Technology, v 31, n 11, Nov, 1990, 3p

Inoue, Yoshiyuki; Arai, Makoto; Tabeto, Shigeru; Nakazawa, Kazuhiro; Zhang, Xuangang; Takei, Yasumasa, Dynamic behaviors of a floating airport and its

Hajiyev, Chingiz M. (Istanbul Technical University, Aero. and Astronautics Engineering); Caliskan, Fikret, An approach to improve the offshore platform coordinates accuracy by using multichannel Kalman filtering, ISA Transactions, v 42, n 1, January, 2003, p 53-61

Derstine, Mark S. (Atlantic Research Corp); Brown, Richard T., Compliant connector concept for the mobile offshore base, Marine Structures, v 13, n 4-5, Jul, 2000, p 399-419

Yokoi, R. (Nihon Univ, Funabashi, Jpn); Noguchi, T., SOME TECHNICAL PROBLEMS OF THE SEA-PLANE AIRFIELD AND FLOATING AIRPORT., Springer-Verlag, 1985, p 723-727, pn

Blair, A.N. (Ctr. for Tech. and System Mgmt., Dept. of Civil and Envrm. Engr., University of Maryland); Ayyub, B.M.; Bender, W.J., Fuzzy stochastic risk-based decision analysis with the mobile offshore base as a case study, Marine Structures, v 14, n 1-2, 2001, p 69-88

Spry, S.C. (Dept. of Mechanical Engineering, University of California); Empey, D.M.; Webster, W.C., Design and characterization of a small-scale azimuthing
thruster for a mobile offshore base module, Marine Structures, v 14, n 1-2, 2001, p 215-229

Ramsamooj, D.V. (Dept. of Civil Engineering, California State University); Shugar, T.A., Prediction of fracture-based fatigue life of connectors for the mobile offshore base, Marine Structures, v 14, n 1-2, 2001, p 197-214

Lee, Seok-Won; Webster, W.C., Preliminary to the design of a hydroelastic model of a floating airport, Proc Int Conf Hydroelasticity Marine Technol, 1994, p 351

Kawai, Masoto; Toyota, Masanobu; Kida, Akihiro; Inoue, Ken-ichi, Structure and construction of the unit-A, which is a component of the floating airport model for the MEGA-FLOAT R & D program phase I, Yosetsu Gakkai Shi/Journal of the Japan Welding Society, v 69, n 4, Jun, 2000, p 53

Maeda, Hisaaki; Washio, Yukihisa; Osawa, Hiroyuki; Rheem, Chang-Kyu; Ikoma, Tomoki; Onishi, Yasushi; Arita, Mamoru, Hydro-elastic response reduction system of a very large floating structure with wave energy absorption devices, Oceans Conference Record (IEEE), v 1, 2000, p 527-531

Datta, Bisuddha (Omega Marine Inc); Cortex, A.J.; Zwiebel, Klaylea, Designs lower shallow-water offshore platform costs, Oil and Gas Journal, v 87, n 22, May 22, 1989, p 85-86, 88

Xin-Yuan, Qi (China Ship Scientific Research Center), Experimental study on behavior of an open bottom floating platform in wave, wind and current, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1994, p 334-337

Yoshimoto, Hirofumi (Univ of Newcastle upon Tyne); Ikebuchi, Tetsuro; Ohmatsu, Shigeo; Incecik, Atilla, Stochastic prediction of slamming loads on a very large floating structure with shallow draft, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4334, 7pp

Lu, Jianhui (Engineering College, Ocean University of Qingdao); Ma, Hailong; Li, Dezhong; Li, Yusheng, Viscoelastic damper and its position optimization for vibration control of an offshore platform, Process in Safety Science and Technology Part A, v 3, 2002, p 468-473

Regin, T. (Naval Facilities Engineering Command); O'Boyle, T., U.S. Naval Facilities Offshore Platform Inspection, Maintenance, Repair and Rehabilitation Program, Civil Engineering in the Oceans V, 1992, p 531-545

de Campos, Mario Cesar (Petrobras S.A.); Satuf, Eduardo; de Mesquita, Marcello, Start-up automation of a petroleum offshore platform, Proceedings - SPE Annual Technical Conference and Exhibition, v PI, 2000, p 295-299

Xinyuan, Qi (China Ship Scientific Research Cent), Behaviour of an open bottom floating platform in wave, wind and current, Chuan Bo Li Xue/Journal of Ship Mechanics, v 2, n 2, Apr, 1998, p 8-12

Nakamura, Masahiko (Kyushu Univ); Koterayama, Wataru; Kajiwara, Hiroyuki; Mitamura, Tomohiro, Application of a dynamic positioning system to a moored floating platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1994, p 190-197

Fang Huacan (East China Petroleum Inst, Dongying, China); Chen Zhenxin, EXPERIMENTAL RESEARCH OF FATIGUE CRACK PROPAGATION OF OFFSHORE PLATFORM JOINTS UNDER RANDOM LOADING., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 3, 1988, p 341-347

Suzuki, Hideyuki (Univ of Tokyo); Yasuzawa, Yutaka; Fujikubo, Masahiko; Okada, Shinzo; Endo, Hisayoshi; Hattori, Yoichi; Okada, Hiroo; Watanabe, Yoshiyasu; Morikawa, Masao; Ozaki, Masahiko; Minoura, Munehiko; Manabe, Hide; Iwata, Setsuo; Sugimoto, Hironori, Structural response and design of large scale floating structure, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 131-137

Huang, Xiang-Lu (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiaotong Univ.); Chen, Xiao-Hong; Fan, Ju, Calculation of the motion of a moored floating structure by using second order frequency domain method, Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, v 35, n 10, October, 2001, p 1470-1476

Koterayama, Wataru (Kyushu Univ); Mizuoka, Hiroo; Takatsu, Naoyuki; Ikebuchi, Tetsuro, Field experiments and numerical prediction on dynamics of a light floating structure moored in deep ocean, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1997, p 533-540

Mason, A.B. (Chevron Oil Field Research Co); Ullmann, R.R., Experimental

Yamamoto, Ikuo; Terada, Yuuzi; Yokokura, Kozo, An application of a position keeping control system to floating offshore platform, IECON Proceedings (Industrial Electronics Conference), v 3, 1991, p 1867-1872

Koterayama, Wataru (Kyushu Univ); Mizuoka, Hiroo; Takatsu, Naoyuki; Ikebuchi, Tetsuro, Field experiments and numerical prediction on dynamics of a light floating structure moored in deep ocean, International Journal of Offshore and Polar Engineering, v 7, n 4, Dec, 1997, p 254-261

Bayazitoglu, Y.O. (Brown & Root USA Incorp); Kwok, P.H.; Stelly, C.W., Offshore platform deck analysis under dynamic loads due to rotating equipment, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 38, Offshore and Arctic Operations - 1991, 1991, p 67-73

Fan, Ju (Shanghai Jiao Tong Univ); Chen, Xiaohong; Huang, Xianglu, On the contribution of the mooring system to the damping of the slow oscillation of moored floating structure, Proceedings of the International OTRC Symposium, Ocean Wave Kinematics, Dynamics and Loads on Structures, 1998, p 147-154
Wisch, D. J. (Texaco USA, New Orleans, LA, USA); Hadj-Hamou, T., RELIABILITY OF OFFSHORE PLATFORM PILE DESIGN - A CASE STUDY., Earthquake Engineering Research Inst, 1986, p 797-808

Imm, Gary R. (Amoco Production Co); O'Connor, Patrick E.; Light, James M., Inelastic response of an offshore platform in Hurricane Andrew, Proc Struct Congr 94, 1994, p 7-12

Larrabee, Richard D. (Shell Oil Co); Moses, Fred, Resolving reliability issues for an offshore platform code, Probab Methods Civ Eng Proc 5th ASCE Spec Conf, 1988, p 464-467

Yu, Jianxing (School of Civil Engineering, Tianjin University); Li, Cheng; Qian, Shushan, Risk analysis of the mobile offshore platform system, Process in Safety Science and Technology Part B, v 3, 2002, p 857-860

Koike, Takeshi (Kawasaki Steel Corp); Hiramoto, Takashi; Mori, Hiroyumi, Seismic risk analysis of mega-floating structure and dolphin system, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 2, Safety and Reliability, 1997, p 289-296

Hong, Sa Y. (Korea Research Inst of Ships and Ocean Engineering); Hong, Sup, Motion simulation of a floating structure coupled with mooring lines, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1996, p 349-355

Muragishi, Osamu (Kawasaki Heavy Industries, Ltd); Kawasaki, Takumi; Yoshikawa, Takao; Kada, Kazuo; Fujita, Takuya; Kohsaka, Akira, Damage analysis of super large floating structure in airplane collision, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 1999, p 482-489

Jang, Jing-Jong (Natl Taiwan Ocean Univ); Lee, Chiou-Shui, Wind-induced dynamic response of offshore platform structures, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1999, p 558-565

Muragishi, Osamu (Kawasaki Heavy Industries Ltd); Sano, Atsushi; Yoshikawa, Takao; Taniguchi, Tomokazu; Kohsaka, Akira, Damage analysis of super large floating structure mega-float in engine nacelle collision, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 85-90

Li, Hua-Jun (College of Engineering, Ocean University of Qingdao); Wang, Shu-Qing; Yang, Yong-Chun; Wang, Yan, Vibration characteristics of an offshore platform and its vibration control, China Ocean Engineering, v 16, n 4, December, 2002, p 469-482

Kawano, Kenji (Kagoshima Univ); Venkataramana, K.; Yamada, Yoshikazu; Iida, Takeshi, Random dynamic response analysis of offshore platform, Proc First Int Offshore Polar Eng Conf, 1991, p 84-89

Sawaragi, Toru (Osaka Univ, Dep of Civil Engineering, Suita, Jpn); Nochino, Masao, TWO DIMENSIONAL RESPONSES OF FIXED OFFSHORE PLATFORM IN WAVES., Applied Ocean Research, v 7, n 3, Jul, 1985, p 140-151

Takaki, Mikio (Hiroshima Univ); Gu, Xiechong, Wave-induced motions of a very large floating structure in quartering seas, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 277-284

Ohmatsu, Shigeo (Ship Research Inst); Onkawa, Yutaka; Sugloka, Hiroshi; Yamaguchi, Masaki, Motion responses in directional waves of prototype floating platform 'POSEIDON', Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, n pt A, Offshore Technology, 1992, p 197-206

Takaki, Mikio (Hiroshima Univ); Gu, Xiechong, Motion response of a mat-like floating structure in waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 147-154

Kinoshita, T. (Univ of Tokyo); Takaiwa, K., Time domain simulation of slow drift motion of a moored floating structure in irregular waves including time varying slow motion hydrodynamic forces, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, n pt A, 1990, p 199-204
Liu, Xiaodong (Iwate Univ); Sakai, Shigeki, Nonlinear analysis on the interaction of waves and flexible floating structure, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 101-108

Chu, Liangcheng (Dalian Univ of Technology); Qu, Naisi; Guo, Yonggang; Lu, Min, Perturbation analysis of the attached water mass effect on offshore platform dynamic response, China Ocean Engineering, v 7, n 4, 1993, p 369-382

Hyakudome, Tadahiro (Kyushu Univ); Nakamura, Masahiko; Kajiwara, Hiroyuki; Koterayama, Wataru, H infinity control of slow drift oscillation of moored floating platform with thrusters, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1998, p 338-345

Khurana, S. (Brown & Root Inc); Jones, G.; Bayazitoglu, Y.O., Structural simulation effect on fatigue life prediction of fixed offshore platform, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 58, Offshore and Arctic Operations, 1994, p 31-37

Kim, Do-Sam (Korea Maritime Univ); Iwata, Koichiro, Nonlinear interaction of second order stokes waves and two-dimensional submerged moored floating structure, International Journal of Offshore and Polar Engineering, v 4, n 2, Jun, 1994, p 89-96

Machado, Remo Z. (Petrobras R&D Cent); Mourelle, Marcio M.; Franciss, Ricardo; Silva, Renato M.; Lima, Cesar S.; Eisenberg, Robert; Oliveira, Danilo, Monitoring program for the first steel catenary riser installed in a moored floating platform in deep water, Oceans Conference Record (IEEE), v 2, 1999, p 801-810

Tsai, W. H. (Advanced Technology & Research Inc, Laurel, MD, USA); Kung, D. N.; Yang, J. C. S., APPLICATION OF SYSTEM IDENTIFICATION TECHNIQUE TO DAMAGE DETECTION AND LOCATION IN OFFSHORE PLATFORM., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, 1988, p 77-84
Norton, David J. (Tex A&M Univ, College Station, USA); Wolff, Christian V., MOBILE OFFSHORE PLATFORM WIND LOADS., Proceedings - Annual Offshore Technology Conference, v 4, 1981, p 77-88

Campo, Juan J. (McDermott Inc); Sanzgiri, Sunil M.; Moore, Gordon H., Offshore platform foundation design and special structural provisions for significant soil subsidence, Proc Second Int Offshore Polar Eng Conf, 1992, p 352-358

Natvig, B. J. (Aker Engineering A/S, Oslo, Norw); Kirkvik, R. H., LINEARIZATION OF FLOATING PLATFORM MOTION RESPONSE., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, 1985, p 102-113

Roitman, Ney (COPPE - Federal Univ of Rio de Janeiro); Viero, Paula F.; Magluta, Carlos; Rosa, Luis Fernando Lomba, Identification of fixed offshore platform damage using numerical simulation, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-1465, 8pp

Ishiyama, Toshio (Nippon Kokan KK, Tokyo, Jpn); Nogami, Yuichi; Fujimori, Takashi, SCADA SYSTEM FOR OFFSHORE PLATFORM., Nippon Kokan Technical Report Overseas, n 46, Sep, 1986, p 168-175

Jin, Wei-Liang (Zhejiang Univ); Li, Hai-Bo; Song, Zhi-Gang, Mathematical model for offshore platform structural vibration by sea ice, Proceedings of the International Offshore and Polar Engineering Conference, v 2, 1999, p 553-558

Du, Yuan-Long (Chinese Acad of Sciences, Shenyang, China); Zou, Chun-Xian, RELATIONSHIP BETWEEN THE PROPAGATION RATE OF LOCALIZED CORROSION AND THE ELECTRODE POTENTIAL OF LOCAL ANODE OF STEELS FOR OFFSHORE PLATFORM., Key Eng Mat, v 20-28, n pt 1-4, 1987,
1p

Stevenson, A. W. (Oceaneering Int, Aberdeen, Scotl); Sleveland, A., DAMAGED BRACE ON OFFSHORE PLATFORM REPLACED USING HYPERBARIc WELDING. PART 2 - REPAIR PROCEDURE., Metal Construction, v 16, n 1, Jan, 1984, p 23-25

Morooka, Celso K. (State Univ of Campinas - Unicamp); Yokoo, Irineu H., Behaviour of a floating platform with marine riser in directional waves, Proc Second Int Offshore Polar Eng Conf, 1992, p 628-635

Bea, Robert G. (Woodward-Clyde Consult, Houston, Tex), RELIABILITY CONSIDERATIONS IN OFFSHORE PLATFORM CRITERIA, ASCE J Struct Div, v 106, n 9, Sep, 1980, p 1835-1853

Du, Yuan-Long (Chinese Acad of Sciences, Shenyang, China); Zou, Chun-xian, RELATIONSHIP BETWEEN THE PROPAGATION RATE OF LOCALIZED CORROSION AND THE ELECTRODE POTENTIAL OF LOCAL ANODE OF STEELS FOR OFFSHORE PLATFORM., Key Eng Mat, v 20-28, n pt 1-4, 1987, pt 4, p 3063-3069

Lewis, R.E. (Kvaerner Earl & Wright Inc), Improved lightweight bottom-founded

Guill, A. W. (Union Carbide Corp, Polyolefins Div, Danbury, Conn, USA), UNIPOL POLYETHYLENE PLANT ON A FLOATING PLATFORM: ONE YEAR LATER., Energy Progress, v 3, n 3, Sep, 1983, p 185-188

Chiostrini, Sandro (Univ of Florence); Vignoli, Andrea, Structural integrity monitoring of an offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 1994, p 528-533

Modi, V. J. (Univ of BC, Vancouver, Can); Misra, A. K., RESPONSE OF AN INFLATABLE OFFSHORE PLATFORM TO SURFACE WAVE EXCITATIONS., Journal of Hydronautics, v 14, n 1, Jan, 1980, p 10-18

Kawano, Kenji (Kagoshima Univ); Komasa, Takahiro; Miyazaki, Yoshiaki; Hashimoto, Tutomu, Dynamic response analyses of offshore platform with buoyancy type large members, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1996, p 176-181

Kawano, Kenji (Kagoshima Univ); Venkataramana, Katta; Hashimoto, Tutomu, Seismic response effects on large offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 1999, p 528-535

Ueda, Hiroki (Kobe Steel, Ltd); Kato, Minoru; Sugimoto, Akio; Sugimoto, Rie; Okada, Toru; Inoue, Yoshio, Vibration analysis of super large floating structure (Mega-Float), Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4310, 7pp

Moritz, Charles T. (Collaboration in Science and Technology Inc); Bommer, Arno S., Valve noise on an offshore platform, Proceedings - National Conference on

Ueda, Hiroki; Okada, Toru; Imanishi, Etsujiro; Kato, Minoru, Vibration analysis of super-large floating structure (mega-float), R&D: Research and Development Kobe Steel Engineering Reports, v 48, n 2, Sep, 1998, p 22-25

Campos, M.C.M. (Petrobras/CENPES, Cidade Universitaria); Satuf, E.; De Mesquita, M., Intelligent system for start-up of a petroleum offshore platform, ISA Transactions, v 40, n 3, 2001, p 283-293

Kawano, Kenji (Kagoshima Univ); Venkataramana, Katta; Hashimoto, Tutomu; Taniguchi, Tomoyo, Dynamic response analysis of semi float type offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 1997, p 485-492

Ibarra, S. (Amoco Corp); Reed, R.L.; Smith, J.K.; Pachniuk, I.; Grubbs, C.E.,

Li, Hua Jun (College of Engineering, Ocean University of Qingdao); Hu, Sau-Lon; Jakubiak, Christopher, H₂ active vibration control for offshore platform subjected to wave loading, Journal of Sound and Vibration, v 263, n 4, Jun 12, 2003, p 709-724

Zhang, Lianying (Tianjin Univ); Hu, Yunchang; Li, Xiangjing, Reliability-based optimum design of a simple offshore platform based on genetic algorithms, China Ocean Engineering, v 12, n 1, 1998, p 43-52

Dong, S. (College of Engineering, Ocean University); Li, H.; Takayama, T., Suppression of wave-excited vibration of offshore platform by use of tuned liquid dampers, China Ocean Engineering, v 15, n 2, 2001, p 165-176

Bea, Robert G. (Woodward-Clyde Consult, Houston, Tex); Audibert, Jean M. E.; Akky, M. R., PLATFORMS IN EARTHQUAKES EM DASH 1. OFFSHORE PLATFORM ELASTIC RESPONSE IS ANALYZED., Oil and Gas Journal, v 79, n 10, Mar 9, 1981, p 135-139

Fukuda, I. (Nihon Univ, Tokyo, Jpn); Hotta, K.; Kato, W., EXPERIMENTAL STUDY ON WIND LOADS ACTING ON THE LARGE FLOATING STRUCTURE., Springer-Verlag, 1985, p 319-326

Magluta, Carlos (COPPE / UFRJ - Civil Engineering Dep); Lomba Rosa, Luiz Fernando; Roitman, Ney, Modal parameter estimation of a small scale model of

Hopfe, H. H., EXTRACTION OF OCEAN WAVE ENERGY BY MEANS OF A CONSTRAINED FLOATING PLATFORM EM DASH POWER EFFICIENCY STUDY I., AIChE Symposium Series, v 2, Discuss, 1980, p S1.1-S1.14

Kashiwagi, M. (Kyushu University), Wave-induced local steady forces on a column-supported very large floating structure, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2001, p 264-271

Ricles, James M. (Lehigh Univ); Bruin, William M.; Sooi, Took kowng, Residual strength and repair of dent-damaged tubulars and the implication on offshore platform reassessment and requalification, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 2, 1994, p 179-189

Abul-Azm, A. G. (Univ of Houston, Houston, TX, USA); Williams, A. N.; Mau, S. T., INFLUENCE OF STRUCTURAL FLEXIBILITY AND WAVE
INTERFERENCE ON DYNAMIC BEHAVIOR OF IDEALIZED OFFSHORE PLATFORM., Ocean Engineering (Pergamon), v 14, n 3, 1987, p 233-254

Kashiwagi, Masashi (Research Institute Applied Mechanics, Kyushu University), Wave-induced local steady forces on a column-supported very large floating structure, International Journal of Offshore and Polar Engineering, v 12, n 2, June, 2002, p 98-104

Green, W. L. (McDermott Inc, New Orleans, La, USA); Campo, J. J.; Parker, J. E.; Miller, J. B.; Miles, J. B., WAVE ENERGY CONVERSION WITH AN OSCILLATING WATER COLUMN ON A FIXED OFFSHORE PLATFORM., Journal of Energy Resources Technology, Transactions of the ASME, v 105, n 4, Dec, 1983, p 487-491

Ozaki, M. (Nagasaki Research & Development Cent); Sonoda, K.; Fujioka, Y.; Tsukamoto, O.; Komatsu, M., Sending CO$_2$ into deep ocean with a hanging pipe from floating platform, Energy Conversion and Management, v 36, n 6-9, Jun-Sep, 1995, p 475-478

Masuda, Koichi (Nihon Univ); Maeda, Hisaaki; Takamura, Hiroaki; Bessho, Masatosi, Research on prediction method for time history elastic response of very large floating structure by sea shock loads, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 792-799

Atadan, A.S. (Dep of Electrical and Electronics Engineering); Calisal, S.M.; Modi, V.J.; Guo, Y., Analytical and numerical analysis of the dynamics of a marine riser connected to a floating platform, Ocean Engineering (Pergamon), v 24, n 2, Feb, 1997, p 111-131

Eskijian, Martin L. (California State Lands Commission), Offshore platform
structural verification and requalification. The regulator's viewpoint of aging platforms, Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management, v 1, 1991, p 792-806

Twachtman, Ron (Twachtman Snyder & Byrd Inc), Offshore-platform decommissioning perceptions change, Oil and Gas Journal, v 95, n 49, Dec 8, 1997, p 38-41

Thibodeaux, Jim (Kerr-McGee Corp), PLC-based offshore platform shutdown system, InTech, v 35, n 12, Dec, 1988, p 18-21

Anon, Process monitor slashes offshore platform maintenance, InTech, v 36, n 6, Jun, 1989, p 56

Spencer, L. Clay (Brown & Root USA Incorp); Prasad, R., Optimizing operations for offshore platform fabrication, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 38, Offshore and Arctic Operations - 1991, 1991, p 57-62

Brooks, Allen M. (Shell Int Exploration and Production, Inc); Digre, Kris A.,

Murakami, Noritaka (Tamano Consultants Co. Ltd); Iwata, Koichiro; Kim, Do-Sam, Topographical change around submerged moored-floating structure under wave action. Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1996, p 554-559

Ghanaat, Yusof (ISEC Inc, San Francisco, Calif, USA); Clough, Ray W.,
SHAKING TABLE STUDY OF A TUBULAR OFFSHORE PLATFORM FRAME., Technical Chamber of Greece, v 6, 1982, p 279-289

Mackinnon, J. A. (Natl Engineering Lab, UK); Welsh, N.; Nimmo, W. M., STRUCTURAL STIFFNESS CHECKS ON A SECTION OF AN OFFSHORE PLATFORM., British Soc for Strain Measurement, 1985, 18p

Zhao, Yin (Nanjing Hydraulic Research Inst, Nanjing, China); Chen, Zhongyi; Ke, Renqun, VIBRATION TESTING AND DYNAMIC ANALYSIS OF OFFSHORE PLATFORM MODELS., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, 1988, p 85-89

Tanaka, Yoshihiro (Taisei Corp); Motora, Yutaro; Furukawa, Keizo; Nakamura, Takaaki, Double-OWC wave power extractor of a taut moored floating structure, Proc First Int Conf Ocean Energy Recovery ICOER 89, 1989, p 121-128

Wagner, Peter (Bilfinger * Berger Bauaktienges, Ger), PLANUNG UND ERPROBUNG EINES SPANNBETON-GELENKTURMS ALS GROSSMODELL EINER OFFSHORE-PLATTFORM FUR GROSSE WASSERTIEFEN. (Planning and Testing of Reinforced Concrete Hinged Tower as a Large Model of an Offshore Platform for Deep Water.), Vortraege auf dem Betontag (Deutscher Beton-Verein), 1982, p 300-313

Boccotti, Paolo (Univ of Reggio-Calabria), Field experiment on the small-scale model of a gravity offshore platform, Ocean Engineering (Pergamon), v 22, n 6, Aug, 1995, p 615-627

George, T. J. (Australian Iron & Steel Pty, Port Kembla, Aust); Chipperfield, C. G. Publication date: 1985, p 251-255, IMPACT OF DESIGN AND SERVICE REQUIREMENTS ON THE SPECIFICATION OF OFFSHORE PLATFORM

Takemiya, Hirokazu; Goda, Kazuya; Iida, Takeshi; Nakazato, Takuzo, 3-DIMENSIONAL SEISMIC RESPONSES OF A GRAVITY-TYPE STEEL OFFSHORE PLATFORM WITH EMPHASIS ON SOIL-STRUCTURE INTERACTION., Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, v 8, n 391, Mar, 1988, p 56-63

Mendes, Antonio C. (Universidade da Beira Interior); Kishev, Roumen; Chaplin, John R.; Tomchev, Stefan, Experimental determination of the hydrodynamic loading on a model of offshore platform in waves and current, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 196-203

Kato, Shunji, ON THE SIMULATIONS OF SLOW DRIFT MOTIONS AND MOORING FORCES OF A MOORED FLOATING PLATFORM IN RANDOM WAVES., Senpaku Gijutsu Kenkyusho Hokoku/Papers of Ship Research Institute, v 25, n 2, Mar, 1988, p 35-79

Meidinger, Karl-Heinz (Siemens AG, Karlsruhe, West Ger), TELEPERM M AND SIMATIC S5 IN A PROCESS CONTROL SYSTEM FOR AN OFFSHORE
Nelson, James K. Jr. (Texas A&M Univ, Civil Engineering Dep, College Station, Tex, USA); Graff, William J., METHOD TO EVALUATE THE CONSEQUENCES OF MEMBER FAILURE IN JACKET-TYPE OFFSHORE PLATFORM STRUCTURES., Lecture Notes in Control and Information Sciences, 1984, p 480-489

Ou, Jin-Ping (Harbin Inst. of Technol.); Duan, Zhong-Dong; Wang, Gang, Parametric analysis and response simulation of self-excited ice-induced vibration of offshore platform structures, Gongcheng Lixue/Engineering Mechanics, v 18, n 5, October, 2001, p 8-17+35

Harneshaug, I. S. (Norsk Hydro Oil & Gas Group, Porsgun, Norw); Valland, G.; Gundersen, K.; Roland, M., HAZ FRACTURE TOUGHNESS IN LOW CARBON, CONTROLLED ROLLED AND ACCELERATED COOLED STEEL USED IN NORTH SEA OFFSHORE PLATFORM STRUCTURES., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 3, 1988, p 181-189

Source: Compressed Air, v 99, n 3, Apr-May, 1994, p 8, Retired offshore platform's legacy,

Cochran, Jerry (Reynolds Metals Co, Conroe, Tex, USA), OFFSHORE PLATFORM CATHODIC PROTECTION OPTIMIZATION VIA COMPUTER USE OF CLASSICAL EQUATIONS., NACE, 1984, 252, 18p

Visser, Robert C. (Belmar Engineering), Offshore platform accidents: their effect on regulations and industry standards, Proceedings of the International Offshore
Huval, Malcolm (Arabian American Oil Co, Dhahran, Saudi Arabia); Duckworth, W. H., OFFSHORE PLATFORM INSTRUMENT SYSTEMS FOR TIM-BUC-TO., Advances in Instrumentation, v 38, n pt 2, 1983, p 1065-1071

Dunn, F. P. (Shell Oil Co), OFFSHORE PLATFORM INSPECTION., Natl Academy Press, 1984, p 199-220

Dyson, Simon (MDC Technology Ltd), Offshore platform operations benefit from shared data access, Oil and Gas Journal, v 97, n 19, May, 1999, p 65-68

Li, Huai-Feng; Han, Jian-Guo; Li, Yan-Qin; Jin, Sheng-Zhen, Based air-floating platform simulation technology, Xitong Fangzhen Xuebao / Journal of System Simulation, v 15, n 5, May, 2003, p 667

Ellis, Norman (Conoco (UK) Ltd, London, Engl), TENSION LEG FLOATING PLATFORM., Courses and Lectures - International Centre for Mechanical Sciences, n 283, 1985, p 167-205

Mackenzie, Ian (Peter Brotherhood Ltd), Compressor helps extend offshore platform life, Diesel & Gas Turbine Worldwide, n Suppl, Jul-Aug, 1995, 2pp

Sawaragi, Toru (Osaka Univ, Jpn); Nakamura, Takayuki, DYNAMIC ANALYSIS OF OFFSHORE PLATFORM RESPONSE TO IN-LINE AND LIFT FORCE., Coastal Engineering in Japan, v 23, Dec, 1980, p 159-177

Shi, Z. (Register of Shipping); Yang, X.; Lin, S., Progressive collapse of offshore platform damaged members, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, n 8th, 1989, p 677-682

Keim, Walter (CorrOcean); Strommen, Roe; Jelinek, Jiri, Computer modeling in offshore platform CP systems, Materials Performance, v 27, n 9, Sep, 1988, p 25-28

Collins, Michael P.; Vecchio, Frank J.; Selby, Robert G.; Gupta, Pawan R., Failure of an offshore platform, Canadian Consulting Engineer, v 41, n 2, Mar, 2000, p 43

Stevenson, A. W. (Oceaneering Int, Aberdeen, Scotl); Sleveland, A., DAMAGED BRACE ON OFFSHORE PLATFORM REPLACED USING HYPERBARIC WELDING. PART 1 - PREPARATION., Metal Construction, v 15, n 12, Dec, 1983, p 720, 722-723

Collins, Michael P. (Univ of Toronto); Vecchio, Frank J.; Selby, Robert G.; Gupta, Pawan R., Failure of an offshore platform, Concrete International, v 19, n 8, Aug, 1997, p 28-35

Powell, Graham (SSD Inc, Berkeley, CA, USA); Schricker, Vahid; Row, Dennis; Hollings, Jeff; Sause, Richard, ICE-STRUCTURE INTERACTION OF AN OFFSHORE PLATFORM., ASCE, 1985, p 230-238

Hara, Shoichi (Ship Research Inst); Yamakawa, Kenji; Kokubun, Kentaroh; Iwai, Masami, Towing experiment of box-shaped floating structure with shallow draft, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 5-14

McKeown, D. (British Oxygen Co Murex, Waltham Cross, Hertfordshire, Engl), SELECTION OF CONSUMABLES FOR OFFSHORE PLATFORM CONSTRUCTION., Institution of Metallurgists (Course Volume), Series 3, n 18, 1981, p 251-258

Karsan, Demir I. (Conoco Inc); Kumar, Ashok, Fatigue failure paths for offshore platform inspection, Journal of Structural Engineering, v 116, n 6, Jun, 1990, p 1679-1695

Yang, J. C. S. (Univ of Maryland, Dep of Mechanical Engineering, College Park,
Md, US); Chen, J.; Tsai, W. H.; Aggour, M. S., DYNAMIC CHARACTERISTICS AND RESPONSE OF OFFSHORE PLATFORM SCALE MODELS ON PILE FOUNDATIONS., ASME, 1983, p 89-95

Grigoropoulos, G.J.; Florios, N.S.; Loukakis, T.A., Transient waves for ship and floating structure testing, Applied Ocean Research, n 9, Sept, 1994, p 71

Gilbert, D.L. (Exxon Co USA); Mayhew, R.E., Safety initiatives enhance integrity of offshore platform operations, Proceedings - SPE Annual Technical Conference and Exhibition, v Pi, 1992, SPE 24776, p 133-144

Campos, M.C.M. (Petrobras CENPES); Satuf, E., Intelligent fuzzy system helps offshore platform start-up, Oil and Gas Journal, v 99, n 13, Mar 26, 2001, p 45-
Aldridge, T.R. (Fugro Ltd), Current and future developments in offshore platform foundations, Structural Engineer, v 75, n 5, Mar 4, 1997, p 78-85

Hartnett, Michael (Trinity Coll); Mullarkey, Thomas; Keane, Gerard, Modal analysis of an existing offshore platform, Engineering Structures, v 19, n 6, Jun, 1997, p 487-498

Schillmoller, C. M. (VDM Technologies Corp, Houston, Tex, USA); Jasner, M. R., HIGH PERFORMANCE ALLOYS FOR OFFSHORE PLATFORM PROCESS PIPING., Materials Performance, v 23, n 1, Jan, 1984, p 45-53

Vasconcellos, J. (Federal Univ of Rio de Janeiro), Decision support system for floating platform design, Ocean Engineering (Pergamon), v 26, n 9, Oct, 1999, p 865-889

Shimoda, Naokatsu (Gikenkogyo Co Ltd); Murakami, Noritaka; Iwata, Koichiro, Beach erosion control by submerged floating structure, Proceedings of the Coastal Engineering Conference, v 3, 1991, p 2740-2753

Li, C. S. (Natl Taiwan Univ, Taipei); Tsai, M. L., STRUCTURAL DAMPING OF AN OFFSHORE PLATFORM STRUCTURE., Chin Inst of Civ and Hydraul EngRepub of China, 1980, p 485-496

Bessyo, Kiyoshi; Arimochi, Kazushige; Tsukamoto, Masatoshi; Konda, Noboru; Fujimoto, Mitsuharu, HIGH STRENGTH STEEL PLATES FOR OFFSHORE PLATFORM FOR DEEP AND COLD SEA., Sumitomo Metals, v 39, n 4, Oct, 1987, p 337-354

Moses, F. (Case Western Reserve Univ), Global approach for reliability based
offshore platform codes, International Symposium on Integrity of Offshore Structures, 1990, p 137

Grossweiler, Philip J. (Exxon Co, USA), CONVERSION OF TUG/BARGE TO OFFSHORE PLATFORM SHUTTLE TANKER SERVICE., Marine Technology, v 18, n 3, Jul, 1981, p 285-296

Seidl, L. H.; Winkler, R. S., Illustrative conceptual design of a very large floating platform, Oceans (New York), v 3, Ocean Technologies and Opportunities in the Pacific for the 90's, 1991, p 1294-1300

McConvey, Michael G. (Alfa-Laval Inc, USA); Esquerdeiro, Luis J., DIESEL FUEL TREATMENT FOR GAS TURBINES ON OFFSHORE PLATFORM., Diesel & Gas Turbine Worldwide, v 19, n 1, Jan, 1987, p 60-62
Davidson, L.W. (Seaborne Information Technologies); Woodbury, Susan K., Physical environmental services in support of the Hibernia offshore platform towout and installation, Oceans Conference Record (IEEE), v 2, 1997, p 1308-1313

Liu, Xiaodong (Iwate Univ); Sakai, Shigeki, Analysis on the interaction of waves with flexible floating structure by BE-FE combined method, Proceedings of the Coastal Engineering Conference, v 2, 1997, p 2548-2559

Black, J.L., Method for determining damping coefficients on an offshore platform, Publ by A.A. Balkema, 1993, p 1175

Ruotolo, Romualdo (Politecnico di Torino); Surace, Cecilia; Worden, Keith, Application of two damage detection techniques to an offshore platform, Proceedings of the International Modal Analysis Conference - IMAC, v 1, 1999, p 882-886

Anon, CONCRETE - THE COST EFFECTIVE ALTERNATIVE FOR FLOATING PLATFORM CONSTRUCTION?, Marine Engineers Review, Oct, 1987, p 32-34

Liping, Sun (Harbin Shipbuilding Engineering Inst); Weiyang, Li, Dynamic response of ship collisions with floating platform, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, n 8th, 1989, p 653-656

Kimm, M. H. P. (Mobil North Sea Ltd, Aberdeen, Scotl); Langlands, D., GAS TURBINE INTAKE FILTER SYSTEMS RELATED TO OFFSHORE PLATFORM INSTALLATIONS., American Society of Mechanical Engineers (Paper), 1985,

Anon, MITSUBISHI VERTICAL-TYPE ELECTRIC ANCHOR WINDLASS FOR OFFSHORE PLATFORM., Technical Review - Mitsubishi Heavy Industries, v 24, n 1, Feb, 1987, p 83-84

Sun, Qin (Northwest Polytechnical Univ); Deng, Hongzhou; Liu, Jian'an, Probability evaluation on reserve strength of offshore platform, Shiyou Xuebao/Acta Petrolei Sinica, v 18, n 4, 1997, p 101-105

Goolsby, A.D. (Shell Oil Products Co); Wolfson, S.L., Extended cathodic protection monitoring of an offshore platform, Materials Performance, v 38, n 4, 1999, 6p

Rehak, Margareta L. (Weidlinger Associates, New York, NY, USA); DiMaggio, Frank L.; Sandler, Ivan S., INTERACTIVE APPROXIMATIONS FOR A CAVITATING FLUID AROUND A FLOATING STRUCTURE., Computers and Structures, v 21, n 6, 1985, p 1159-1175

Ruotolo, R.; Surace, C.; Worden, K., Application of two damage detection techniques to an offshore platform, Shock and Vibration Digest, v 32, n 1, Jan, 2000, p 30-31

Ma, Ning (Yokohama Natl Univ); Hirayama, Tsugukiyo, Hydroelastic responses of two types of very large floating structure, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 211-218

Kobayashi, Eiichi (Nagasaki Research & Development Cent); Minamiura, Junichi; Ueshima, Hideki; Hikai, Akio, Experimental study on the environmental impact of huge floating structure, Technical Review - Mitsubishi Heavy Industries, v 36, n 2, Jun, 1999, p 34-37

Liu, Chuntu (Inst. of Mech., Chinese Acad. of Sci.); Qin, Taiyan; Duan, Menglan, Finite element analysis of deformed legs of offshore platform structures, China Ocean Engineering, v 16, n 3, September, 2002, p 311-320

Khan, R.H. (Memorial Univ of Newfoundland); Walsh, J.; Benoit, J.R., Over-the-horizon target detection from a floating platform, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 4, n 8, 1989, p 221-228

Chen, Qiang (Peking Univ); Gu, Zhifu; Sun, Tianfeng; Song, San, Wind environment over the helideck of an offshore platform, Journal of Wind Engineering and Industrial Aerodynamics, v 54-55, Feb, 1995, p 621-631

Battista, Ronaldo C. (COPPE-Federal Univ of Rio de Janeiro); Alves, Rosane M., Active control of heave motion for TLP type offshore platform under random waves, Proceedings of SPIE - The International Society for Optical Engineering, v 3671, 1999, p 184-193

Source: ENR (Engineering News-Record), v 240, n 6, Feb 9, 1998, p 20, Steel from Shell's Brent Spar offshore platform to be recycled in Norway as a jetty,

Zhang, Shu-Hua; Fujikubo, Masahiko, Reliability-based optimal design for very
large floating structure, China Ocean Engineering, v 17, n 1, March, 2003, p 11

Kjellen, Urban (Norsk Hydro ASA), Adapting the application of risk analysis in offshore platform design to new framework conditions, Reliability Engineering & System Safety, v 60, n 2, May, 1998, p 143-151

Li, Runpei; Chen, Weigang; Gu, Yongning, Static analysis of collision strength of offshore platform, China Ocean Engineering, v 10, n 1, 1996, p 45

Guha, S.; Sayer, P.G., Wave energy in drift control of offshore platform,

Soylemez, Muhittin (Istanbul Technical Univ), Non-linear restoring forces of an offshore platform, Ocean Engineering (Pergamon), v 25, n 2-3, Feb-Mar, 1998, p 105-118

Pate-Cornell, M.-Elisabeth (Stanford Univ); Regan, Peter J., Dynamic risk management systems: Hybrid architecture and offshore platform illustration, Risk Analysis, v 18, n 4, Aug, 1998, p 485-496

Finnigan, Timothy D. (Chevron Oil Field Research Co), Current blockage effects on model-scale offshore platform, Civil Engineering in the Oceans V, 1992, p 294-310

Crouse, C.B. (Dames & Moore, Inc), Seismic exposure and site response characteristics for offshore platform design, Offshore Technology Conference, Annual Proceedings, v 2, 1996, p 757-761

Gong, Weiming (Southeast Univ); Jiang, Yongsheng; Mu, Baogang; Qiu, Hongxing, Drivability analysis of steel pipe pile of offshore platform, Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, v 22, n 2, Mar, 2000, p 227-230

Wang, Zhaojing; Zhang, Ling, Experimental study on superficial sliding of a new type of offshore platform, China Ocean Engineering, v 10, n 1, 1996, p 121

Alves, Rosane M. (Federal Univ of Rio de Janeiro); Batista, Ronaldo C., Active/passive control of heave motion for TLP type offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 332-338

Chen, Guoming; Wang, Weidong; Xu, Fayan, Statistical properties of fracture toughness of welded joint used for offshore platform, Shiyou Daxue Xuebao/Journal of the University of Petroleum China, v 20, n 2, Apr, 1996, p 54

Bolze, Dorene (Natl Audubon Soc); Lee, Mercedes, Offshore oil and gas development. The ecological effects beyond the offshore platform, Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management, v 2, n pt2, 1989, p 1920-1934

Guill, A. W. (Union Carbide Corp), 'W' PLANT OPTION - A UNIPOL POLYETHYLENE PLANT ON A FLOATING PLATFORM., AIChe, 1982, 52G, 8p

Guill, A. W. (Union Carbide Corp, Polyolefins Div, Danbury, Conn, USA), 'W' PLANT OPTION: A UNIPOL POLYETHYLENE PLANT ON A FLOATING PLATFORM ONE YEAR LATER., American Institute of Chemical Engineers, National Meeting, 1983, 21E, 12p

Yilmaz, O. (Univ of Glasgow); Incecik, A., Non-linear dynamic interaction between mooring systems and a floating structure under environmental forces, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 1, n pt B, 1990, p 337-344

Yang, J. C. S. (Univ of Md, College Park, USA); Aggour, M. S.; Chen, J., INFLUENCE OF FOUNDATION TYPE OF DYNAMIC RESPONSE OF AN OFFSHORE PLATFORM MODEL., A. A. Balkema, v 1, 1982, p 17-30

Hou, H. -S. (Natl Taiwan Univ, Taipei, Taiwan); Li, C. S., FREQUENCY RESPONSE OF NONLINEAR WAVE FREQUENCY LOAD ON THE OFFSHORE PLATFORM STRUCTURE., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, 1987, p 303-309

Kudo, Kimiaki (Japan Marine Science & Technology Cent, Yokosuka, Jpn); Kinoshita, Atsushi; Ikoma, Nobuyasu, DESIGN OF THE TENSION MOORING SYSTEM FOR THE PROTOTYPE FLOATING PLATFORM., Oceans (New York), 1986, p 244-250

Elkins, Hugh L. (Hydril Co); Adamek, Frank C., Development and application of a shear-ram tubing-head system for increased offshore platform safety, SPE Production Engineering, v 3, n 4, Nov, 1988, p 551-557

Galano, Luciano; Spadaccini, Ostilio; Vignoli, Andrea, Study on the correlation between structural and environmental data of an offshore platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1995, p 207

Takatani, Tomiya; Maeno, Yoshi-hiko; Hiraishi, Tetsuya; Takayama, Tomotsuka, Dynamic response of friction anchor with end bearing plate for mooring system of floating structure, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1995, p 430

Zhao, Deting, Equivalent simplifying of tower structure and its application in overall analysis of offshore platform, China Ocean Engineering, v 9, n 4, 1995, p 365

Elkins, H. L. (Hydril Co); Adamek, F. C., DEVELOPMENT AND APPLICATION OF A SHEAR RAM TUBING-HEAD SYSTEM FOR INCREASED OFFSHORE PLATFORM SAFETY., Society of Petroleum Engineers of AIME, (Paper) SPE, 1984, 8p

Chavez, Mario (CISIND); Hopper, David; Roberts, Robert; Bea, Robert; Valdes, Victor, Development and application of risk evaluation methods for a Bay of Campeche offshore platform, Offshore Technology Conference, Annual Proceedings, v 3, Construction & Installation/Field Drilling and Development Systems, 1997, OTC 8696, p 133-142

Soylemez, Muhittin (Istanbul Technical Univ); Incecik, Atilla, Identification of non-linear effects in predicting the motion response of an offshore platform, Ocean Engineering (Pergamon), v 24, n 8, Aug, 1997, p 695-715

Wang, Minglun; Du, Shuangxing; Ertekin, R. Cengiz, Hydroelastic response and fatigue analysis of a multi-module very large floating structure, Proceedings of the Fatigue and Fracture in Steel and Concrete Structures, 1992, p 1277

Liu, Xiaodong (Iwate Univ); Sakai, Shigeki, Be-Fe combined method for analysis on the dynamic response of large-scale floating structure to random waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 203-209

Kinoshita, T. (Univ of Tokyo); Takaiwa, Numerical and physical simulation of slow drift motion of a moored floating structure in waves, International Symposium on Integrity of Offshore Structures, 1990, p 85

Jia, Xinglan (Univ of Petroleum); Fang, Huacan, Extension rate of low-

Matsuoka, K. (Ministry of Transport, Mitaka, Jpn); Naoi, T.; Oka, S.; Arita, K., COLLAPSE STRENGTH OF STIFFENED CYLINDRICAL SHELL FOR BUOYANCY ELEMENT OF LARGE-SCALE FLOATING STRUCTURE., Springer-Verlag, 1985, p 337-344 , pn

Parker, M.E. (Exxon Co); Henkhaus, E.J., High Island A-343 'A' and 'B'. A case history of offshore platform abandonment and artificial reef planning, Society of Petroleum Engineers of AIME, (Paper) SPE, v PI, Production Operations and Engineering, 1989, p 19709 91-100

Kagemoto, Hiroshi (Univ of Tokyo); Fujino, Masataka; Murai, Motohiko, Theoretical and experimental predictions of the hydroelastic response of a very large floating structure in waves, Applied Ocean Research, v 20, n 3, Jun, 1998, p 135-144

Garcia, Ana Cristina Bicharra (Universidade Federal Fluminense); de Andrade, Joper Cezar; Rodrigues, Rogerio Ferreira; Moura, Ricardo, ADDVAC: applying active design documents for the capture, retrieval and use of rationale during offshore platform VAC design, Innovative Applications of Artificial Intelligence - Conference Proceedings, 1997, p 986-991

Stewani, G., Non-linear structural dynamics by the pseudo-force influence

Yang, J. C. S. (Univ of Md, College Park); Dagalakis, N.; Hirt, M., APPLICATION OF THE RANDOM DECREMENT TECHNIQUE IN THE DETECTION OF AN INDUCED CRACK ON AN OFFSHORE PLATFORM MODEL., American Society of Mechanical Engineers, Applied Mechanics Division, AMD, v 37, 1980, p 55-67

Kirk, R. Gordon (Ingersoll-Rand Co, Phillipsburg, NJ, USA); Simpson, Mark, FULL LOAD SHOP TESTING OF 18,000-hp GAS TURBINE DRIVEN CENTRIFUGAL COMPRESSOR FOR OFFSHORE PLATFORM SERVICE: EVALUATION OF ROTOR DYNAMICS PERFORMANCE., NASA Conference Publication, 1985, p 1-13

Fang, Huacan (East China Petroleum Inst, China); Dong, Shouping; Chen, Zhenxin, STUDY ON SOME PROBLEMS IN THE CALCULATIONS OF CORROSION FATIGUE LIFE OF STRUCTURAL MEMBERS OF AN OFFSHORE PLATFORM., Society of Petroleum Engineers of AIME, (Paper) SPE, v 1, 1986, p 371-378

Maeda, Hisaaki (Nihon University); Ikoma, Tomoki; Masuda, Koichi; Rheem, Chang-Kyu, Hydroelastic behaviors of large aircushion supported elastic floating structures in regular waves, Oceans Conference Record (IEEE), v 3, 2002, p 1792-1799

Isobe, Eiichi (Technological Research Assoc of Mega-Float), Corroborative research on the use of mega-float as airport, Oceans Conference Record (IEEE), v 2, 1999, p 868-872

Takaishi, Yoshifumi (Nihon Univ); Minemura, Koji; Masuda, Koichi, Experimental study on relative motion and shipping water of mega-float structure, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4335, 8pp

Takaki, Mikio (Hiroshima Univ); Lin, Xin; Gu, Xiechong, Elastic responses of two adjacent mat-like structures in waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4330, 9pp

Ikoma, Tomoki (Dept. of Oceanic Arch. and Eng., College of Science and Technology, Nihon University); Masuda, Koichi; Maeda, Hisaaki; Rheem, Chang-Kyu, Hydroelastic behavior of air-supported flexible floating structures, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 2, 2002, p 745-752

Wang, Suqin (Univ of Hawaii at Manoa); Ertekin, R.C.; Riggs, H.R., Computationally efficient techniques in the hydroelasticity analysis of very large floating structures, Computers and Structures, v 62, n 4, Feb, 1997, p 603-610

Inoue, Kiyoshi (Hitachi Zosen Corp), Mega Float: Achievements to date and ongoing plan of research, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 1-9

Inoue, Kiyoshi (Hitachi Zosen Corp), Global static analysis system for mega-float, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 77-84

Kyozuka, Y. (Kyushu University); Yamaguchi, S., Variability of water quality due to the location of a mega float in Tokyo Bay, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2001, p 176-182

Liu, Xiaoqing (Univ of Hawaii at Manoa); Ertekin, R. Cengiz; Riggs, H. Ronald; Xia, Dingwu, Mean wave drift loads on connected multiple semisubmersible modules, Proceedings of the International Conference on Offshore Mechanics
and Arctic Engineering - OMAE, 1998, OMAE98-0320, 10pp

Kaeding, Patrick (Graduate School of Engineering, Hiroshima University); Fujikubo, Masahiko, New simplified model for collapse analysis of stiffened plates and its application to offshore structures, International Journal of Offshore and Polar Engineering, v 12, n 2, June, 2002, p 126-133

Ikebuchi, Tetsuro (Kawasaki Heavy Industries); Nagamatsu, Nobuo; Taketomi, Takayuki, Development of visual simulation technique for elastic behavior of a Mega-Float using computer graphics, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 51-56

Nakagawa, Hiroyuki (Akishima Lab (Mitsui Zosen), Inc); Omori, Hideyuki; Hikai, Akio; Kyoizuka, Yusaku, Prediction of marine environmental change by installation of Mega-Float in a bay, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 57-64

Fischer, F. Joseph (Shell E&P Technology Co); Gopalkrishnan, Ram, Some observations on the heave behavior of spar platforms, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-0603, 6pp

Fissel, D.B. (ASL Environmental Sciences Inc.); Marko, J.R.; Melling, H., Identifying "skylites" for AUV operations under pack ice: Insights from ice-draft profiling by moored sonar, Oceans Conference Record (IEEE), v 1, 2002, p 17-22

Li, Huajun (College of Engineering, Ocean University of Qingdao); Ji, Chunyan; Liu, Zhen, Optimal design of active mass dampers for offshore structures, Process in Safety Science and Technology Part A, v 3, 2002, p 383-387

Fujino, Masataka (Univ of Tokyo); Tabeta, Shigeru; Kyozuka, Yusaku; Ohkawa, Yutaka, Measurement of marine environment around mega-float model in Tokyo Bay, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 47-54

Hung, Chen-Far (Dept. of Eng. Sci. and Ocean Eng., National Taiwan University); Ko, Wen-Jiunn; Peng, Yen-Tun, Identification of dynamic characteristics of structures using vector backward auto-regressive model, Structural Engineering and Mechanics, v 15, n 3, March, 2003, p 299-314

Pettersen, E. (Moss Maritime), SeaBase [trademark], the flexible alternative, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2001, p 212-216

Bruce, Robert D. (Collaboration in Science and Technology Inc); McKinney, Eric V., Noise criteria for ships and offshore platforms, Proceedings - National

Takaki, Mikio (Hiroshima Univ); Tango, Yoshihiko, Wave drifting force on very large floating structures, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1994, p 377-384

Wiltsie, E. A. (Aramco, Saudi Arabia); Stevens, R. F.; Vines, W. R., PILE INSTALLATION ACCEPTANCE IN STRONG SOILS., A. A. Balkema, 1985, p 72-78

Seymour, R. J. (Scripps Inst of Oceanography, La Jolla, CA, USA); Spiess, F. N., LARGE COLUMN-SUPPORTED FLOATING PLATFORMS., Springer-Verlag, 1985, p 629-636, pn

Skaug, I.C. (Spars Int Inc), New designs advance spar technology into deeper water, Oil and Gas Journal, v 96, n 44, Nov 2, 1998, 6p

Moan, Torgeir (Norwegian Univ of Science and Technology), Recent research and development relating to platform requalification, Journal of Offshore Mechanics and Arctic Engineering, Transactions of the ASME, v 122, n 1, Feb, 2000, p 20-32

Ikoma, Tomoki (Univ of Tokyo); Maeda, Hissaki; Masuda, Koich, Effects of

Anam, Iftekhar (Dept. of Civil/Environmental Eng., The Univ. of Asia Pacific); Roesset, Jose M., Effect of nonlinear wave kinematics on dynamic response of spars, Journal of Engineering Mechanics, v 128, n 9, September, 2002, p 925-934

Grinius, Victor G. (Offshore Model Basin); Mooney, J. Brad; Mills, Trevor R.J., Articulated stable offshore platforms, Sea Technology, v 37, n 4, Apr, 1996, 4pp

Huang, Weiping (College of Engineering, Ocean University of Qingdao); Yang, Yongchun; Li, Huajun, Measurement of excessive vibration of a jacket platform, Process in Safety Science and Technology Part A, v 3, 2002, p 502-506

Lee, Griff C. (McDermatt Inc, New Orleans, La, USA), DESIGN AND CONSTRUCTION OF DEEP WATER JACKET PLATFORMS., Mechanical Engineering, v 105, n 4, Apr, 1983, p 26-36

Martinez, Mauricia (INTEVEP, S.A.); Quijada, Peggy, Experimental modal analysis in offshore platforms, Proceedings of the International Modal Analysis Conference - IMAC, v 1, 1991, p 213-218

Michel, Walter H. (Friede & Goldman Ltd), SYNTHESE: FLOATING OFFSHORE PLATFORMS - PROBLEMS AND PRESCRIPTIONS, FROM DESIGN TO INSPECTION., Natl Academy Press, 1984, p 328-348

Takaki, Mikio (Hiroshima Univ); Tango, Yoshihiko, Wave drifting forces on very large floating structures, International Journal of Offshore and Polar Engineering, v 5, n 3, Sept, 1995, p 204-211

Robison, Rita, Bullwinkle's big brother, Civil Engineering (New York), v 65, n 7, Jul, 1995, p 44-47

Bilic, Damir (Brodogradiliste Viktor Lenac, OOUR Brodogradnja, Rijeka, Yugosl), MONTAZA I ZAVARIVANJE SEKCIJA STUPOVA PLATFORME ZA ISTRAZIVANJE PODMORJA. (Assembling and Welding of Sections of Legs for the Offshore Platform.), Zavarivanje (Zagreb), v 27, n 1, Jan-Feb, 1984, p 37-44

Paulling, J.R. (Univ of California); Tyagi, Sushil, Multi-module floating ocean structures, Marine Structures, v 6, n 2-3, 1993, p 187-205

Chen, Xiaohong (Shanghai Jiao Tong Univ); Huang, Xianglu, Motion response of a moored semi-submersible platform in waves, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1996, p 356-362

Pu, Yumei (Maanshan Iron and Steel Co.); Li, Zhongyi, Optimization of process parameters for improving low temperature transverse toughness of H beams, Kang T'ieh/Iron and Steel (Peking), v 37, n 3, March, 2002, p 52-54

Kato, Shunji (Ministry of Transport); Ohmatsu, Shigeo; Sekita, Kinji; Yamaguchi, Masaki, Wave loading on a prototype cylinder, Proc Second Int Offshore Polar Eng Conf, 1992, p 406-416

Masuda, Yoshio (Rykusheisha Co, Jpn); McCormick, Michael E., EXPERIENCES IN PNEUMATIC WAVE ENERGY CONVERSION IN JAPAN., ASCE, 1987, p 1-33

O'Kane, James J. (Dept. of Naval Arch./Marine Eng., University of Michigan); Troesch, Arwin W.; Thiagarajan, Krish P., Hull component interaction and scaling for TLP hydrodynamic coefficients, Ocean Engineering, v 29, n 5, Jan 21, 2002, p 513-532

Zhang, Xi-Cheng (Dalian Inst of Technology, Dalian, China); Wu, You-Sheng; Xu, Dao-Lin, HYDROELASTIC RANDOM RESPONSE AND DECOMPOSED MATRIX PERTURBATION METHOD OF PLATFORMS., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, 1988, p 363-368

Hong, Sup (Korea Research Inst of Ships and Ocean Engineering); Hong, Sa Y., Effects of mooring line dynamics on position keeping of a floating production system, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 336-341

Nakamura, Masahiko (Kyushu Univ); Kajiwara, Hiroyuki; Koterayama, Wataru, Model experiments on thruster assisted mooring system controlled by H infinity controller, Proceedings of the International Offshore and Polar Engineering Conference, v 2, 1996, p 464-468

Yang, Shugeng (Tianjin Univ); Xu, Tao; Meng, Zhaoying; Ren, Guiyong, Calculation of hydro-dynamic stability of the soil inside bucket in the process of bucket foundation penetration, China Ocean Engineering, v 12, n 4, 1998, p 427-434
Hudspeth, Robert T. (Ocean Eng Program, Oregon State Univ, Corvallis, OR, USA), Nonlinear dynamical problems in ocean engineering, Oceans (New York), Sep, 1990, Conference Proceedings - Oceans '90, p 586

Saijo, O. (Nihon Univ); Eto, H., Natural frequency analysis of elastic plate, American Society of Mechanical Engineers (Paper), 1997, 97-AA-99, 7p

Bea, Robert (Univ of California at Berkeley); Mortazavi, Mehrdad; Stear, Jim; Jin, Zhaohui, Development and verification of Template Offshore Capacity Analysis Tools (TOPCAT), Proceedings of the Annual Offshore Technology Conference, v 2, 2000, p 317-334

Takaki, Mikio (Hiroshima Univ); Lin, Xin, Hydrodynamic forces on a submerged horizontal plate type breakwater, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 2000, p 532-539

Jin, Zhaohui (Univ of California at Berkeley); Bea, Robert, Enhancements of TOPCAT: 3-dimensional loadings, reliability, and deck structure capacities, Proceedings of the Annual Offshore Technology Conference, v 2, 2000, p 351-367

Suchithra, N. (Indian Inst of Technology); Koola, Paul Mario, Study of wave impact on horizontal slabs, Ocean Engineering (Pergamon), v 22, n 7, Oct, 1995, p 687-697

Nakamura, M. (Kyushu Univ); Koterayama, W.; Kyozuka, Y., Slow drift damping due to drag forces acting on mooring lines, Ocean Engineering (Pergamon), v 18,
Blood, Howard (Float Inc); Innis, Don, Floating solution to environmental problems in airport siting: A new concept, Proceedings of the Transportation Congress, v 1, 1995, p 111-120

Li, H. (College of Engineering, Ocean University of Qingdao); Hu, S.-L.J.; Takayama, T., Optimal active control of wave-induced vibration for offshore platforms, China Ocean Engineering, v 15, n 1, 2001, p 1-14

Endo, Ryuji (Polytechnic Univ); Hamamoto, Takuji; Kato, Takehiko; Wakui, Kenji; Imai, Takuji; Tosaka, Nobuyoshi, Experimental modal analysis by harmonic sweep excitation on unit linked floating models, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1996, p 341-348

Choi, Yoon-Rak (Korea Research Inst of Ships and Ocean Engineering); Hong, Seok-Won; Kim, Hyun-Joe; Kim, Jin-Ha, Experimental study on wave loads and responses of a barge-mounted plant with dolphin-fender mooring system, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2000, p 204-210

Kourjanski, Mikhail (UC Berkeley); Gollu, Aleks, Parallelization of SHIFT simulation environment, Proceedings of the IEEE Annual Simulation Symposium, 1999, p 94-101

Anon, Ship-mounted fork lift removes 2,000-t platforms, Ocean Industry, v 24, n 5, May, 1989, p 30-32

Riggs, H.R. (Univ of Hawaii at Manoa); Ertekin, R.C., Response characteristics of serially connected semisubmersibles, Journal of Ship Research, v 43, n 4, Dec, 1999, p 229-240

Chu, Tek-Che (AT&T Bell Lab, Holmdel, NJ, USA); Marra, Louis J.; Stix, Robert K., MECHANICAL ARCHITECTURE OF A 147 KILOMETER REPEATERLESS FIBER OPTIC UNDERSEA CABLE SYSTEM., Proceedings of International Wire and Cable Symposium, 1985, p 346-354

Borg, S. F. (Stevens Inst of Technology, Hoboken, NJ, USA), NEW RATIONAL ENGINEERING APPROACHES TO THE EARTHQUAKE EVENT AND ITS RELATION TO THE DESIGN OF OFFSHORE STRUCTURES., Int Assoc for Structural Safety & Reliability, v 3, 1985, p 553-562

Johnson, G.S. (EQE Int); Smith, C.E., Seismic evaluation of topsides systems on existing platforms, Offshore Technology Conference, Annual Proceedings, v 2, 1997, p 8424
Fan, Ju (Shanghai Jiao Tong Univ); Chen, Xiao-hong; Huang, Xiang-lu, First-order response effect on second-order damping of mooring line, Chuan Bo Li Xue/Journal of Ship Mechanics, v 4, n 6, Dec, 2000, p 20-27

Hamamoto, Takuji (Musashi Inst of Technology); Hayashi, Takayuki; Fujita, Ken-ichi, 3D BEM-FEM coupled hydroelastic analysis of irregular shaped, module-linked large floating structures, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1996, p 362-369

Anon, CONSTRUCTION ABROAD., Indian Concrete Journal, v 60, n 4, Apr, 1986, p 88-90

Hedrick, K. (Univ of California at Berkeley); Girard, A.; Kaku, B., Coordinated DP control methodology for the MOB, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 70-75

Hamamoto, Takuji (Musashi Inst of Technology); Inoue, Masashi; Tanaka, Yasuo, Dynamic behavior of large tension leg floating structures for horizontally traveling seismic waves, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 1997, p 458-465

Anon, SIMPLIFIED FLOATING PRODUCTION DESIGN., Ocean Industry, v 19, n 8, Aug, 1984, p 80-81

Marshall, M. A. (Memorial Univ of Newfoundland, St. John's, Newfoundl, Can); Booton, M.; Christian, A. J., STRUCTURAL INTEGRITY MONITORING OF A FIXED BOTTOM OFFSHORE TOWER., American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 10, 1987, p 33-41

Perryman, Steve R. (Amoco Production Co); Beynet, Pierre A., Deepwater surface production and riser systems, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 58, Offshore and Arctic Operations, 1994, p 63-75

Anam, I. (Texas A and M University); Roesset, J.M., Effect of ramp duration on

Takatani, Tomiya (Maizuru Natl Coll of Technology); Maeno, Yoshi-hiko; Kodama, Hirosuke, Mooring of floating structures by expanded end bearing pile, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1998, p 590-597

Gaffoglio, Carl J. (Copper Development Assoc Inc), BEATING BIOFOULING WITH COPPER-NICKEL ALLOYS OFFSHORE., Sea Technology, v 28, n 6, Jun, 1987, p 43-46

Lane, Wallace Watkins (Inventor, Honolulu, HI, USA), VLMFS, very large modular floating structures, Oceans (New York), v 3, Ocean Technologies and Opportunities in the Pacific for the 90's, 1991, p 1301-1303

Hocking, Grant (Univ of New South Wales), Discrete element method for analysis of fragmentation of discontinua, Engineering Computations (Swansea, Wales), v 9, n 2, Apr, 1992, p 145-155
Hudspeth, Robert T., ed., Civil Engineering in the Oceans V, Civil Engineering in the Oceans V, 1992, 1076p

Fourie, E.O’N (BKS Incorp); Amod, S.A.; Malcolm, D.M., Design of the topsides structures, Civil Engineer in South Africa, v 33, n 9, Sep, 1991, 5p

Anon, NORWEGIANS TOUT ADVANTAGES OF CONCRETE STRUCTURES., Ocean Industry, v 23, n 1, Jan, 1988, p 21-23

Reusswig, G.H. (Mobil Research and Development Corp); Nair, V.V., Compliant tower design for mild environments, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 1, 1994, p 171-177

Kjeldsen, Soren Peter (Norwegian Hydrodynamic Lab, Ship & Ocean Lab, Trondheim, Norw), DANGEROUS WAVE GROUPS., Norwegian Maritime Research, v 12, n 2, 1984, p 4-16

Anon, PROGRAMS PREDICT STRUCTURAL FATIGUE FOR OFFSHORE PLATFORMS., Oil and Gas Journal, v 81, n 42, Oct 17, 1983, p 134

Fuller, Michael D. (Drexel Univ, Philadelphia, Pa, USA); Rose, Joseph L.,

Maduakolam, Mishael N. (Texas A&M Univ., Coll. Station, TX, USA); Stubbs, Norris, Global nondestructive detection of mass and structural damage to conventional and floating bridges, Proceedings of SPIE - The International Society for Optical Engineering, v 2446, 1995, p 81-94

Ekermans, D.; Potgieter, D.J., Design of the pipelines and shore crossings, Civil Engineer in South Africa, v 33, n 9, Sep, 1991, 5p

Falck, Andreas (Det Norske Veritas); Skramstad, Erik; Berg, Magne, Use of QRA for decision support in the design of an offshore oil production installation, Journal of Hazardous Materials, v 71, n 1, Jan, 2000, p 179-192

Pruetz, Zolan (Mojeski & Masters, New Orleans, LA, USA); Soong, Tsu T.; Reinhorn, Andrei, PULSE CONTROL OF DEEP-WATER OFFSHORE STRUCTURES., Preprints - ASCE Convention & Exposition, 1984, 84. 012P

2, June, 2001, p 39-46

Marshall, B. K. (Bechtel Great Britain Ltd, London, Engl); Postill, D. C., WIND TUNNEL MODELING AIDS PLATFORM DESIGN., Oil and Gas Journal, v 82, n 25, Jun 18, 1984, p 114, 119-121

Mullen, Steve (Parker Hannifin PLC), Appropriate practices avoid tube fitting failures, Oil and Gas Journal, v 100, n 41, Oct 7, 2002, p 48-52

Ronold, Knut O. (A. S. Veritas Research, Hovik, Norw); Madsen, Henrik O., PROBABILISTIC APPROACH TO FAILURE OF A CLAY IN CYCLIC LOADING., Inst for Risk Research, 1987, v 2p

Ives, George O., TENSION LEG PLATFORM PICKED FOR HUTTON DEVELOPMENT., Petroleum Engineer International, v 52, n 4, Mar 15, 1980, p 22, 24, 26, 28

Oranje, Leendert (N. V. Nederlandse Gasunie, Groningen, Neth), HANDLING TWO-PHASE GAS CONDENSATE FLOW IN OFFSHORE PIPELINE SYSTEMS., Oil and Gas Journal, v 81, n 16, Apr 18, 1983, 6p between p 128 and 138

Yoshimoto, Hirofumi (Ship Research Inst); Hoshino, Kunihiro; Yamagishi, Naoto; Motora, Yutarou, Characteristics of directional wave spectra measured at Japan

Perez, Faustino (Instituto Mexicano del Petroleo); Lopez, Alejandro; Barrera, Procoro; Inda, Gregorio; Ortega, Roberto, Experience in requalification of offshore platforms installed in the Bay of Campeche, Proceedings of the Annual Offshore Technology Conference, v 2, 2000, p 335-343

MacDonald, John J. (Chevron USA Production Co); Smith, Robert S., Decision trees clarify novel technology applications, Oil and Gas Journal, v 95, n 8, Feb 24, 1997, p 69-76

Messier, Richard H. (Univ of Maine); Weybrant, Eric; Thompson, Lawrence D., Computational study of techniques for reduction of connection forces in large, articulated, semi-submersible ocean structures, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 764-770

Brosilow, Rosalie (Welding Design & Fabrication, Cleveland, Ohio, USA),

Bell, Magne (Olav Olsen a.s); Haalund, Per, Concrete truss as main frame support for offshore structures, Proc First 90 Eur Offshore Mech Symp, 1990, p 307-314

Senneset, Kaare (Univ of Trondheim); Nestvold, Jarle, Deep compaction by vibro wing technique and dynamic compaction, Geotechnical Special Publication, v 2, n 30, 1992, p 889-901

Fred Stelzer, C.F. (Petro-Marine Engineering of Texas, Incorp), Screening tool for Gulf of Mexico pile driving, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 42, Offshore and Arctic Operations - 1992, 1992, p 5-9

Oi, Lars Erik (Telemark Inst of Technology), Calculation of dehydration absorbers based on improved phase equilibrium data, Proceedings, Annual Convention - Gas Processors Association, 1999, p 32-37
Anon, Flexible liner safeguards environment during offshore workover, Oil and Gas Journal, v 89, n 23, Jun 10, 1991, p 39

Ghanaat, Yusof (ISEC Inc, San Francisco, Calif, USA); Clough, Ray W., ANALYTICAL CORRELATION OF A DYNAMIC BRACE BUCKLING EXPERIMENT., Earthquake Engineering & Structural Dynamics, v 11, n 1, Jan-Feb, 1983, p 111-120

Visser, Robert C. (Belmar Engineering & Management Services Co, Redondo Beach, CA, USA), OFFSHORE PRODUCTION AND TRANSPORTATION OF HEAVY OIL., UNITAR/UNDP Information Cent for Heavy Crude & Tar Sands, v 3, 1985, p 1435-1449

Kinoshita, Takeshi (Univ of Tokyo); Takase, Satoru, Response statistics of moored offshore structures, Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, Safety and Reliability, 1992, p 343-350

Chao, Jiunn-Hsing; Chung, Chien, In situ lake pollutant survey using prompt-gamma probe, Applied Radiation and Isotopes, v 42, n 8, 1991, p 735-740

Yuasa, Hajime (Mitsui Engineering & Shipbuilding Co., Ltd); Hirai, Yasuo; Iyama, Tadahiro; Yamada, Michimasa; Harada, Hidetoshi; Okada, Minoru, Underwater inspection ROV system for the bottom appearance of mega-float, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 91-98

Konczvald, Andrew (Soc of Petroleum Engineers), Successful cooperation of federal and state agencies, Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management, 1995, p 513-514

Siddiqui, N.A. (Jamia Millia Islamia); Ahmad, S., Reliability analysis against progressive failure of TLP tethers in extreme tension, Reliability Engineering and System Safety, v 68, n 3, Jun, 2000, p 195-205

Kikutake, Tetsuo (Technological Research Assoc of Mega-Float); Okamura, Hideo, Mega-float, a possibility of future offshore airports, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 1-4

Pinkster, J.A. (Delft University of Technology); Meevers Scholte, M.E.J.A., The behavior of a large air-supported MOB at sea, Marine Structures, v 14, n 1-2, 2001, p 163-179

White, Charles N. (Conoco Inc); Goldsmith, Riley G.; Triantafyllou, Michael, Heave-restrained platform reduces costs and eases operations, JPT, Journal of Petroleum Technology, v 45, n 8, Aug, 1993, p 752-761

Webster, William C. (Univ of California), Mooring-induced damping, Ocean Engineering (Pergamon), v 22, n 6, Aug, 1995, p 571-591

Lancett, Neil (Siemens Process Automation), Automated process control improves oil platform operation, Water and Wastewater International, v 17, n 6,
Britton, J. N. (Sealand Corrosion Control Inc, Houston, TX, USA); Holt, R. J., COMPUTERIZED CATHODIC PROTECTION SURVEY SYSTEM FOR OFFSHORE PLATFORMS., Materials Performance, v 25, n 4, Apr, 1986, p 46-48

Isaacson, Michael (Univ of British Columbia); Phadke, Amal, Chaotic motion of a nonlinearly moored structure, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1994, p 338-345

Karayaka, Metin (Aker Engineering, Inc), Challenges and opportunities for advanced composites in offshore field developments, International SAMPE Symposium and Exhibition (Proceedings), v 45 (II), 2000, p 2118-2127

Lloyd, S. A. (Bechtel Ltd, London, Engl); Catchpole, J. O., REALISATION OF RELIABILITY FROM DESIGN TO OPERATION FOR OFFSHORE FACILITIES., Publ, 1987, v 1p

Kinoshita, T. (Univ of Tokyo); Takase, S., Response statistics of moored offshore structures, Journal of Offshore Mechanics and Arctic Engineering, Transactions
of the ASME, v 117, n 3, Aug, 1995, p 159-165

Luyties, W. H. (Shell Oil Co); Post, J. W., LOCAL DIHEDRAL ANGLE EQUATIONS FOR TUBULAR JOINTS AND RELATED APPLICATIONS., AWS, 1987, p 142-143

Flick, L. D. (Amoco Production Co); Green, D. J., LATERAL STABILITY OF PILES IN UNGROUTED JACKET LEGS., Proceedings - Annual Offshore Technology Conference, v 3, 1983, p 557-564

Xuequan, E. (Chinese Acad of Sciences); Shao, Chuanping; Gao, Yuxin, Study on current-random wave forces acting on a framework, China Ocean Engineering, v 12, n 3, 1998, p 265-274

Hsieh, C. C. (Univ of Houston, Houston, TX, USA); Kareem, A.; Williams, A. N., WAVE PHASE EFFECTS ON DYNAMIC RESPONSE OF OFFSHORE PLATFORMS., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, 1988, p 327-332

Boote, Dario (Univ of Genoa); Mascia, Donatella; Caffarena, Roberto, Seismic behaviour of fixed offshore platforms, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-0332, 11pp

Liggett, J.A. (CBS Engineering Inc), Moss I and Moss II (minimal offshore support structures), American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 26, 1988, p 79-84

Chen, Shouyu (Sch. of Civil Eng. and Architecture, Dalian University of Technology); Fu, Guangtao; Wang, Jianming; Liu, Gang, Fuzzy optimum model of semi-structural decision for lectotype optimization of offshore platforms, China Ocean Engineering, v 15, n 4, 2001, p 453-466

Anon, CENTER MONITORS STRUCTURAL INTEGRITY OF REMOTE PLATFORMS., Ocean Industry, v 19, n 2, Feb, 1984, p 73

Visser, Robert C. (Belmar Engineering), Seismic considerations in design and assessment of platform topside facilities, Proceedings - SPE Annual Western Regional Meeting, A New Dawn in the Old West, 1997, p 243-248

Rossi, S. (Univ of Trento); Bonora, P.L.; Draghetti, M., Cathodic protection revamping technology for offshore structures: the Agbara platform, Materials Performance, v 37, n 3, Mar, 1998, p 15-19

Lawrence, Dick (Goodfellow Associates), ECONOMIC DEVELOPMENT OF SMALL OILFIELDS IN THE NORTH SEA., Petroleum Review, v 38, n 449, Jun, 1984, p 9-10

Kyozuka, Yusaku (Kyushu Univ); Fujimoto, Akihisa; Hikai, Akio, Numerical simulation of water temperature around a mega-float in a bay, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4337, 7pp

Matsuoka, Kazumi; Kinoshita, Kazuhiro; Torii, Tadashi, Application research on corrosion protection of Mega-Float by titanium clad steel lining, Nippon Steel Technical Report, n 85, January, 2002, p 88-93

Yamamoto, Ikuo (Mitsubishi Heavy Industries, Ltd); Terada, Yuuzi, Development of inverse LMI method and its application to dynamic positioning system, IEEE Conference on Control Applications - Proceedings, v 2, 1999, p 1118-1122

Sommerfeld, Barry G. (Intuitive Technology); Slocum, Daryl B., Implementation of a fault-tolerant system in real-time marine data collection, Oceans Conference Record (IEEE), v 2, 1996, p 555-559

Li, Huajun (Ocean Univ of Qingdao); Hu, Sau-Lon James; Takayama, Tomotsuka, Optimal design of TMD for offshore structures, China Ocean Engineering, v 13, n 2, 1999, p 133-144

Chen, Yung-Hsiang (Natl Taiwan Univ, Taiwan), GENERALIZED COMPLEX DAMPING AND SPECTRAL BANDWIDTHS FOR SEISMIC RESPONSES OF OFFSHORE PLATFORMS., International Shipbuilding Progress, v 34, n 389, Jan, 1987, p 2-11

Yoshida, Koichiro (Univ of Tokyo, Dep of Naval Architecture, Tokyo, Jpn); Ozaki, Masahiko, DYNAMIC RESPONSE ANALYSIS METHOD OF TENSION LEG PLATFORMS SUBJECTED TO WAVES., Journal of the Faculty of Engineering,

Matsuoka, Kazumi (Nippon Steel Co); Shiotani, Chitoshi; Sugimoto, Hironori; Fumoto, Minoru; Yamada, Michimasa, Application studies on corrosion protection by titanium clad steel lining in mega-float project, Zairyo to Kankyo/Corrosion Engineering, v 47, n 8, Aug, 1998, p 494-500

Ikeno, Masaaki (Abiko Research Lab); Matsuyama, Masafumi, Two-dimensional numerical model for nonlinear interaction between floating power plant and tsunami, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 1, n pt B, Offshore Mechanics and Arctic Engineering, 1997, p 55-60

Chianis, John W. (ABB Lummus Global Inc.), Hybrid architecture provides solution for deepwater developments off West Africa, Oil and Gas Journal, v 100, n 9, Mar 4, 2002, p 83-87

Nakamura, Masahiko (Kyushu Univ); Kajiwara, Hiroyuki; Koterayama, Wataru; Hyakudome, Tadahiro, Control system design and model experiments on thruster assisted mooring system, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1997, p 641-648

Hudspeth, R. T. (Oregon State Univ, Corvallis, OR, USA); Leonard, J. W., DYNAMIC RESPONSE OF TENSION LEG PLATFORMS WITH AXISYMMETRIC MEMBERS., Engineering Structures, v 8, n 1, Jan, 1986, p 55-63

de Freitas, Denizard Batista (PLANAVE, Braz); Rodriguez, Sergio G. Hormazabal, DESIGN OF OFFSHORE PLATFORMS: ORGANIZATION AND DEVELOPMENT., Pentech Press, 1986, p 574-593

Woodyard, Doug (Fincantieri's Monfalcone Shipyards), MICOPERI 7000., Naval Architect, Feb, 1988, p 49-52

Tonolini, F. (CISE, Milan, Italy); Fontana, E., ACOUSTIC EMISSION RESEARCHES FOR AN APPLICATION TO THE SURVEILLANCE OF OFFSHORE PLATFORMS., Offshore Conferences & Exhibitions Ltd, 1984, 10p

Stear, James (Univ of California); Bea, Robert, Ultimate limit state capacity analyses of two Gulf of Mexico platforms, Offshore Technology Conference, Annual Proceedings, v 2, 1997, p 8418

Wang, Yanying (Dalian Univ of Technology (DUT)); Zhu, Renchuan; Miao, Jie, Computation of design load and motion for floating structures navigating in waves, China Ocean Engineering, v 13, n 1, 1999, p 93-100

Anon, Undersea cable tunnel between the island of Pulau Seraya and Singapore, Industria Italiana del Cemento, v 59, n 5, May, 1989, p 332-339

Parascin, Dan (Hot-Head Inc), Welding enclosure eliminates platform shut-in, Oil and Gas Journal, v 96, n 18, May 4, 1998, p 90, 92

Hyakudome, Tadahiro (Kyushu Univ); Nakamura, Masahiko; Kajiwara, Hiroyuki; Koterayama, Wataru, Experimental study on dynamic positioning control for semi-submersible platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1999, p 76-82

Feeney, James W. (Horizon Marine Inc), PROGRESS GAINING IN QUANTIFYING HURRICANE-DRIVEN OCEAN CURRENTS., Sea Technology, v 27, n 2, Feb, 1986, p 10-12, 14

Salman, S. (Univ of Aberdeen); Penman, J.; Smith, K.S.; Stewart, I.D., Synchronous machine parameters their influence on the A.C. voltage distortion of isolated systems, IEE Conference Publication, n 419, 1996, p 154-157

Banon, H. (Exxon Production Research Co); Harding, S.J., Methodology for assessing the reliability of TLP tethers under maximum and minimum lifetime loads, Proc ICOSSAR 89 5th Int Conf Struct Saf Reliab, 1989, p 183-190

Fukusumi, Tadahiro (Kobe Univ); Kusakabe, Kaoru, Dynamic response

Sturova, I.V., The effect of the periodical surface pressure on the floating elastic platform, Prikladnaya Matematika i Mekhanika, v 66, n 1, 2002, p 75-86

Damaren, Christopher J. (Univ of Canterbury), Time-domain floating body dynamics by rational approximation of the radiation impedance and diffraction mapping, Ocean Engineering (Pergamon), v 27, n 6, Jan, 2000, p 687-705

Chen, Yung Hsiang (Natl Taiwan Univ, Taipei), STOCHASTIC RESPONSES OF THREE-DIMENSIONAL OFFSHORE PLATFORMS., International Shipbuilding Progress, v 27, n 315, Nov, 1980, p 294-304

Fukuda, T. (Japan Steel Works); Abe, T.; Vilpponen, K.O.; Hawley, P.R., High strength weldable forged steel for tension leg platform tether systems, Proc First 90 Eur Offshore Mech Symp, 1990, p 202-212

Endo, Ryuji (Polytechnic Univ); Kawakami, Yoshitsugu; Imai, Takuji; Tosaka, Nobuyoshi, Identification analysis of structural damage on unit-linked offshore floating models, International Journal of Offshore and Polar Engineering, v 9, n 3, Sep, 1999, p 201-207

Gregory, J. (Mobil North Sea Ltd); Walls, A.H.; Sinai, Y.L.; Owens, M.P., CFD
modelling of the dispersion and burning of a limited oil inventory from an offshore installation, *International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production*, v 1, 1996, SPE 35806, p 377-384

Tang, M.X. (Univ Coll London); Dharmavasan, S., Use of knowledge based systems of rational reliability analysis based inspection and maintenance planning for offshore structures, *Proceedings of the International Offshore and Polar
Wang, J. (Univ of Newcastle upon Tyne); Ruxton, T.; Thompson, R.V., Failure analysis of made-to-order (MTO) products, American Society of Mechanical Engineers (Paper), 1993, 93-WA/DE-8, p 1-10

Miao, G. (Sch. of Naval Arch. Ocean Eng., Shanghai Jiao Tong University); Ishida, H.; Saitoh, T., Influence of gaps between multiple floating bodies on wave forces, China Ocean Engineering, v 14, n 4, 2000, p 407-422

Endo, Ryuji (Polytechnic Univ); Imai, Takuji; Kawakami, Yoshitsugu; Kato, Takehiko; Tosaka, Nobuyoshi, Experimental modal analysis of large floating structures subjected to sea waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 123-130

Matsumoto, Norihiro (Nippon Kokan KK, Tokyo, Jpn); Moriyama, Atsuo; Kodan, Norihisa; Jingu, Norio; Yamamoto, Kunio; Watanabe, Toshihiro, MOTION PERFORMANCE OF F. P. S. WITH TURRET MOORING EQUIPMENT., Nippon Kokan Technical Report Overseas, n 46, Sep, 1986, p 155-167

Dooling, Dave, Transportation, IEEE Spectrum, v 32, n 1, Jan, 1995, p 71-75

Bateson, P. H. (British Steel Corp, Rotherham, Engl); Webster, S. E.; Walker, E. F., ASSESSMENT OF HAZ TOUGHNESS USING SMALL SCALE TESTS., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 3, 1988, p 257-265

Boo, S.Y. (Korea Naval Acad); Kim, C.H., Nonlinear irregular waves and forces on truncated vertical cylinder in a numerical wave tank, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1997, p 76-84

Magnani, Italo (Nuovo Pignone SpA, Florence, Italy); Nutini, Gianpiero; Tosi, Giancarlo, ASPECTS OF GAS COMPRESSION EQUIPMENT - ONSHORE AND OFFSHORE., Chemical Engineer (London), n 410, Jan, 1985, p 28-29, 31

McNulty, John J. (AT&T Bell Lab, Holmdel, NJ, USA), 150-km REPEATERLESS UNDERSEA LIGHTWAVE SYSTEM OPERATING AT 1.55 µm, Journal of
Lightwave Technology, v LT-2, n 6, Dec, 1984, p 787-791

Kareem, Ahsan (Univ of Notre Dame); Kijewski, Tracy; Smith, Charles E., Analysis and performance of offshore platforms in hurricanes, Wind and Structures, An International Journal, v 2, n 1, 1999, p 1-23

Kyozuka, Y. (Dept. of Earth System Sci./Tech., Kyushu University); Kato, S.; Nakagawa, H., A numerical study on environmental impact assessment of mega- float of Japan, Marine Structures, v 14, n 1-2, 2001, p 159-161

De Oliveira, Silvio Jr. (Univ of Sao Paulo); Van Hombeeck, Marco, Exergy analysis of petroleum separation processes in offshore platforms, Energy Conversion and Management, v 38, n 15-17, Oct-Nov, 1997, p 1577-1584

Guilbert, P.W. (AEA Technology plc); Jones, I.P.; Owens, M.P.; Sinai, Y.L., Advances in hazard analysis using CFD, Institution of Chemical Engineers Symposium Series, n 141, 1997, p 67-77

Williams, A.N. (Univ of HOuston); Davies, K.B., Estimation of wave drift damping for a TLP, International Journal of Offshore and Polar Engineering, v 4, n 1, Mar, 1994, p 18-22

Endo, Ryuji (Polytechnic Univ); Noguchi, Kenichi; Kobayashi, Akio; Kato, Takehiko; Ando, Masahiro, Motion measurements and human comfort in the case of sea bus terminal in Yokohama Bay, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1994, p 130-136

Wu, Yousheng (China Ship Scientific Research Cent); Wang, Dayun; Riggs, H. Ronald; Ertekin, R. Cengiz, Composite singularity distribution method with application to hydroelasticity, Marine Structures, v 6, n 2-3, 1993, p 143-163

Kagemoto, Hiroshi (Univ of Tokyo); Yue, Dick K.P., Hydrodynamic interaction analyses of very large floating structures, Marine Structures, v 6, n 2-3, 1993, p 295-322

Schalck, S. (Technical Univ of Denmark); Baatrup, J., Hydrostatic stability calculations by pressure integration, Ocean Engineering (Pergamon), v 17, n 1-2, 1990, p 155-169

Royer, Alain (Pont-a-Mousson, Fumel, Fr); Gantois, Michel; Dumas, Bernard, SPUN STEEL PIPES FOR THE OFFSHORE INDUSTRY., Proceedings - Annual Offshore Technology Conference, v 2, 1981, p 223-234

Kato, Shunji; Ando, Sadao, STATISTICAL ANALYSIS OF LOW FREQUENCY RESPONSES OF A MOORED FLOATING OFFSHORE STRUCTURE (1ST REPORT)., Senpaku Gijutsu Kenkyusho Hokoku/Papers of Ship Research Institute, v 23, n 5, Sep, 1986, p 327-367

Hsu, T.M. (Chevron Oil Field Research Co); Carter, E.W.; Fu, S.L.; Mitchell, J.S., Application of fracture mechanics methodology to assessment of weld defects in offshore platforms, Civil Engineering in the Oceans V, 1992, p 733-749

Breuer, Bernhard (Firma Hochtief AG, Essen, West Ger), MANDRIL 400. BOHR- UND PRODUKTIONSPLATTFORM FUER GROSSE WASSERTIEFEN - GRUENDUNG DES TRAGWERKS. (Mandrill 400 - Drilling and Production Platform for Large Water Depths.), Bautechnik, v 61, n 6, Jun, 1984, p 201-206

Dalrymple, Robert A. (Center for Applied Coastal Research, University of Delaware); Knio, Omar; Cox, Daniel T.; Gesteira, Moncho; Zou, Shan, Using a lagrangian particle method for deck overtopping, Proceedings of the International Symposium on Ocean Wave Measurement and Analysis, v 2, 2001, p 1082-1091

Boef, W.J.C. (Shell Research B.V.), Launch and impact of free-fall lifeboats. Part II. Implementation and applications, Ocean Engineering (Pergamon), v 19, n 2, Mar, 1992, p 139-159

de Wit, Carlos Canudas (ENSIEG-INPG); Diaz, Ernesto Olguin; Perrier, Michel, Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, Proceedings - IEEE International Conference on Robotics and Automation, v 1, 1998, p 452-457

Haustein, James R. (Mobil Research & Development Corp, Dallas, TX, USA); Feeney, James W., GULF OF MEXICO DEEP WATER CURRENT STUDIES FOR OFFSHORE OIL EXPLORATION AND PRODUCTION., Oceans (New York), 1985, p 1062-1070

Hosoda, R. (Osaka Prefecture Univ); Nomura, T.; Yamaguchi, K.; Murata, B., Concept of eco-platform, Oceans Conference Record (IEEE), v 3, 2000, p 1943-1949

Raoof, Mohammed (South Bank Polytechnic); Huang, Yu Ping, Bending stiffness and hysteresis of sheathed spiral strands, Proc Second Int Offshore Polar Eng Conf, 1992, p 369-379

Dunlop, J. (Univ of Strathclyde, Dep of Electronic & Electrical Engineering, Glasgow, Scotl); Stirling, C., CONDUCTION CURRENT SIGNALLING IN THE VICINITY OF A SUB-SEA OFFSHORE STRUCTURE., Radio and Electronic Engineer, v 53, n 7-8, Jul-Aug, 1983, p 287-294

Dong, Cong (Northwestern Polytechnical Univ); Yang, Qingxiong, Probabilistic linear cumulative damage rule for predicting fatigue lift, Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, v 11, n 2, Apr, 1993, p 139-143

Fincher, Louis (Lufkin Ind Inc, Tex); Griffin, F. D., SUCKER ROD PUMPING OFFSHORE., American Society of Mechanical Engineers (Paper), n 80-Pet-18, 1980, 5p

Kim, Do-Sam (Nagoya Univ); Iwata, Koichiro, Dynamic behavior of tautly moored semi-submerged structure with pressurized air-chamber and resulting wave transformation, Coastal Engineering in Japan, v 34, n 2, Dec, 1991, p 222-242

Scott, Charles (Charles Scott & Partners, Scotl), GLASGOW GARDEN FESTIVAL CANTING BASIN BRIDGE., Highways and Transportation, v 35, n 7, Jul, 1988, p 11-16

KIM, YOUNG KYUN (DAEJEON MACH DEPOT, KOREA), EFFICIENT SIMULATION OF NARROW-BAND RANDOM SYSTEMS., SIMULATION, V 38, N 5, May, 1982, p 177-180

Chiesa, G. (Snamprogetti SpA); van Dyck, J.; Zuccarelli, F., Response surface fitting in offshore structural design, Proc ICOSSAR 89 5th Int Conf Struct Saf Reliab, 1989, p 143-150

Lynghjem, Arne (Statoil); Svendsen, Ove; Underbakke, Harald, Offshore application of a dual-mode injection centrifugal compressor and improvements to rotating stall, American Society of Mechanical Engineers (Paper), 1996, 96-GT-322, 12pp

Priedeman, John S. (Concrete Technology Corp, Tacoma, WA, USA); Anderson, Thomas R., FLOATING CONCRETE STRUCTURES., Concrete International: Design and Construction, v 7, n 8, Aug, 1985, p 45-47

Anon, MONITORING THE INTEGRITY OF OFFSHORE PLATFORMS., Marine Engineers Review, Dec, 1986, p 16-17, 22

Knox, L. Carter (Halliburton Serv); Sutton, David L., ASSESSMENT OF GROUTING MATERIALS, PLACEMENT METHODS, MONITORING EQUIPMENT, AND FLOTATION EQUIPMENT FOR OFFSHORE STRUCTURES., Society of Petroleum Engineers of AIME, (Paper) SPE, n 8853,
1980, 10p

Lefebvre, G. (S.A. Fabrique de Fer de Charleroi); Dufrane, J.-J., Quenched and tempered plates in the range 420/550 N/MM², Proc First Int Offshore Polar Eng Conf, 1991, p 206-218

Schaap, L. H. J. (Fugro BV, Neth); Pluimgraaff, D. J. M. H.; Costa De Mello, J. R., DEVELOPMENT AND PERFORMANCE OF UNDERWATER PILING INSTRUMENTATION OFFSHORE BRAZIL, A. A. Balkema, 1985, p 290-297

Schlaich, Joerg (Univ Stuttgart); Reineck, Karl-Heinz, Die Ursache fuer den Totalverlust der Betonplattform Sleipner A (Causes for the total loss of the concrete platform Sleipner A), Beton- und Stahlbetonbau, v 88, n 1, Jan, 1993, p 1-4

Duval, Jean (Total-CFP, Fr); Mercier, Georges; Morin, Pierre, PRODUCTION SYSTEM IS PLANNED FOR ICEBERG INFESTED WATERS, World Oil, v 190, n 4, Mar, 1980, p 81-84, 86

Waldhelm, Chris (Solar Turbines Inc), Application of gas turbines on floater vessel for power generation service, American Society of Mechanical Engineers (Paper), n GT, 1998, 98-GT-277, 5p

Lietard, Olivier (Schlumberger); Hegeman, Peter, Optimum development of a thin box-shaped reservoir with multiply fractured horizontal wells, Proceedings - SPE International on Horizontal Well Technology, 1998, SPE 50420, p 307-314

Takase, S. (Univ of Tokyo); Kinoshita, T.; Matsui, T., Effects of the second-order

Yacamini, R. (Univ of Aberdeen, Scotl); Hitchens, D. A.; de Oliveira, J. C., WEIGHT REDUCTION IN OFFSHORE ELECTRICAL POWER MODULES BY RUNNING THE SYSTEM AT HIGHER FREQUENCIES., Pentech Press, 1986, p 739-752

Williams, Donald L. (US West NewVector Group Inc, Bellevue, WA, USA), CELLULAR FIELD STRENGTH MEASUREMENTS FOR THE DESIGN OF AN OVER WATER CELLULAR SYSTEM IN THE GULF OF MEXICO., IEEE Vehicular Technology Conference, 1987, p 124-130

Knoop, J. (Univ Coll London); Taylor, R. Eatock, Real time estimation of waves and drift forces, Proc First 90 Eur Offshore Mech Symp, 1990, p 21-28

Li, Jiming (Elliott Company); De Choudhury, Pranabesh; Tacques, Rogerio, Seal and bearing upgrade for eliminating rotor instability vibration in a high pressure natural gas compressor, American Society of Mechanical Engineers, International Gas Turbine Institute, Turbo Expo (Publication) IGTI, v 4 B, 2002, p 1139-1151

Kiyokawa, Tetsushi; Ohyama, Takumi; Kobayashi, Hiroshi, GREEN'S FUNCTION METHOD APPLIED FOR RESPONSE ANALYSIS OF A FLOATING BODY OF ARBITRARY SHAPE UNDER REGULAR WAVES., Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, n 332, Apr, 1983, p 55-65
Raoof, Mohammed (South Bank Univ); Huang, Yu Ping, Cyclic bending characteristics of sheathed spiral strands in deep water applications, International Journal of Offshore and Polar Engineering, v 3, n 3, Sep, 1993, p 189-196

Bromley, Rick, From Sydney to Siberia for a major infrastructure upgrade project, Civil Engineers Australia, v 75, n 1, January, 2003, p 30-31

Matsuishi, M. (Univ of Iowa, Iowa City, IA, USA); Ettema, R., ICE LOADS AND MOTIONS EXPERIENCED BY A FLOATING, MOORED PLATFORM IN MUSHY ICE RUBBLE., IIHR Report (Iowa Institute of Hydraulic Research), n 295, Nov, 1985, 115p

Honda, Masaharu (NKK); Hattori, Tadashi; Okumura, Takeo; Okada, Minoru; Yamada, Michimasa; Sugimoto, Hironori, Application of the corrosion resistant clad steel plates for the hull structures of the huge floating, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 285-291

Inoue, Yoshiyuki (Yokohama Natl Univ); Miyabe, Hiroaki; Weiyi, Xue; Nakamura, Mauricio, Comparative study on the quasi-static analyses and dynamic simulations for estimating the maximum tensions of mooring lines, Proceedings of the First International Offshore and Polar Engineering Conference, 1991, p 236-242

Pruijssers, A.F., Theoretical and experimental analysis of the behaviour of cracked concrete under monotonic and cyclic shear loading, Heron, v 33, n 4, 1988, p 3-72

Duarte, Dayse (Federal Univ of Pernambuco); Rohatgi, Janardan; Judice, Raul, Influence of the geometry of the hot surfaces on the autoignition of vapor/air mixtures: Some experimental and theoretical results, Process Safety Progress, v 17, n 1, Spring, 1998, p 68-73

Munro, John J. III (Tech/Ops Inc, Burlington, MA, USA); Roughan, Cathleen M., ASSESSMENT OF ATTAINABLE SENSITIVITY IN THE RADIOGRAPHIC EXAMINATION OF LIQUID FILLED TUBULAR OBJECTS USING RADIONUCLIDE SOURCES., Int Committee on Nondestructive Testing, 1985, p 512-519

Matsuishi, M. (Hitachi Zosen Corp, Osaka, Jpn); Ettema, R., MODEL STUDY OF A FLOATING, MOORED PLATFORM IN A MOVING FIELD OF MUSHY ICE RUBBLE., Univ of Iowa, v 1, 1986, p 197-209

Chandrasekaran, S. (Rao Tula Ram College of Tech. Educ.); Jain, A.K., Dynamic behaviour of square and triangular offshore tension leg platforms under regular
wave loads, Ocean Engineering, v 29, n 3, Oct 12, 2001, p 279-313

Prins, M. (Sarawak Shell Berhad); Smits, R.M.M.; Schutjens, P.M.T.M., Predicting compaction and subsidence for an immature gasbearing carbonate field, SPE - Asia Pacific Oil & Gas Conference, 1995, SPE 29273, p 195-202

Vecchio, John (Diamond Offshore Drilling Inc); Graham, Denis, Semi designed for conversion to drilling/production unit, Oil and Gas Journal, v 94, n 36, Sep 2, 1996, p 76-80

Young, A.G. (Marsco Inc); Honganen, C.D.; Silva, A.J.; Bryant, W.R., Comparison of geotechnical properties from large-diameter long cores and borings in deep water Gulf of Mexico, Proceedings of the Annual Offshore Technology Conference, v 1, 2000, p 427-438

Drager, K. Harald (A/S Quasar Consultants); Soma, Helge; Gulliksen, Roy, SIMLAB. A training simulator for emergency preparedness decisions, Modeling, Identification and Control, v 10, n 3, 1989, p 143-157

Dias, Alexandre C. (Federal Univ of Rio de Janeiro); Bhaya, Amit; Kaszkurewicz, Eugenius, Fault diagnosis in an oil production plant prototype using a diagnostic model processor, American Control Conference, 1993, p 107-111

Breen, William C. (Fluor Engineers Inc, Irvine, CA, USA); Kontny, Vincent L.,
BUSINESS PLANNING FOR ENGINEERING PROJECTS., ASCE, 1986, p 37-43

Koterayama, Wataru (Kyushu Univ, Kasuga, Jpn); Nakamura, Masahiko, HYDRODYNAMIC FORCES ACTING ON A VERTICAL CIRCULAR CYLINDER OSCILLATING WITH A VERY LOW FREQUENCY IN WAVES., Ocean Engineering (Pergamon), v 15, n 3, 1988, p 271-287

Li, Huajun (Coll. of Eng., Ocean Univ. of Qingdao); Wang, Shuqing; Ji, Chunyan, Semi-active control of wave-induced vibration for offshore platforms by use of MR damper, China Ocean Engineering, v 16, n 1, March, 2002, p 33-40

Trizna, Dennis B. (Naval Research Lab); Bachman, Robert; Whalen, Michael, Remote sensing of ocean wavenumber spectra using shipboard marine radar, Oceans Conference Record (IEEE), v 2, 1995, p 67-72

Cochran, J. (Bass Engineering Co, Longview, TX, USA); Bass, J. T., COMPUTER ANALYSIS/OPTIMIZATION OF ANODE GEOMETRIES FOR CONGESTED ANODE ARRAYS., NACE, 1986, p 201-222

Bergmann, Manfred (Bilfinger und Berger Bau AG, Mannheim, West Ger); Salewski, Juergen; Wagner, Peter, STAHLBETONPLATTFORMEN FUER DAS OFFSHORE OELFELD 'SCHWEDENECK-SEE'. (Reinforced Concrete Platforms for The Schwedeneck-See Offshore Oil Field.), Bautechnik, v 61, n 9, Sep, 1984, p 297-304

Chou, Frank S. F. (Frank Chou & Associates, Houston, TX, USA); Ghosh, Susobhan; Huang, Edward W., CONCEPTUAL DESIGN PROCESS OF A TENSION LEG PLATFORM., Transactions - Society of Naval Architects and Marine Engineers, v 91, 1984, p 275-305

Brakell, John (Ewbank Preece Consulting Group, Brighton, Engl), NO STANDARD STANDARD: FOLLOWING PIPELINE REQUIREMENTS ACROSS
de Siqueira, Marcos Queija (COPPE/UFRJ); Torres, Ana Lucia Fernandes Lima; Bardanachvili, Carlos Alberto; Sagrilo, Luis Volnei Sudati; Fachetti, Marina Barbosa; de Lima, Edison C.P., Random fatigue analysis of a jacket type offshore structure: Time and frequency-domain approaches, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 404-411

Chu, Naiming (Offshore Technology Department, KBR); Newell, Rick; Mobbs, Kevin; D'Souza, Richard; Greiner, Bill; Niven, Ian; Surendran, Babu, Adapting floatover installation of decks to floating platforms, World Oil, v 223, n 7, July, 2002, p 35-40

Thangam Babu, P. V. (Newfoundl Ocean Res & Dev Corp, St. John's, Can); Reddy, D. V., FLUID-STRUCTURE INTERACTION RESPONSE ANALYSIS OF FLOATING NUCLEAR PLANTS INCLUDING THE EFFECTS OF MOORING., Ocean Engineering (Pergamon), v 7, n 6, 1980, p 707-741

Anon, PROCEEDINGS OF THE BRITISH SOCIETY FOR STRAIN MEASUREMENT ANNUAL CONFERENCE 1984 - STRUCTURAL INTEGRITY., British Soc for Strain Measurement, 1985, var paging

Kneitz, Paul R. (Tudor Engineering Co); Van Til, Steven D., Pumping system permits diversion of water over dam, Proc Int Conf Hydropower, 1989, p 1686-1695

Paulling, J. R. (Univ of California, Berkeley, CA, USA), HYDRODYNAMIC SYNTHESIS OF MARINE STRUCTURES., North-Holland, 1985, p 275-291

Beaver, Earl R. (Permea Inc, St. Louis, MO, USA); Graham, Tommy E.; Johannessen, Thorbjorn; Kvivik, Henrik, INERT GAS GENERATION SYSTEMS FOR OFFSHORE PLATFORMS., American Institute of Chemical Engineers,
National Meeting, 1986, 19E, 27p

Tsai, T. (Univ of Maryland, Mechanical Engineering Dep, College Park, MD, USA); Yang, J. C. S.; Chen, R. Z., DETECTION OF DAMAGES IN STRUCTURES BY THE CROSS RANDOM DECREMENT METHOD., Proceedings of the International Modal Analysis Conference & Exhibit, v 2, 1985, p 691-700

Asheim, Harald A. (Norw Inst of Technol, Trondheim); Podio, Augusto L.; Knapp, Roy M., COSTS CORRELATED FOR N. SEA PLATFORMS., Oil and Gas Journal, v 78, n 18, May 5, 1980, 6 p between 205 and 216

Marcial Martinez, Fernando (IMP, Subdireccion de Ingenieria de Proyectos de Explotacion, Mex); Azcona Sanchez, Alejandro, SIMULACION DE FLOTACION DE PLATAFORMAS MARINAS DE CONCRETO. (Flotation Simulation of an Offshore Platform.), Revista del Instituto Mexicano del Petroleo, v 17, n 1, Jan, 1985, p 70-75

Soh, Chee-Kiong (Nanyang Technological Inst); Soh, Ai-Kah; Lai, Kum-Yew, Approach to automate the design of fixed offshore platforms, SPE Reprint Series, n 41, Expert Systems in Engineering Applications, 1996, p 221-254

Wang, L. (State Key Lab. of COE, Dalian University of Technology); Song, Y.; Feng, S., Lectotype optimization of offshore platforms by use of three-scale fuzzy analytical hierarchy process, China Ocean Engineering, v 15, n 2, 2001, p 153-164

Albaugh, E. Kurt (Dolphin Titan Int Inc, Houston, Tex, USA), NEW TECHNIQUES ENHANCE WORKOVER SKID-OFF CAPABILITIES., World Oil, v 199, n 1,
Hancock, W. P. (Mobil Exploration Norway Inc, Norw), OPERATIONAL EXPERIENCE OF RUNNING MULTICASING GAS COMPRESSION TRAINS ON A NORTH SEA PLATFORM., SPE Production Engineering, v 1, n 4, Jul, 1986, SPE 14584, p 279-288

Source: Industria Italiana del Cemento, v 67, n 11, Nov, 1997, p 852, La piattaforma Troll: Un ciclope nel Mare del Nord (Troll offshore platform: A cyclops in the North Sea), Language: Italian, English

Li, Huajun (Ocean Univ of Qingdao); Jiang, Jitong; Cao, Hongsheng; Ji, Chunyan; Takayama, Tomotsuka, Optimal design of TMD under long-term nonstationary wave loading, China Ocean Engineering, v 14, n 1, 2000, p 25-32

Chen, S. (School of Civil Eng./Architecture, Dalian University of Technology); Fu, G., A fuzzy approach to the lectotype optimization of offshore platforms, Ocean Engineering, v 30, n 7, May, 2003, p 877-891

Karayaka, Metin (Aker Engineering Inc), Integration of advanced material components to deepwater platforms, Proceedings of the Annual Offshore Technology Conference, v 3, 2000, p 321-325

Gasser, M. (Univ Innsbruck); Schueller, G.I., Reliability - based structural optimization - software development, Proceedings of Engineering Mechanics, v
Hagar, William G. (Univ of Massachusetts at Boston); Miniutti, Paul G.; Stallsmith, Bruce W., Remote monitoring of oxygen levels in Savin Hill cove of Boston harbor, Proceedings of SPIE - The International Society for Optical Engineering, v 1930, n pt 1, 1992, p 547-556

Franci, F. (SIIRTEC-NIGI), New glycol regenerator adaptable to offshore use, World Oil, v 214, n 7, Jul, 1993, p 52

Ishii, Kenichi (Chiba Research Lab); Tachibana, Naoto; Iwata, Zensuke; Makino, Yoshiyuki; Shibata, Keiichi, Marine riser cables, Furukawa Review, n 10, Aug, 1992, p 56-62

Imai, H. (Setsunan Univ, Dep of Mechanical Engineering, Osaka, Jpn); Shinozuka, M.; Yamaki, T.; Li, D.; Kuwana, M., DISTURBANCE DECOUPLING BY

Christensen, Mike L. (Gulf Oil Exploration & Production Co, Houston, TX, USA); Zimmerman, David L., OPTIMIZATION OF OFFSHORE ELECTRICAL POWER SYSTEMS., IEEE Transactions on Industry Applications, v IA-22, n 1 pt 1, Jan, 1986, p 148-160

Mollison, Michael I. (Esso Australia Ltd), Pipe-in-pipe insulation system passes tests for reel lay, Oil and Gas Journal, v 90, n 19, May 11, 1992, p 52-57

Estefen, S. F. (Univ Federal do Rio de Janeiro, Braz); Harding, J. E., RING STIFFENER BEHAVIOUR AND ITS INTERACTION WITH CYLINDRICAL PANEL BUCKLING., Proceedings of the Institution of Civil Engineers (London), v 75, n pt 2, Jun, 1983, p 243-264

Nielsen, Finn Gunnar (Norsk Hydro ASA, Hydro E and P Research Centre), Comparative study on airgap under floating platforms and run-up along platform columns, Marine Structures, v 16, n 2, March/April, 2003, p 97-134

Schachte, Richard David (Dept. de Engenharia Naval e Oceanica, EE, UFRJ); Jordani, Carlos Gomes; Fernandes, Antonio Carlos, A design approach for storage

Hakam, Aly (Winmar Consulting Services, Inc); Thornton, Win, Case history: decommissioning, reefing, and reuse of Gulf of Mexico platform complex, Proceedings of the Annual Offshore Technology Conference, v 3, 2000, p 293-299

Bazzurro, Paolo (Stanford Univ); Cornell, C. Allin, Seismic hazard analysis of nonlinear structures. I: Methodology, Journal of Structural Engineering, v 120, n 11, Nov, 1994, p 3320-3344

Casselman, Robert (Columbia Gas Development Corp); Parrott, Ken, Use of automatic sampling systems in offshore pipeline service, Society of Petroleum Engineers of AIME, (Paper) SPE, May, 1990, 9p 20313

Kawano, K. (Kagoshima University); Hashimoto, T., Nonlinear dynamic responses of a large offshore structure, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 2001, p 294-300

Dunbar, R.M. (Heriot-Watt Univ), Surface-contour electromagnetic wave antenna for short-range subsea communications, IEE Conference Publication, n 394, 1994, p 117-121

Chen, Xiaohong (Shanghai Jiao Tong Univ); Huang, Xianglu, Motion and mooring line loads of a moored semi-submersible in waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 1, n pt A, Offshore Technology, 1997, p 235-241

Christensen, Mike L. (Gulf Oil Exploration & Production, Houston, TX, USA); Zimmerman, David L., OPTIMIZATION OF OFFSHORE ELECTRICAL POWER
Mollison, Michael I. (Esso Australia Ltd), Foam insulation gets first reeled installation off Australia, Oil and Gas Journal, v 90, n 20, May 18, 1992, p 80-84

Silva, Armand J. (Univ of Rhode Island); Bryant, William R., Jumbo piston coring in deep water Gulf of Mexico for seabed geohazard and geotechnical investigations, Proceedings of the International Offshore and Polar Engineering Conference, v 2, 2000, p 424-433

Feng, S. (State Key Lab. Coastal Offshore Eng., Dalian University of Technology); Song, Y.; Zhang, R., Optimum design of structure shape for offshore jacket platforms, China Ocean Engineering, v 14, n 4, 2000, p 435-445

Natke, H.G. (Univ of Hannover); Cempel, C., Holistic modelling as a tool for the diagnosis of critical complex systems, Automatica, v 32, n 1, Jan, 1996, p 89-94

Huang, W.S. (Texaco Inc); French, Mike R.; Markitell, Barry N., Design and performance of Chuchupa 14 - first horizontal gas well, offshore Colombia, Proceedings of the International Meeting on Petroleum Engineering, v 2, 1995, p 265-274

Ramanan, V.S. (Central Electrochemical Research Inst); Muthukumar, M.; Gnanasekaran, S.; Venkataramana Reddy, M.J.; Emmanuel, B., Green's functions for the Laplace equation in a 3-layer medium, boundary element integrals and their application to cathodic protection, Engineering Analysis with Boundary Elements, v 23, n 9, Oct, 1999, p 777-786

Huang, W.S. (Texaco Inc); French, Mike R.; Markitell, Barry N., Design and performance of Chuchupa 14 - first horizontal gas well, offshore Colombia, Proceedings - SPE International on Horizontal Well Technology, Profit Through Synergy, 1996, p 11-20

Wilkins, Bernard C. (Power Management Assoc); De Backer, Christiane M., RELEVANCE OF CENTRAL HYDRAULICS TO PETROLEUM INSTALLATIONS., Petroleum Review, v 42, n 497, Jun, 1988, p 30-32

Al-Rabeh, Ala H. (King Fahd Univ of Petroleum and Minerals); Gunay, Nazmi, On the application of a particle dispersion model, Coastal Engineering, v 17, n 3-4, Aug, 1992, p 195-210

Tindle, C.T. (Univ of Auckland); G.E.J., ATOC and other acoustic thermometry observations in New Zealand, Marine Technology Society Journal, v 33, n 1, Spring, 1999, p 59-60

King, J. C. (ARCO Oil & Gas Co, Dallas, TX, USA); Stanbridge, D. W.; Ide, Yas; Trinker, T. A.; Gupta, S. R., RIGOROUS SCREENING SELECTS SOUR-GAS PLANT PROCESS., Oil and Gas Journal, v 84, n 36, Sep 8, 1986, p 101-110
Lingelem, Morten N. (Norsk Hydro A.S.); Holm, Henning; Meling, John, Multiphase-flow concerns guide TOGI system design, Oil and Gas Journal, v 88, n 30, Jul 23, 1990, p 38-42

Kaufman, Raymond (Deepsea Ventures Inc, Gloucester Point, VA, USA), CONCEPTUAL APPROACHES FOR MINING MARINE POLYMETALLIC SULFIDE DEPOSITS., Marine Technology Society Journal, v 19, n 4, Fourth Quarter, 1985, p 50-56

Twachtman, Ron (Twachtman Snyder & Thornton, Inc.), How proper management can cut platform salvage cost, Ocean Industry, v 25, n 2, Mar, 1990, p 44-47, 62

Anon, Quick disconnect designed for flexible lines offshore, Ocean Industry, v 25, n 1, Jan-Feb, 1990, p 62-63

Chu, Liangcheng (Dalian Univ of Technology); Qu, Naisi; Wu, Ruifeng; Lu, Min; Yang, Guojin, Dynamic load identification in time domain, China Ocean Engineering, v 5, n 3, 1991, p 279-286

Press, A.J.C.; Zietsman, J.F.W.; Rossouw, J., Mossel Bay FA platform. Installation
of long vertical piles, Civil Engineer in South Africa, v 33, n 9, Sep, 1991, 7p

de Alcantara, Fabio (Univ Federal do Rio de Janeiro); Cardoso Washington, Dulce, Analytical synoptic-dynamic study about the severe weather event over the city of Rio de Janeiro on January 2, 1987, Coastal Zone 89 Conf Sixth Symp Coastal Ocean Manage, 1989, p 195-208

Michel, Drew (ROV Technologies Inc), Shell Oil's Auger TLP/ROV. Challenging, innovative, Sea Technology, v 35, n 4, Apr, 1994, p 17-20

Vandiver, J. K. (MIT, Cambridge, Mass, USA); Dunwoody, A. B.; Campbell, R. B.; Cook, M. F., MATHEMATICAL BASIS FOR THE RANDOM DECREMENT VIBRATION SIGNATURE ANALYSIS TECHNIQUE., American Society of Mechanical Engineers (Paper), 1981, 7p

Anon, FLOATING PRODUCTION SYSTEM FOR UK SECTOR., Ocean Industry, v 19, n 2, Feb, 1984, p 58, 60

Bingham, H.B. (Danish Technical Univ), Hybrid Boussinesq-panel method for predicting the motion of a moored ship, Coastal Engineering, v 40, n 1, Apr, 2000, p 21-38

Bennett, Richard M. (Univ of Tennessee, Knoxville, TN, USA), COMMENTS ON 'FIRST ORDER VS. SECOND ORDER RELIABILITY ANALYSIS OF SERIES STRUCTURES', Structural Safety, v 4, n 3, Mar, 1987, p 241-242

Alberts, Louw, MOSSEL BAY PROJECT - LOCAL ENGINEERING CHALLENGE., South African Mechanical Engineer, v 37, n 9, Sep, 1987, p 396-397, 399, 401

Auyong, Jan (Univ of Hawaii, Sea Grant Extension, Honolulu, HI, USA); Ditton, Robert B.; Reggio, Villere C. Jr., OFFSHORE PETROLEUM STRUCTURES LURE FISHERMAN SEAWARD IN THE CENTRAL GULF OF MEXICO., Oceans (New York), 1985, p 561-567

Anon, SAS: SUBSEA ATMOSPHERIC SYSTEM., Oil Gas-European Magazine, v 13, n 1, 1987, p 25

Li, Chang-Sheng (Natl Taiwan Ocean Univ); Shyu, Rong-Juin; Ko, Wen-Jean; Lin, Hwa-Tzo, Multichannel vibration time series analysis of an offshore structure model, Chung-Kuo Chi Hsueh Kung Ch'eng Hsueh Pao/Journal of the Chinese Society of Mechanical Engineers, v 14, n 1, Feb, 1993, p 106-112

Yakovlev, V. V. (Acad of Sciences of the Ukrainian SSR, Inst of Hydromechanics, Kiev, USSR), VOZDEISTVIE VOLN NA KRUGOVUYU PLAVUCHUYU PLATFORMU S NEGORIZONTAL’NYM DNOM V ZHIDKOSTI PEREMENNOI GLUBINY. (Effect of Waves on a Circular Floating Platform with a Nonhorizontal Bottom in a Fluid of Variable Depth.), Gidromekhanika, 1984, p 15-20

Zhai, Gangjun (State Key Lab. of COE, Dalian University of Technology); Kang, Haigui; Xu, Facong, The fuzzy reliability optimum design of offshore jacket platforms, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 2, 2002, p 75-82

Phansalkar, A. K. (Cont Oil Co, Ponca City, Okla, USA); Coltharp, E. D.; Bourne, H. A., SUBSEA PRODUCTION SYSTEMS - TODAY., World Oil, v 3, Production, 1980, p 113-120

Barlowe, George (Northern Power Syst, Moretown, VT, USA); Day, Robert; Kilfoyle, Don; Roberts, Richard; Smith, Garyl, Hybrid renewable energy systems for off-shore naval installations, Conference Record of the IEEE Photovoltaic Specialists Conference, v 2, 1988, p 1179-1181

Dishongh, B. (Scasafe Inc, Lafayette, LA, USA); Dooley, D., COMPOSITE APPLICATION FOR THE OFFSHORE INDUSTRY., American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v 10, 1987, p 271-273

Jagannathan, Sridhar (Glosten Associates, Inc), Suspended tension leg platform (STLP). A new platform concept for deepwater exploration and production,

Anon, HOW PENROD PLANS TO DRILL FROM THE BLOCK 29 FPS., Ocean Industry, v 22, n 7, Jul, 1987, p 17-20

Lopes, Tiago A.P. (Federal Univ of Rio de Janeiro); Neto, Severino F.S.; Raposo, Celso V.; Alvarado, Freddy A.U., Correlation between experimental and numerical data applied to fixed offshore structures, Proceedings of the International Modal Analysis Conference - IMAC, v 1, 1991, p 455-461

Kang, Haigui (State Key Lab. of Coastal and Off., Dalian University of Technology); Liu, Wei; Zhai, Gangjun; Xu, Facong; Feng, Sheng, Multi-objective fuzzy optimum design based on reliability for offshore jacket platforms, China Ocean Engineering, v 15, n 4, 2001, p 467-477

Adelson, Barry L. (Exxon Production Research Co, Houston, Tex, USA); Steinmetz, Ray L., EARTHQUAKE DUCTILITY STUDY FOR OFFSHORE STRUCTURES., Journal of Waterway, Port, Coastal and Ocean Engineering, v 110, n 4, Nov, 1984, p 393-412

Jones, W.J. Derrick (Univ Coll London); Blackie, Alvin P., Cyclic tension corrosion fatigue of high-strength steels in seawater, ASTM Special Technical Publication, n 1049, Mar, 1990, p 447-462

de Andrade, Ricardo F.M. (COPPE/UFRJ - Civil Engineering Dep); Magluta, Carlos; Roitman, Ney, Development of a system for the estimation of FRFs using MIMO technique, Proceedings of the International Symposium on Offshore Engineering, 1997, p 429-443

Lake, Matthew (Univ of Michigan); He, Haiping; Troesch, Armin W.; Perlin, Marc; Thiagarajan, Krish P., Hydrodynamic coefficient estimation for TLP and spar structures, Journal of Offshore Mechanics and Arctic Engineering,
Transactions of the ASME, v 122, n 2, May, 2000, p 118-124

Ertekin, R. Cengiz (Univ of Hawaii at Manoa); Kim, Jang Whan, Parametric study of the hydroelastic response of a floating, mat-type runway in regular waves, Oceans Conference Record (IEEE), v 2, 1998, p 988-992

Miller, C. D. (CBI Industries Inc, Plainfield, IL, USA); Grove, R. B., COLLAPSE TESTS OF RING-STIFFENED CYLINDERS UNDER COMBINATIONS OF AXIAL COMPRESSION AND EXTERNAL PRESSURE, American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, v 105, 1986, p 117-125

Anon, Gas, water injection included in off-Norway heavy-oil development, Oil and Gas Journal, v 101, n 4, Jan 27, 2003, p 50-51

Waldhelm, Chris M. (Solar Turbines Inc), Marinized industrial gas turbine for HSLC marine propulsion, American Society of Mechanical Engineers (Paper), 1994, 94-GT-242, p 1-11

Chen, Guocai (Nanhai West Corp), Equipment and technology of the production and processing in Ya13 - 1 gas field, Tianranqi Gongye/Natural Gas Industry, v 19, n 1, Jan, 1999, p 85-89

Bie, Shean (Sch. of Civil Eng., Tianjin Univ.); Xu, Yanjie; Wang, Guanglun, Static stability analysis of air floated structures, Qinghua Daxue Xuebao/Journal of Tsinghua University, v 42, n 2, February, 2002, p 274-277

Huang, L.L. (Univ of Hawaii at Manoa); Riggs, H.R., Hydrostatic stiffness of flexible floating structures for linear hydroelasticity, Marine Structures, v 13, n 2, Mar, 2000, p 91-106
Harms, Weldon M. (Haliburton Serv, Duncan, Okla); Lingenfelter, John T., MICROSPHERES CUT DENSITY OF CEMENT SLURRY., Oil and Gas Journal, v 79, n 5, Feb 2, 1981, p 59-66

Venkataramana, Katta (Kagoshima Univ); Yoshihara, Susumu; Kawano, Kenji; Aikou, Yorikazu, Vortex-induced vibrations of moored floats in steady currents, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 2000, p 504-510

Singh, R. P. (Indian Inst of Technology, New Delhi, India); Gupta, Ashok, EFFICIENT FATIGUE ANALYSIS OF OFFSHORE STRUCTURE., International Journal of Structures, v 8, n 1, Jan-Jun, 1988, p 41-56

Burke, D.F. (Naval Facilities Engineering Service Cent), Durable marine concrete for the U.S. Navy, Oceans Conference Record (IEEE), v 3, 2000, p 1803-1814

Finn, Adrian J. (Costain Oil Gas/Process Ltd.), New FPSO design produces LNG from offshore sources, Oil and Gas Journal, v 100, n 34, Aug 26, 2002, p 56-62

Boote, D. (Univ of Genova); Mascia, D., Anti-seismic design methodologies applied to offshore structures, Marine, Offshore and Ice Technology, 1994, p 99-112

Yang, J. C. S. (Univ of Maryland at College Park, Dep of Mechanical Engineering, College Park, MD, USA); Tsai, T.; Tsai, W. H.; Chen, R. Z., DETECTION AND IDENTIFICATION OF STRUCTURAL DAMAGE FROM DYNAMIC RESPONSE MEASUREMENTS., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, 1985, p 496-504

Ashley, D. B. (Univ of Texas, Austin, TX, USA); Peng, Y. -H., INTELLIGENT CONSTRUCTION RISK IDENTIFICATION SYSTEM., ASME, 1987, p 91-97

Zahn, P. B. (Arctec Offshore Corp, Columbia, MD, USA); Minnick, P. V., LOCAL IMPACT PRESSURES DUE TO FIRST YEAR ICE IN THE MARGINAL ICE

Girard, Anouck Renee (University of California, Berkeley and California PATH, Institute of Transportation Studies); De Sousa, Joao Borges; Hedrick, J. Karl, An overview of emerging results in networked multi-vehicle systems, Proceedings of the IEEE Conference on Decision and Control, v 2, 2001, p 1485-1490

Pettersen, Erik (Trosvik Engineering A/S, Research & Development Dep, Porsgrunn, Norw); Valsgard, Sverre Publication date: 1983, p 338-370, COLLISION RESISTANCE OF MARINE STRUCTURES.,

Xu, T. (Univ of California at Berkeley); Bea, R.G., Reliability evaluation of existing platforms based on fuzzy set theory, Proc Second Int Offshore Polar Eng Conf, 1992, p 523-530

Guerrero, Vladimir (Mobil Research & Development Corp, Princeton, NJ, USA), OFFSHORE MEGAPROJECT INSTRUMENTATION NEEDS PLANNING., Oil and Gas Journal, v 84, n 18, May 5, 1986, 5p between p 96 and 104

Sviridov, Serguei A. (P.P. Shirshov Inst of Oceanology 23); Sterlyagov, Maxim S., Sea surface slope statistics measured by laser sensor, Oceans Conference Record (IEEE), v 1, 1994, p 900-905

Talwar, Mahesh (Air Pollution Control District); Philp, Laurence W., Control technologies for offshore gas turbines, Proceedings - A&WMA Annual Meeting, v 5, 1989, 14p

Karamchandani, Ashish (STUP Consultants); Dalane, Jan Inge; Bjerager, P., Systems reliability approach to fatigue of structures, Fatigue Fract Steel Concr Struct ISFF 91 Proc, 1991, p 1431-1446

Martin, Robert E. Sr. (Tex East Transm Corp, Houston), HANDLING LIQUIDS IN OFFSHORE GAS LINES GETS NEW APPROACH., Oil and Gas Journal, v 79, n 17, Apr 27, 1981, p 143-148

Banichuk, N.V. (Department of Structural Engineering, University of Cagliari); Ragnedda, F.; Serra, M.; Vivane, C., Hydroelastic analysis of floating vibrating plate-like structures, Mechanics of Structures and Machines, v 30, n 2, May, 2002, p 157-175

Song, Yupu (Dalian Univ of Technology); Wang, Jian, Finite element method for design of reinforced concrete offshore platforms, Proc Second Int Offshore Polar Eng Conf, 1992, p 103-107

Anon, ROV OPERATORS AND DIVERS PRACTICE FORTHCOMING MISSIONS., Ocean Industry, v 19, n 1, Jan, 1984, p 7, 9

Weesakul, Sutat (Chulalongkom Univ); Charulakana, Supot, Comparison of wave hindcast methods for lower Gulf of Thailand, Proceedings of the Coastal Engineering Conference, v 1, 1991, p 986-992

Lawson, Michael, HOUSTON CENTER COSTS TRIMMED BY NOVEL FRAME., ENR (Engineering News-Record), v 218, n 10, Mar 5, 1987, p 20-21

van Smirren, J.R. (Fugro GEOS Inc); Romeo, John; Vogel, Michael, Developments in acoustic Doppler current profiling and its technical application in deepwater drilling, Proceedings of the Annual Offshore Technology Conference, v 1, 1999, p 221-229

Tayfun, Aziz M. (Kuwait Univ); Lo, Jen-Men, Nonlinear effects on wave envelope and phase, Journal of Waterway, Port, Coastal and Ocean Engineering, v 116, n 1, Jan-Feb, 1990, p 79-100

Silva, Armand J. (Univ of Rhode Island); Bryant, William R.; Young, Alan G.; Schultheiss, Peter; Dunlap, Wayne A.; Sykora, Gabriella; Bean, Daniel; Honganen, Cary, Long coring in deep water for seabed research, geohazard studies and geotechnical investigations, Proceedings of the Annual Offshore Technology
Conference, v 1, 1999, p 603-619

Jebaraj, C. (Memorial Univ, St. John's, Newfounl, Can); Swamidas, A. S. J.; Arockiasamy, M., RESPONSE OF A BOAT LANDING SYSTEM TO THE ACCIDENTAL COLLISION BY A SUPPLY BOAT., Oceans (New York), 1987, p 537-542

Zhou, Han-bin (Tongji Univ); Cao, Zhi-yuan, Non-classical energy method used for analysis of built-up trussed tower structures, Computational Mechanics, 1991, p 111-116

Ma, Q.W. (School of Engineering, Robert Gordon University); Patel, M.H., Coupled nonlinear motion of floating structures with water columns in open-bottom tanks, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 1, 2002, p 783-791

Murphy, Stephen H. (Center for Intelligent Robotics Syst for Space Exploration, Rensselaer Polytech Inst, Troy NY, USA); Wen, John Ting-Yung; Saridis, George N., Simulation of cooperating robot manipulators on a mobile platform, IEEE Transactions on Robotics and Automation, v 7, n 4, Aug, 1991, p 468-478

Fang, Ming-Chung (Natl Cheng Kung Univ, Tainan, Taiwan), HYDRODYNAMIC FORCES ON A FLOATING CYLINDER IN WAVES OF FINITE DEPTH., Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 2, 1988, p 23-31

Bao, Yingbin (Shanghai Jiao Tong Univ); Li, Runpei; Gu, Yongning, Dynamic plastic analysis of ship-platform collision, China Ocean Engineering, v 12, n 1, 1998, p 23-32

Garcia, Ana Cristina Bicharra (Universidade Federal Fluminense); De Souza, Clarisse Sieckenius, ADD+: Including rhetorical structures in active documents, Artificial Intelligence for Engineering Design, Analysis and Manufacturing;
Cabeza, Rafael (Univ Publica de Navarra); Carlosena, Alfonso, Analog universal active device: theory, design and applications, Analog Integrated Circuits and Signal Processing, v 12, n 2, Feb, 1997, p 153-168

Kobayashi, Eiichi (Mitsubishi Heavy Ind., Ltd); Kyozuka, Yusaku; Hikai, Akio, Basic study on the environmental assessment of coastal area mega-float structures by two dimensional tidal analysis, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 39-46

Henrique, Luiz (PETROBRAS Research & Development Cent); Alves, Moraes; Jacob, Breno Pinheiro; Ellwanger, Gilberto Bruno, Analysis procedure for the tendons of a tension leg platform, Proceedings of the International Offshore and Polar Engineering Conference, v 1, 1997, p 161-168

Li, Ying-Hsiao (Arco E&P Technology); Chesnut, G.R.; Richmond, R.D.; Beer, G.L.; Caldarera, V.P., Laboratory tests and field implementation of gas-drag-reduction chemicals, SPE Production & Facilities, v 13, n 1, Feb, 1998, p 53-58

Iijima, Kazuhiro (Univ of Tokyo); Yoshida, Koichiro; Suzuki, Hideyuki, Hydrodynamic and hydroelastic analyses of very large floating structures in waves, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 139-145

Kobayashi, Kentaro (Sumitomo Heavy Industries, Ltd); Ohkawa, Yutaka; Kodan, Norihisa, Environmental conditions of the large-scale experiment of a mega-float structure, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 55-61

Raoof, Mohammed (Dep of Civil and Structural Engineering), Wire recovery

Raoof, M. (South Bank Univ); Yu, Ping Huang, Free bending characteristics of axially preloaded spiral strands, Proceedings of the Institution of Civil Engineers, Structures and Buildings, v 94, n 4, Nov, 1992, p 469-484

Birkelund, Yngve (Department of Physics, University of Tromso); Hanssen, Alfred; Powers, Edward J., Multitaper estimators of polyspectra, Signal Processing, v 83, n 3, March, 2003, p 545-559

Idichandy, V.G. (Indian Institute of Technology); Ganapathy, C, Modal parameters for structural integrity monitoring of fixed offshore platforms, Experimental Mechanics, v 30, n 4, Dec, 1990, p 382-391

Bea, R.G. (Univ of California at Berkeley); Valle, O., Key issues associated with development of reassessment and requalification criteria for platforms in the Bay of Campeche, Mexico, Journal of Offshore Mechanics and Arctic Engineering, Transactions of the ASME, v 122, n 1, Feb, 2000, p 7-19

Hansen, Pierre (Ecole des Hautes Etudes Commerciales); de Luna Pedrosa Filho, Eugenio; Ribeiro, Celso Carneiro, Location and sizing of offshore platforms for oil exploration, European Journal of Operational Research, v 58, n 2, Apr 27, 1992, p 202-214

Hoo Fatt, Michelle S. (Massachusetts Inst of Technology); Wierzbicki, Tomasz, Impact damage of long plastic cylinders, Proc First Int Offshore Polar Eng Conf, 1991, p 172-182

Fatt, Michelle S. Hoo (Massachusetts Inst of Technology); Wierzbicki, Tomasz, Impact damage of long plastic cylinders, International Journal of Offshore and Polar Engineering, v 2, n 2, Jun, 1992, p 147-156

Mercx, W.P.M. (TNO Prins Maurits Lab); van den Berg, A.C.; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C., Developments in vapour cloud explosion blast modeling, Journal of Hazardous Materials, v 71, n 1, Jan, 2000, p 301-319

Ditlevsen, Ove (Technical University of Denmark), Stochastic model for joint wave and wind loads on offshore structures, Structural Safety, v 24, n 2-4, 2002, p 139-163

Stewart, W. P. (Stewart Technology Associates, Houston, TX, USA), PRACTICAL ASPECTS OF PLATFORM INSPECTION., Ocean Industry, v 22, n 3, Mar, 1987, p 54-56

Ye, Wei (Texas A & M Univ); Anam, Iftekhar; Zhang, Jun, Effects of wave directionality on wave loads and dynamic responses of a spar, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-0601, 6pp

Bea, R.G. (Univ of California), Re-qualification of offshore platforms, Civil Engineering in the Oceans V, 1992, p 427-443

Ran, Z. (McDermott Engineering); Kim, M.H.; Zheng, W., Coupled dynamic analysis of a moored spar in random waves and currents (time-domain vs. frequency-domain analysis), Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-0604, 8pp

Jordan, Donald A. (Univ of Virginia); Weggel, David C.; Miksad, Richard W.; Roesset, Jose M., Wavelet analysis of the transient response of spar platforms,

Anon, Stainless topsides save weight, Steel Times, v 217, n 9, Sep, 1989, P 523

Anon, NEW CONNECTOR PROMISES EASY PLATFORM REMOVAL., Ocean Industry, v 23, n 6, Jun, 1988, p 39

Thebault, J. (Elf Aquitaine Norge A/S, Stavanger, Norw); Robberstad, L.; Langen, I.; Agnello, G.; Doucet, Y.; Nerzic, R., IN-SERVICE RESPONSE ANALYSIS OF TWO FIXED OFFSHORE PLATFORMS., Elsevier Science Publishers BV (Developments in Marine Technology, v 2), 1985, p 123-133

Luo, Chuanxin (Tianjin Univ); Zhu, Ke; Zhang, Lifu, Approach to power spectrum density values in three dimensional acceleration of ground motions, China Ocean Engineering, v 7, n 4, 1993, p 417-424

Frisbie, F. R. (Ocean Systems Engineering, Houston, TX, USA), INSPECTING AND REPAIRING OFFSHORE PLATFORMS TODAY., Ocean Industry, v 22, n 3, Mar, 1987, p 60-63

Kim, Heon-tea (Osaka UNiv); Sawaragi, Toru; Aoki, Shin-ichi, Wave control by pile-supported floating breakwater, Proceedings of the International Offshore and Polar Engineering Conference, v 3, 1994, p 545-549

Sturova, I.V., Diffraction of shallow-water waves on a floating elastic platform, Prikladnaya Matematika i Mekhanika, v 65, n 1, 2001, p 114-122

Lovland, Paul (Kvaerner Engineering A/S, Lysaker, Norw), NICKEL ALLOYS SHOW BENEFITS ON OFFSHORE PLATFORMS., Metallurgia, v 54, n 2, Feb, 1987, p 67-68

Anon, Marine survival school readied in Louisiana, Ocean Industry, v 24, n 3, Mar, 1989, p 31

Kikutake, Tetsuo (Technological Research Assoc of Mega-Float), Mega-Float airport, the state of the art, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4311, 8pp

Meylan, Michael H. (Univ of Otago), Wave response of floating thin plates of shallow draft by a variational method, Proceedings of the International Offshore
McCabe, Charles (Ocean Industry, Houston, TX, USA), PLATFORM REPAIR USES DRY WELDING AT 680 FT SUBSEA., Ocean Industry, v 22, n 10, Oct, 1987, p 34, 36, 38-40

Soh, Chee-Kiong (Nanyan Technological Inst); Soh, Ai-Kah; Lai, Kum-Yew, Approach to automate the design of fixed offshore platforms, Society of Petroleum Engineers of AIME, (Paper) SPE, Mar, 1991, SPE 21634, 35p

Conn, Andrew F. (Tracor Hydronautics Inc, Laurel, MD, USA); Johnson, Virgil E. Jr.; Lindenmuth, William T.; Chahine, Georges L.; Frederick, Gary S., SOME UNUSUAL APPLICATIONS FOR CAVITATING WATER JETS., Papers Presented at the International Symposium on Jet Cutting Technology, 1984, p 1-12

Bourgeois, T.M. (Shell Offshore Inc), Auger tension leg platform: conquering the deepwater Gulf of Mexico, Proc SPE Int Petrol Conf Exhib MEx, 1994, SPE 28680, p 129-140

Jones, Ian S.F. (Univ of Sydney), High resolution underwater acoustic imaging, Oceans Conference Record (IEEE), v 3, 1999, p 1093-1097

Chen Zhu, Chang (Tongji Univ, Shanghai, China); Da Tong, Zheng, SEISMIC
DESIGN OF LATERALLY LOADED PILES FOR OFFSHORE PLATFORMS IN SANDS., ASTM Special Technical Publication, 1986, p 281-294

Anon, FIRST PLATFORM REMOVAL FROM DUTCH SHELF., Ocean Industry, v 23, n 6, Jun, 1988, p 42

Hotta, Hitoshi (Japan Marine Science and Technology Cent); Washio, Yukihisa; Yokozawa, Hitoshi; Miyazaki, Takeaki, R&D on wave power device 'Mighty Whale', Renewable Energy, v 9, n 1-4, Sep-Dec, 1996, p 1223-1226

Gebara, Joseph (Amoco Corp); Dolan, Dan; Pawsey, Stuart; Jeanjean, Philippe; Dahl-Stamnes, Knut, Assessment of offshore platforms under subsidence Part 1: approach, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-1478, 8pp

Liu, Yungang (Caran), Generation of slowly varying drift forces by filtering in the time domain, Marine Structures, v 12, n 2, Feb, 1999, p 69-81

Anon, Floatels provide safety, preserve environment, Ocean Industry, v 24, n 8, Aug, 1989, p 52A, 52C

Wu, Chong (Kyoto Univ); Watanabe, Eiichi; Utsunomiya, Tomoaki, Eigenfunction expansion-matching method for analyzing the wave-induced responses of an elastic floating plate, Applied Ocean Research, v 17, n 5, Oct, 1995, p 301-310

van Hoorn, Frank (Wijsmuller Transport B.V.), Heavy-lift vessel solves TLWP transport problem, Ocean Industry, v 25, n 3, Apr-May, 1990, p 84

204

Virgin, L.N. (Duke Univ); Erickson, B.K., New approach to the overturning stability of floating structures, Ocean Engineering (Pergamon), v 21, n 1, Jan, 1994, p 67-80

Stubbs, Norris (Texas A&M Univ, College Station, Tex, USA), EXPERIMENTS ON ACTIVE CONTROL OF FLOATING PLATFORMS., ASCE, v 1, 1983, p 577-580

Nohara, Ben T. (Mitsubishi Heavy Industries), Survey of the generation of ocean waves in a test basin, Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v 22, n 2, Jun, 2000, p 303-315

van der Ree, A. (Christian Huygens Lab, Noordwijk, Neth), ARTEMIS BEACON SYSTEM - A SHORT RANGE REFERENCE SYSTEM FOR DYNAMIC POSITIONED VESSELS., Computer Applications in Shipping and Shipbuilding, v 8, 1980, p 385-38

Persen, L. N. (Technical Univ of Norway, Inst of Mechanics, Trondheim, Norw), APPLICATION OF AN OPTICAL SCATTERER TO THE STUDY OF TWO-PHASE FLOW IN VERTICAL PIPES., Springer-Verlag, 1984, p 165-173

Anon, Simple measures reduce marine mammal injuries during platform removal, Oil and Gas Journal, v 92, n 37, Sept 12, 1994, p 89-90

Sarkar, A. (Univ of Oxford); Taylor, R. Eatock, Effects of mooring line drag damping on response statistics of vessels excited by first- and second-order wave forces, Ocean Engineering (Pergamon), v 27, n 6, Jan, 2000, p 667-686

Grace, W.R. (Taywood Engineering), Ocean survival: concrete as a structural material for offshore platforms, Corrosion Prevention & Control, v 41, n 2, Apr, 1994, p 29-31

Tharakar, Beverghese G. (MIT, Cambridge, Mass, USA); Psaraftis, Harilaos N., CRITICAL REVIEW OF OIL SPILL RISK ANALYSIS., Oceans (New York), v 2, 1981, p 933-938

Focht, John A. Jr. (McClelland Eng Inc, Houston, Tex, USA), MARINE SITE INVESTIGATIONS FOR BOTTOM-SEATED STRUCTURES., Univ of Mass
Grad Sch, 1982, p 605-618

Tan, K.H. (Univ of Manchester); Montague, P.; Norris, C., Steel sandwich panels: Finite element, closed solution, and experimental comparisons, on a 6m × 2.1m panel, Structural Engineer, v 67, n 9, May 2, 1989, p 159-166

Stahl, Bernhard (Amoco Corp); Gebara, Joseph M.; Aune, Stig; Cornell, C. Allir, Acceptance criteria for offshore platforms, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-1463, 6pp

Dicks, B. (Orielton Field Cent, Oil Pollution Research Unit, Pembroke, Wales); Hartley, J. P., EFFECTS OF REPEATED SMALL OIL SPILLAGES AND CHRONIC DISCHARGES., Royal Soc, 1982, p 285-307

Anon, New jack-up for year-round North Sea service, Ocean Industry, v 24, n 7, Jul, 1989, p 39-40

Halliwell, A. Roy (Heriot-Watt Univ, Edinburgh, Scotl); Herd, Charles J.; Owen, D. Gareth, INVESTIGATION INTO THE MOORING OF SUPPLY VESSELS BY SPECIALISED BOW AND STERN MOORINGS., Engl Pap OE81 SPE 104116, 1981, p

Anon, Sprayed plastic coating prevents steel corrosion, Ocean Industry, v 24, n 8, Aug, 1989, p 32

Norris, C. (Univ of Manchester); Montague, P.; Tan, K.H., All-steel structural panels to carry lateral load: Experimental and theoretical behaviour, Structural
Lipa, Belinda J. (CODAR Ocean Sensors Ltd, Mountain View, CA, USA); Barrick, Donald E.; Isaacson, James; Lillebow, Peter M., CODAR wave measurements from a North Sea semisubmersible, IEEE Journal of Oceanic Engineering, v 15, n 2, Apr, 1990, p 119-125

Bailey, Alan (Brooksave Ltd); Sharkey, Jim, ADVANTAGES OF COMPUTERISED WEIGHT CONTROL SYSTEMS., Offshore Conferences & Exhibitions Ltd, 1982, 9p

de Koning, Cor (Heerema Engineering (UK) Ltd, K), OFFSHORE SIDE OF WEIGHT CONTROL., Offshore Conferences & Exhibitions Ltd, 1982, 17p

Anon, 2ND INTERNATIONAL CONFERENCE ON OFFSHORE WELDED STRUCTURES., Welding InstEngl, 1983, var paging

Graff, W. J. (Exxon Co, Houston, Tex, USA); Koudelka, T. M., FATIGUE OF OFFSHORE PLATFORMS: A METHOD OF ANALYSIS., Lecture Notes in Control and Information Sciences, 1984, p 524-533

Kelly, P. H. (Exxon Production Research Co, Houston, Tex, USA); Plummer, F. B.; Pike, P. J. Publication date: 1983, 17p, LENA GUYED TOWER: A PIONEERING STRUCTURE.,

Furnes, O. (Det Norske Veritas, Oslo, Norw); Kohler, P. E., SAFETY OF OFFSHORE PLATFORMS - CLASSIFICATION RULES AND LESSONS LEARNED., Elsevier Science Publ Co (Developments in Marine Technology, 1), 1984, p 53-70
Heideman, John c. (Exxon Prod Res Co, Houston, Tex, USA); George, Robert Y., BIOLOGICAL AND ENGINEERING PARAMETERS FOR MACROFOULING GROWTH ON PLATFORMS OFFSHORE LOUISIANA., Oceans (New York), v 1, 1981, p 550-557

Anon, PHILLIPS COMPLETES EKOFSK PLATFORM ELEVATION., Ocean Industry, v 22, n 9, Sep, 1987, p 105

Muraoka, Eiichi (Japan Natl Oil Corp), Survey and maintenance of oil storage vessels at mooring site, Proceedings of the International Offshore and Polar Engineering Conference, v 4, 2000, p 325-329

Wu, Chong (Kyoto Univ); Utsunomiya, Tomoaki; Watanabe, Eiichi, Harmonic wave response analysis of elastic floating plates by modal superposition method, Structural Engineering/Earthquake Engineering, v 14, n 1, Apr, 1997, p 1s-10s

Hauck, Michael (Drilling Software Co), Planning platform wells: the belowground structure, Ocean Industry, v 24, n 5, May, 1989, p 36-38, 40

Hoffman, D. (Hoffman Marit Consult Inc, Glen Head, NY, USA); Petrie, G. L., FLOATING VESSEL ANALYSIS: DIRECTIONAL SPECTRA., ASCE, 1982, p 422-442

Hamamoto, Takuji (Musashi Inst of Technology); Suzuki, Akinori; Tsujioka, Nobuhiro; Fujita, Ken-ichi, 3D BEM-FEM hybrid hydroelastic analysis of module linked large floating structures subjected to regular waves, Proceedings of the

Smith, R. S. (OPC Engineering Inc, Houston, Tex, USA), COMPUTER PROGRAMME SIMULATION OF OFFSHORE FACILITIES WEIGHT AND AREA BY DETAILED SYSTEMS ANALYSIS., Offshore Conferences & Exhibitions Ltd, 1982, 10p

Emi, Hirohiko (Nippon Kaiji Kyokai, Kobe Branch, Kobe, Jpn); Sone, Hiroshi; Kumamoto, Hiroyuki, DESIGN STANDARD FOR SEA TRANSPORTATION OF LARGE CONCRETE STRUCTURES., Offshore Structures Engineering, v 4, 1982, p 518-541

Solumsmoen, O. (Det Norske Veritas, Oslo, Norw); Haug, Tom, RELIABILITY OF WEIGHING OPERATIONS., Offshore Conferences & Exhibitions Ltd, 1982, 29p

Lau, Joseph C. (Comput Sci Corp, NSTL Station, Miss, USA); Steele, Kenneth F.; Burdette, Ernest L., TECHNIQUE FOR THE MEASUREMENT OF HULL AZIMUTH ANGLES IN AN NDBO DIRECTIONAL WAVE MEASUREMENT SYSTEM., Oceans (New York), 1982, p 635-640

Elleston, Fred G. (Structel Ltd), WEIGHT ENGINEERING OFFSHORE - IMPROVEMENT OR POTENCE., Offshore Conferences & Exhibitions Ltd, 1982, 5p

Pearce, G. (Smiths Industries, Kelvin Hughes Div); Meeson, J. P.; Haslett, R. W. G.; Harrison, A., WAVE HEIGHT AND DIRECTION INDICATION BASED ON A COMMERCIAL RADAR., IEE Colloquium (Digest), n 1982/33, 1982, p 3. 1-3. 3

Anon, OWEC 82: OFFSHORE WEIGHT ENGINEERING CONFERENCE., Offshore Conferences & Exhibitions Ltd, 1982, var paging

Wong, W. K. (Det Norske Veritas, Jpn); Rogerson, J. H., PROBABILISTIC ESTIMATE OF THE RELATIVE VALUE OF FACTORS WHICH CONTROL THE FAILURE BY FRACTURE OF OFFSHORE STRUCTURES., Welding InstEngl,

Pyman, M. A. F. (Technica Ltd, London, Engl); Austin, J. S.; Lyon, P. R., SHIP/PLATFORM COLLISION RISK IN THE U. K. SECTOR., Reports of the Working Commissions (International Association for Bridge and Structural Engineerin, v 42, 1983, p 145-152

Angel, Thomas M. (Sante Fe Underwater Services Inc, USA); Zawacki, John M., AUTONOMOUS CLEANING INSPECTION DEVICE., Marine Technology Soc, 1983, 13p

Frieze, P. A. (Univ of Glasgow, Dep of Naval Architecture & Ocean Engineering, Glasgow, Scotl); McGregor, R. C.; Winkle, I. E. eds., MARINE AND OFFSHORE SAFETY, PROCEEDINGS OF AN INTERNATIONAL CONFERENCE., Elsevier Science Publ Co (Developments in Marine Technology, 1), 1984, 612p

Sekita, Kinji (Nippon Steel Corp, Civil Engineering & Marine Contruction Div, Jpn); Kato, Teruo, DESIGN OF OFFSHORE FIXED STRUCTURES WITH EARTHQUAKE-RESISTANT DUCTILITY., Nippon Steel Technical Report, n 24, Dec, 1984, p 17-24

Chamberlain, G.A. (Shell Research Ltd), Experimental study of large-scale compartment fires, Institution of Chemical Engineers Symposium Series, n 134, 1994, p 155-170

Hudson, Jon (Health & Safety Executive), New safety rules challenge U.K. operators, regulators, Oil and Gas Journal, v 92, n 33, Aug 15, 1994, 4p
Chamberlain, G.A. (Shell Research Ltd), Hazards posed by large-scale pool fires in offshore platforms, Institution of Chemical Engineers Symposium Series, n 139, 1995, p 213-226

Anon, BIG LIFTS MEAN BIG SAVINGS ON PLATFORM PROJECT COSTS., Ocean Industry, v 22, n 9, Sep, 1987, p 110-112

Hibbard, D.C. (Hardcastle & Richards/Earl and Wright Joint Venture); Ferguson, M.C., Structural support for Australia's newest offshore facility, National Conference Publication - Institution of Engineers, Australia, n 90 pt 10, 1990, p 425-429

Eashwar, M. (Offshore Platform and Marine Electrochemistry Cent); Chandrasekaran, P.; Subramanian, G.; Balakrishnan, K., Microbiologically influenced corrosion of steel during putrefaction of seawater: Evidence for a new mechanism, Corrosion (Houston), v 49, n 2, Feb, 1993, p 108-113

Eashwar, M. (Offshore Platform and Marine Electrochemistry Cent, CECRI Unit); Subramanian, G.; Chandrasekaran, P.; Balakrishnan, K., Mechanism for barnacle-induced crevice corrosion in stainless steel, Corrosion (Houston), v 48, n 7, Jul, 1992, p 608-612

Eashwar, M. (Offshore Platform and Marine Electrochemistry Cent); Maruthamuthu, S.; Sathiyanarayanan, S.; Balakrishnan, K., Ennoblement of stainless alloys by marine biofilms: the neutral pH and passivity enhancement
model, Corrosion Science, v 37, n 8, Aug, 1995, p 1169-1176

Source: Aviation Week and Space Technology (New York), v 143, n 7, Aug 14, 1995, p 30, 'Megafloat' seen as Tokyo savior,

Source: Aviation Week and Space Technology (New York), v 144, n 26, Jun 24, 1996, p 35, Shipbuilders set megafloat schedule,

Okamura, Hideo, Development and practical use of megafloat, Yosetsu Gakkai Shi/Journal of the Japan Welding Society, v 69, n 4, Jun, 2000, p 44

Endo, Hisayoshi (Ship Research Inst), Behavior of a VLFS and an airplane during takeoff/landing run in wave condition, Marine Structures, v 13, n 4-5, Jul, 2000, p 477-491

Song, Hao (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiaotong Univ.); Cui, Weicheng; Liu, Yingzhong, Comparison of linear level I Green-Naghdi theory with linear wave theory for prediction of hydroelastic responses of VLFS, China Ocean Engineering, v 16, n 3, September, 2002, p 283-300

Masanobu, Sotaro (Univ of Tokyo); Yoshida, Koichiro; Suzuki, Hideyuki; Oka, Noriaki, Estimation of wind loads on VLFS of semisubmersible type, Marine Structures, v 13, n 4-5, Jul, 2000, p 245-260

Watanabe, Eiichi (Kyoto Univ); Utsunomiya, Tomoaki; Kubota, Akira, Analysis of wave-drift damping of a VLFS with shallow draft, Marine Structures, v 13, n 4-5, Jul, 2000, p 383-397

Takagi, Ken (Department of Naval Arch./Ocean Eng., Osaka University), A theoretical approach to the slamming impact pressure acting on the VLFS,

Fujikubo, M. (Faculty of Engineering, Hiroshima University); Yao, T., Structural modeling for global response analysis of VLFS, Marine Structures, v 14, n 3, May/June, 2001, p 295-310

Cui, W. (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiao Tong University); Song, H., An improved simplified method for predicting the hydroelastic response of mat-like VLFS, China Ocean Engineering, v 15, n 3, 2001, p 329-344

Lee, C.-H. (Massachusetts Inst of Technology); Newman, J.N., Wave effects on large floating structures with air cushions, Marine Structures, v 13, n 4-5, Jul, 2000, p 315-330

Kitamura, F. (Ship Research Inst); Sato, H.; Shimada, K.; Mikami, T., Wind loads acting on very large floating structures, Proceedings of the International

Takaishi, Y. (Dept. of Oceanic Arch. and Engr., College of Sci. and Technology, Nihon University); Masuda, K.; Minemura, K., Relative wave motion and shipping water on deck of mega-float structure, Marine Structures, v 14, n 1-2, 2001, p 194-196

Riggs, H. R. (Univ of Hawaii at Manoa, Honolulu, HI, USA), Current efforts in technology development for very large floating structures, Oceans (New York), v 1, Ocean Technologies and Opportunities in the Pacific for the 90's, 1991, p 201-206

Yoon, Jae D. (Daewoo Heavy Industries, Ltd); Sim, In H.; Choi, Hang S., Analysis of the hydroelastic behavior of large floating structures, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 6, Ocean Space Utilization, 1997, p 115-121

Sun, Hui (Sch. of Naval Arch. and Ocean Eng., Shanghai Jiaotong Univ.); Song, Hao; Cui, Weicheng; Liu, Yingzhong, On the interaction of surface waves with an elastic plate of finite length in head seas, China Ocean Engineering, v 16, n 1, March, 2002, p 21-32

Sorge, Marjorie, GM's vision for the future, Automotive Industries AI, v 175, n 8, Aug, 1995, 4pp

Ertekin, R. Cengiz (Univ of Hawaii at Manoa); Kim, Jang Whan; Xia, Dingwu, Hydroelastic response of a mat-type, floating runway near a breakwater in irregular seas, Oceans Conference Record (IEEE), v 2, 1999, p 839-847

Kobayashi, Kentaro (Sumitomo Heavy Industries, Ltd); Ohkawa, Yutaka; Futami, Yoshio, Large-scale on-sea experiment of Mega-Float structures, Proceedings of
the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 1998, OMAE98-4312, 9pp

DTIC Technical Reports

Haviland, Joseph K., Sea Based Logistics: Full Speed Ahead., NAVAL WAR COLL NEWPORT RI ,Report Number(s): XB-NWC ,Report Date: 05 Feb 1999 ,Media Count: 28 Page(s) ,Accession Number: ADA363451

Venkataraman, Vijay, Dynamic Response of a Mobile Offshore Base Hydroelastic Test Model, MAINE UNIV AT ORONO ,Report Number(s): C-9920-01 XB-ONR ,Report Date: Dec 2001 ,Media Count: 174 Page(s) ,Accession Number: ADA397636

Citation Format: Custom User Definition, Demolition/Salvage Analysis of Offshore Platforms. Stage I and II., BARNETT AND CASBARIAN INC METAIRIE LA ,Report Number(s): CHES/NAVFAC-FPO-8331C ,Report Date: May 1983 ,Media Count: 80 Page(s) ,Accession Number: ADA180698

Citation Format: Custom User Definition, Demolition/Salvage Analysis of Offshore Platforms. Stage I and II., BARNETT AND CASBARIAN INC METAIRIE LA ,Report Number(s): CHES/NAVFAC-FPO-8331D ,Report Date: Jun 1983 ,Media Count: 59 Page(s) ,Accession Number: ADA180699

Patraiko, J. Rubin, M.D., A FEASIBILITY STUDY FOR A HIGH STABILITY SEABORNE RADAR PLATFORM, MITRE CORP BEDFORD MA ,Report Number(s): SR84 ESD-TDR63 230 ,Report Date: Jul 1963 ,Media Count: 67 Page(s) ,Accession Number: AD0339042

Citation Format: Custom User Definition, Marine Casualty Report. OCEAN EXPRESS (Drilling Unit); Capsizing and Sinking in the Gulf of Mexico on 15 April 1976 with Loss of Life., COAST GUARD WASHINGTON DC ,Report Date: 01 Jun 1978 ,Media Count: 106 Page(s) ,Accession Number: ADA076419

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Beissner, R. E. Birring, A. S., Nondestructive Evaluation Methods for Characterization of Corrosion: State of the Art Review., NONDESTRUCTIVE TESTING INFORMATION ANALYSIS CENTER SAN ANTONIO TX ,Report Number(s): NTIAC-88-1 ,Report Date: Dec 1988 ,Media Count: 72 Page(s) ,Accession Number: ADA210060

Riser, Stephen C., PALACE Drifters and the Global Cellular Network, WASHINGTON UNIV SEATTLE SCHOOL OF OCEANOGRAPHY, Report Number(s): XB-ONR, Report Date: 12 Jun 2001, Media Count: 4 Page(s), Accession Number: ADA391256

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***

Elmer, Glenn D., Vulnerability Analysis of Mobile Offshore Base (MOB), NKF ENGINEERING INC ARLINGTON VA, Report Number(s): NKF-9505-01/1 XB-NSWCCD, Report Date: 03 Dec 1994, Media Count: 39 Page(s), Accession Number: ADC057979

Maddox, Douglas L., An Experimental Testbed for a Free-Floating Manipulator, NAVAL POSTGRADUATE SCHOOL MONTEREY CA, Report Number(s): XB-NPS, Report Date: Dec 1993, Media Count: 44 Page(s), Accession Number: ADA277350

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***

Fiske, Richard Paul, The Use of Buoyancy to Lift Heavy Objects from the Sea, NAVAL POSTGRADUATE SCHOOL MONTEREY CA, Report Date: Jun 1981, Media Count: 138 Page(s), Accession Number: ADA119320
Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): BOZZETTI,D. BRANDI,R. FONTANA,E. PANZANI,C. TONOLINI,F., ACOUSTIC EMISSION MONITORING DURING FATIGUE LOADING OF NODES FOR OFFSHORE PLATFORMS ,Report Date: Aug 1982 ,Media Count: 19 Page(s) ,Accession Number: ADD315006

Mahan,Edward A., Initial Production Test of Cradle, 27-Ft Bridge Erection Boat., ABERDEEN PROVING GROUND MD MATERIEL TESTING DIRECTORATE ,Report Number(s): APG-MT-5143 ,Report Date: Jun 1978 ,Media Count: 7 Page(s) ,Accession Number: ADB028888

Citation Format: Custom User Definition, Shock Test of Hydrophones DT-574/BQQ-6 and DT-513A, NAVAL SEA SYSTEMS COMMAND WASHINGTON DC ,Report Number(s): TR-3-75 XB-NAVSEA ,Report Date: May 1975 ,Media Count: 25 Page(s) ,Accession Number: ADC052278

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Bea,Robert G. Audibert,Jean M. E., Offshore Platforms and Pipelines in Mississippi River Delta, JOURNAL ARTICLE-UNIDENTIFIED SOURCE ,Report Date: Aug 1980 ,Media Count: 17 Page(s) ,Accession Number: ADE604821

Citation Format: Custom User Definition, Vulnerability Analysis of Very Large Mobile Offshore Base (VLMOB)., NKF ENGINEERING INC ARLINGTON VA ,Report Number(s): NKF-9404-01/1 XB-NWCCD ,Report Date: Jun 1994 ,Media Count: 67 Page(s) ,Accession Number: ADC057980

Tucker, Janet, Theater Missile Defense Extended Test Range Supplemental
Hornig, Alois, Bedrohungsberechnung und Zielzuweisung am Beispiel einer Schwimmenden Plattform (Threat Calculations and Target Designation Using the Example of a Floating Platform)., UNIVERSITAET DER BUNDESWEHR HAMBURG (GERMANY F R),Report Number(s): DOKFIZBW-RB-5296 ,Report Date: 1991 ,Media Count: 160 Page(s) ,Accession Number: ADB164089

Shipek, C. J. Evans, E. C., DEPTH REGULATION OF LOWERED OCEANOGRAPHIC EQUIPMENT., NAVY ELECTRONICS LAB SAN DIEGO CALIF ,Report Number(s): NEL-1215 ,Report Date: 27 Mar 1964 ,Media Count: 14 Page(s) ,Accession Number: AD0600187

Citation Format: Custom User Definition, Abstracts and Translations from Soviet Shipbuilding., NAVAL INTELLIGENCE SUPPORT CENTER WASHINGTON DC TRANSLATION DIV ,Report Number(s): NISC-TRANS-7876 ,Report Date: Mar 1986 ,Media Count: 125 Page(s) ,Accession Number: ADB116360

Citation Format: Custom User Definition, Marine Casualty Report. Collapse and Sinking of Mobile Offshore Drilling Unit RANGER I in the Gulf of Mexico on 10 May 1979 with Loss of Life., COAST GUARD WASHINGTON DC ,Report Number(s): USCG-16732/93621 ,Report Date: 10 May 1979 ,Media Count: 43 Page(s) ,Accession Number: ADA101641

Bang, Sangchul, Use of Suction Piles for Mooring of Mobile Offshore Bases. Annual Performance Report, SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY RAPID CITY DEPT OF CIVIL AND ENVIRONMENTAL ENGINEERING ,Report Number(s): XB-ONR ,Report Date: 10 Jun 1998 ,Media Count: 151 Page(s) ,Accession Number: ADA372818

Spiess, F. N., Advanced Marine Technology: Stable Floating Platform Project., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF ADVANCED
Oliver, R. E., Shock Testing of a 400-KW Fairbanks-Morse Diesel Generator on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC ,Report Number(s): DTMB-C-1457 ,Report Date: Apr 1963 ,Media Count: 32 Page(s) ,Accession Number: ADC957525

Citation Format: Custom User Definition, Underwater Facilities Inspections and Assessments at Naval Training Center, San Diego, California., BLAYLOCK-WILLIS AND ASSOCIATES SAN DIEGO CA ,Report Number(s): CHES/NAVFAC-FPO-1-84(21) CHES/NAVFAC-FPO-8421 ,Report Date: Oct 1984 ,Media Count: 72 Page(s) ,Accession Number: ADA168534

Citation Format: Custom User Definition, USSR Report, Transportation, No. 107., JOINT PUBLICATIONS RESEARCH SERVICE ARLINGTON VA ,Report Number(s): JPRS-82722 XJ-XD ,Report Date: 26 Jan 1983 ,Media Count: 53 Page(s) ,Accession Number: ADA340752

Stoll, Ludwig, Docking Capabilities in USSR Ports., NAVAL INTELLIGENCE SUPPORT CENTER WASHINGTON DC TRANSLATION DIV ,Report Number(s): NISC-TRANS-7031 ,Report Date: 16 Mar 1983 ,Media Count: 10 Page(s) ,Accession Number: ADB072823

Nixon, R. M., Mobile Offshore Bases (MOB) Operational Implications for the CINC or JTF Commander., NAVAL WAR COLL NEWPORT RI ,Report Number(s): XB-NWC ,Report Date: 14 Jun 1996 ,Media Count: 27 Page(s) ,Accession Number: ADA312202

Bodey, C. E. Chern, C., Engineering Investigation Report on Loss of the SEACON'S Center Well Doors., NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV ,Report Number(s): CHES/NAVFAC-FPO-1-80(2) ,Report Date: Dec 1979 ,Media Count: 23 Page(s) ,Accession Number: ADA167462

Dehlinger, Peter, RELIABILITY AT SEA OF GIMBAL-SUSPENDED GRAVITY METERS WITH 0.7 CRITICALLY DAMPED ACCELEROMETERS., OREGON
Citation Format: Custom User Definition, Tactical Aircrew Combat Training System TACTS Offshore Platforms., SUBOCEANIC CONSULTANTS INC NAPLES FL ,Report Number(s): CHES/NAVFAC-FPO-1-85(38) ,Report Date: Jul 1985 ,Media Count: 160 Page(s) ,Accession Number: ADB103592

Glacel, Robert Allan, Reduction of Offshore Platform Dynamic Response by Tuned Mass Damper., MASSACHUSETTS INST OF TECH CAMBRIDGE ,Report Date: May 1977 ,Media Count: 141 Page(s) ,Accession Number: ADA053324

Reuss, Gregory C., Son of Maritime Prepositioning Force, ARMY WAR COLL CARLISLE BARRACKS PA ,Report Number(s): XA-USAWC ,Report Date: 10 Apr 1998 ,Media Count: 37 Page(s) ,Accession Number: ADA339965

Howard, George W., Steel Treadway Bridge., ENGINEER BOARD FORT BELVOIR VA ,Report Number(s): 786 SBI-AD-F560 239 ,Report Date: 26 Nov
Howard, George W. Black, Winston E., Floating Panel Bridge (Bailey Type),
ENGINEER BOARD FORT BELVOIR VA, Report Number(s): 792 SBI-AD-F560 242, Report Date: 15 Jan 1944, Media Count: 129 Page(s), Accession Number: ADB960595

Spiess, Fred N., Stable Floating Platform., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF ADVANCED OCEAN ENGINEERING LAB, Report Number(s): AOEL-10, Report Date: 30 Jun 1970, Media Count: 8 Page(s), Accession Number: ADA009046

Citation Format: Custom User Definition, Stable Floating Platform., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF ADVANCED OCEAN ENGINEERING LAB, Report Number(s): AOEL-17, Report Date: 30 Sep 1970, Media Count: 4 Page(s), Accession Number: ADA009047

Citation Format: Custom User Definition, Annual Report (First), 15 December 1968 to 14 December 1969., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF ADVANCED OCEAN ENGINEERING LAB, Report Number(s): SIO-Ref-70-2 ARPA-2, Report Date: 15 Jan 1970, Media Count: 16 Page(s), Accession Number: ADA009048

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Jaske, C. E. Broek, D. Slater, J. E. Anderson, W. E., CORROSION FATIGUE OF STRUCTURAL STEELS IN SEAWATER AND FOR OFFSHORE APPLICATIONS, BATTELLE MEMORIAL INST COLUMBUS OHIO COLUMBUS LABS, Report Number(s): ASTM-STP-642, Media Count: 29 Page(s), Accession Number: ADD112744

Van Leer, John C., The Cyclesonde - A Practical Profiler for Upper Ocean Current and CTD Measurements., MIAMI UNIV FLA, Report Date: Feb 1980, Media Count: 3 Page(s), Accession Number: ADP000951

Herrington, Jean M., West Coast Ocean Construction Platform Economic Analysis., NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV, Report Number(s): CHES/NAVFAC-FPO-1-78(13), Report Date: Aug 1978, Media Count: 72 Page(s), Accession Number: ADA167510 Citation Access Denied: Accessioned Document Number ADD460689 Not Available: DISCONTINUED PLASTC CITATION

226

Oliver, R. E., Shock Testing of Baldwin-Lima-Hamilton Main Shaft Disconnect Coupling (S5G Project) on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB ,Report Number(s): SML-TR-780-23 ,Report Date: Sep 1965, Media Count: 15 Page(s) ,Accession Number: ADC957546

Oliver, R. E., Shock Testing of Warren Main Sea Water Cooling Pump, Type 12 MFVH, on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC ,Report Number(s): DTMB-C-1712 ,Report Date: Jul 1964, Media Count: 16 Page(s) ,Accession Number: ADC957547

Shah, Swati S., Detailed Operational Concept for the JTIDS Key Management
BEEBÈ, K. E., MOORING CABLE FORCES CAUSED BY WAVE ACTION ON FLOATING STRUCTURES, CALIFORNIA UNIV BERKELEY WAVE RESEARCH LAB, Report Number(s): S3-I366 XB-ONR, Report Date: Jun 1954, Media Count: 37 Page(s), Accession Number: AD0038087

Zumwal, Crane E., Failure Mode, Effects and Criticality Analysis for Mobile Offshore Bases (MOBs), ZTECH SERVICES INC HOUSTON TX, Report Number(s): NSWCCD/MSSPO-CR-95/11 XB- NSWCCD/MSSPO, Report Date: 27 Sep 1995, Media Count: 67 Page(s), Accession Number: ADB222908

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Preiser, Herman S. Ticker, Arthur Hatley, Kenneth J., Method and Apparatus for Coating Submerged Portions of Floating Structures, DEPARTMENT OF THE NAVY WASHINGTON DC, Report Number(s): PAT-APPL-533 702 PATENT-4-522 882, Report Date: 11 Jun 1985, Media Count: 7 Page(s), Accession Number: ADD013112

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): GELIUS, FREDRIK KORSNER, SVEN-ERIK, REMOTELY OPERATED ROBOT SYSTEM FOR SUBSEA CRACK

Stevens, George E. Funke, Maurice F., Development of a Fluidic Gas Concentration Sensor., TRITEC INC COLUMBIA MD ,Report Number(s): HDL-CR-80-103-1 ,Report Date: 16 Jun 1980 ,Media Count: 59 Page(s) ,Accession Number: ADA085777

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Magni, Massimo Michalopoulos, Alex P., Deflection of Monopiles with Collar Caissons, UNIDENTIFIED SOURCE ,Report Date: May 1981 ,Media Count: 5 Page(s) ,Accession Number: ADE606628

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): OERTLE, DONALD H., EARLY CRACK DETECTION WITH MULTI-PRESSURE SYSTEM - PATENT 4,104,906 ,Report Date: Aug 1978 ,Media Count: 1 Page(s) ,Accession Number: ADD306945
Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Wang, Z.F. Li, J. Ke, W. Zhu, Z., Characteristics of Acoustic Emission for A537 Structural Steel During Fatigue Crack Propagation, Report Date: 1992, Media Count: 6 Page(s), Accession Number: ADD334342
Citation Access Denied: Accessioned Document Number ADD458070 Not Available: DISCONTINUED PLASTC CITATION

Citation Format: Custom User Definition, Structural Engineering. Concrete Structures. Design Manual 2.4., NAVAL FACILITIES ENGINEERING COMMAND ALEXANDRIA VA, Report Date: May 1980, Media Count: 26 Page(s), Accession Number: ADA110233

Oliver, R. E., Shock Testing of Louis-Allis Secondary Propulsion Unit (Electromechanical Type) on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB, Report Number(s): SML-TR-780-4, Report Date: Jan 1965, Media Count: 15 Page(s), Accession Number: ADC957604

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Wang, Z.F. Li, J. Ke, W. Zhu, Z., Characteristics of Acoustic Emission for A537 Structural Steel during Fatigue Crack Propagation, ACADEMIA SINICA SHENYANG (CHINA), Report Number(s): ISTIC-TR-95009, Report Date: 1995, Media Count: 9 Page(s), Accession Number: ADD340854

Citation Format: Custom User Definition, Floating Support Bridge. Volume 1., DEFEENCE SCIENCE AND TECHNOLOGY ORGANIZATION CANBERRA (AUSTRALIA) DIRECTORATE OF TRIALS ,Report Number(s): DTRIALS-8/560-VOL-1 DODA-AR-006-180 ,Report Date: May 1991 ,Media Count: 44 Page(s) ,Accession Number: ADC048019

Citation Format: Custom User Definition, History of the Development of Bridging Equipment. I. Light Floating Bridging., ENGINEER BOARD FORT BELVOIR VA ,Report Number(s): SBI-AD-F560 494 ,Report Date: 23 Sep 1945 ,Media Count: 148 Page(s) ,Accession Number: ADB959506

Citation Format: Custom User Definition, History of the Development of Bridging Equipment. II. Medium Floating Bridging., ENGINEER BOARD FORT BELVOIR VA ,Report Number(s): SBI-AD-F560 495 ,Report Date: 14 Jan 1946 ,Media Count: 108 Page(s) ,Accession Number: ADB959507

Crowder, William S. Fortenberry, Henry C. Thede, Peter J., Operational Concept for a Rapidly Deployed Pier., LOGISTICS MANAGEMENT INST MCLEAN VA ,Report Number(s): LMI-RE401T1 XB-NFESC ,Report Date: Dec 1996 ,Media

Citation Format: Custom User Definition, History of the Development of Bridging Equipment. III. Heavy Floating Bridging., ENGINEER BOARD FORT BELVOIR VA, Report Number(s): SBI-AD-F560 496, Report Date: 18 Mar 1946, Media Count: 164 Page(s), Accession Number: ADB959508

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Topp, David, Operational Experience with the ACFM Inspection Technique for Sub-Sea Weld Inspection, Report Date: Mar 1994, Media Count: 5 Page(s), Accession Number: ADD340464

Tsai, Shoujen, Abbreviated Standardization and Tactical Trials on Slice, NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD, Report Number(s): NSWCCD-50-TR-1999/079 XB-ONR, Report Date: Dec 1999, Media Count: 30 Page(s), Accession Number: ADB251002

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, PROCEEDINGS OF THE THIRD INTERNATIONAL OFFSHORE MECHANICS AND ARCTIC ENGINEERING SYMPOSIUM, VOL. II, Report Date: Feb 1984, Media Count: 333 Page(s), Accession Number: ADD319739

Minsk, L. D., Assessment of Ice Accretion on Offshore Structures, COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER NH, Report Number(s): CRREL-SR-84-4, Report Date: Apr 1984, Media Count: 17 Page(s), Accession Number: ADA141996

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, INSPECTION OF OFFSHORE OIL AND GAS PLATFORMS AND RISERS, NATIONAL RESEARCH COUNCIL WASHINGTON DC MARINE BOARD, Report Number(s): USGS-CD-79-001, Report Date: Jul 1979, Media Count: 56 Page(s), Accession Number: ADD320544

Zhang, Zushu; Deng, Zigu. Structural Design for a Composite Pontoon Bridge. ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER CHARLOTTESVILLE VA. Report Number(s): FSTC-HT-0319-89, Report Date: 26 Jan 1990, Media Count: 8 Page(s), Accession Number: ADB141066

Bottin, Robert R., Jr. Seabrook Lock Complex, Lake Pontchartrain, Louisiana; Design for Wave Protection at a Temporary Entrance during Various Phases of Lock Construction. Hydraulic Model Investigation. ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS HYDRAULICS LAB. Report Number(s): WES/TR/HL-80-8, Report Date: Jun 1980, Media Count: 77 Page(s), Accession Number: ADA086878

Citation Format: Custom User Definition, Providing Support to the Surface Weapons Systems Acquisition Sub-Group in the Performance of Its Technical Planning and Evaluation Functions to Naval Sea Systems Command. BATTELLE COLUMBUS LABS WASHINGTON D.C. Report Date: 31 Jul 1975, Media Count: 14 Page(s), Accession Number: ADB006552

Bitting, Kenneth R., Advancements in Underwater Inspection. COAST GUARD RESEARCH AND DEVELOPMENT CENTER GROTON CT. Report Number(s): CG-D-12-89, Report Date: May 1989, Media Count: 29 Page(s), Accession Number: ADA215926

Citation Format: Custom User Definition, The AUTEC Ocean Haul Down Facility Offshore Platform and Mooring Dolphin. Volume 2. Structural and Foundation...
Analysis Report., BROWN AND ROOT DEVELOPMENT INC HOUSTON TX ,Report Number(s): CHES/NAVFAC-FPO-8776-VOL-2 ,Report Date: Apr 1987 ,Media Count: 1090 Page(s) ,Accession Number: ADB111552

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Rampolli, M., Structural maintenance of Agip platforms, ,Report Date: Jun 1997 ,Media Count: 3 Page(s) ,Accession Number: ADD341555

Burdick, David J., Roll Stabilization for T-AGOS Class Ships, NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEPT OF MECHANICAL ENGINEERING ,Report Number(s): XB-NPS-ME ,Report Date: Mar 1997 ,Media Count: 121 Page(s) ,Accession Number: ADA331152

Mallory, R. R., Shock Testing of Ingersoll-Rand Main Sea Water Pump (Type 12 HMC) on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB ,Report Number(s): SML-TR-780-32 ,Report Date: Jan 1966 ,Media Count: 33 Page(s) ,Accession Number: ADC957629

Burkett, George S. Bridgeman, William R., Concept Evaluation Program (CEP) of the High Sea State Container Transfer System (HISEACOTS),, TEXCOM AIRBORNE AND SPECIAL OPERATIONS TEST BOARD FORT BRAGG NC ,Report Number(s): TEXABNSOTD-1M014 XA-BRDEC ,Report Date: Oct 1992 ,Media Count: 118 Page(s) ,Accession Number: ADB183874

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Kwun, H. Burkhardt, G.L. Teller, C.M., Inspection of Ropes and Cables using the Transverse-Impulse Vibration Technique, ,Report Date: 1993 ,Media Count: 8 Page(s) ,Accession Number: ADD334801

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Lown, Eldon C. Topping, Alanson D., Floating Support Structure., DEPARTMENT OF THE AIR FORCE WASHINGTON D.C., Report Number(s): PAT-APPL-365 822 PATENT-3 951 086, Report Date: 20 Apr 1976, Media Count: 5 Page(s), Accession Number: ADD002523

Baumann, James L. Dixon, Mark D. Russell, Dallas W., Equations of Motion for Internal Bearing Stabilized Sighting Unit (IBSSU), ARMY MISSILE COMMAND REDSTONE ARSENAL AL TECHNOLOGY LAB, Report Number(s): DRSMI-T-79-83, Report Date: 21 Aug 1979, Media Count: 52 Page(s), Accession Number: ADB045819

Oliver, R. E., Shock Testing of S5G Project Ingersoll-Rand Main Condensate Pump (Type 5HEA-4) on the Floating Shock Platform, DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB, Report Number(s): SML-780-25, Report Date: Nov 1965, Media Count: 28 Page(s), Accession Number: ADC957635

Citation Format: Custom User Definition, Radome Boresight Error Determination and Compensation, WHITE SCIENTIFIC CONSULTANTS INC ARLINGTON VA, Report Date: 17 Dec 1985, Media Count: 121 Page(s), Accession Number: ADB105059

Citation Format: Custom User Definition, RECENT JAPANESE STRENGTH STEELS FOR LARGE WELDED STRUCTURES, WHITE SCIENTIFIC CONSULTANTS INC ARLINGTON VA, Report Date: 17 Dec 1985, Media Count: 121 Page(s), Accession Number: ADB105059

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Suzuki, H., RECENT JAPANESE STRENGTH STEELS FOR LARGE WELDED STRUCTURES, WHITE SCIENTIFIC CONSULTANTS INC ARLINGTON VA, Report Date: 17 Dec 1985, Media Count: 121 Page(s), Accession Number: ADB105059
Black, W. E. Howard, G. W., Capacity Ratings of Ponton Bridges in Currents of 9 and 11 Feet per Second., ENGINEER BOARD FORT BELVOIR VA, Report Number(s): MR-36, Report Date: 08 Feb 1945, Media Count: 35 Page(s), Accession Number: ADB957378

Bayless, S. C., Ritchie Project. Firing from Landing Craft. Test of 15 Ton Engineer Pontoons., ABERDEEN PROVING GROUND MD, Report Date: 10 Jun 1944, Media Count: 20 Page(s), Accession Number: ADB963523

Sommella, J., Significance and Control of Lamellar Tearing of Steel Plate in the Shipbuilding Industry., GIBBS AND COX INC NEW YORK, Report Number(s): 18521(1-146) SSC-290, Report Date: May 1979, Media Count: 85 Page(s), Accession Number: ADA075473

Dedreux, Bill, Implementation of the 21B64 Sonar Operator Trainer Mobile Platform Models., NAVAL UNDERWATER SYSTEMS CENTER NEW LONDON CT NEW LONDON LAB, Report Number(s): NUSC-TD-6481, Report Date: 25 Aug 1981, Media Count: 45 Page(s), Accession Number: ADC026002

Wanhill, R. J. H., Engineering Significance of Fatigue Thresholds and Short Fatigue Cracks for Structural Design., NATIONAL AEROSPACE LAB AMSTERDAM (NETHERLANDS), Report Number(s): NLR-MP-84001-U, Report Date: 02 Jan 1984, Media Count: 15 Page(s), Accession Number: ADB090358

Citation Format: Custom User Definition, Proposal to Design an Ocean Lift System Utilizing AMMI Pontoons., TAGGART (ROBERT) INC FAIRFAX VA, Report Number(s): RT-35100 CHES/NAVFAC-FPO-7203, Report Date: 19 Oct 1972, Media Count: 23 Page(s), Accession Number: ADA955046

Gibbons, Thomas Whicker, L. Folger, Design and Development of a Cable-Towed, Multi-Purpose, Surface-Following Float., DAVID TAYLOR MODEL BASIN WASHINGTON DC, Report Number(s): DTMB-C-1011, Report Date: Dec 1958, Media Count: 25 Page(s), Accession Number: ADA950132

Kareem, Ahsan Tognarelli, Michael A. Gurley, Kurtis R. Kijewski, Tracy L., Modeling of Nonlinear Ocean Systems, NOTRE DAME UNIV IN, Report Number(s): XB-ONR, Report Date: 13 Jan 1998, Media Count: 18 Page(s), Accession Number: ADB233185

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Melve, Bjorn Moursund, Bjarne, Acoustic Emission Testing of Glass Fibre Reinforced Pipes on Offshore Platforms, Report Date: 1994, Media Count: 15 Page(s), Accession Number: ADD340498
Taggart, Robert, Technology Breakdown Structure of Physical and Performance Characteristics of Ocean Construction Platforms., TAGGART (ROBERT) INC FAIRFAX VA, Report Number(s): RT-35602 CHES/NAVFAC-FPO-7400, Report Date: 30 Sep 1974, Media Count: 53 Page(s), Accession Number: ADA955049

Ballantyne, E. A., Report on the Bridge, Floating, Pneumatic Float, Class 60, Steel Superstructure (ERDL T-5 Design),, CORPS OF ENGINEERS FORT BELVOIR VA, Report Date: 18 Aug 1953, Media Count: 35 Page(s), Accession Number: ADC953373

Citation Format: Custom User Definition, ***DTIC DOES NOT HAVE THIS ITEM***, Personal Author(s): Hihara, L. H., Bregman, R., Takahashi, P. K., Marine Applications for Advanced Composite Materials., HAWAII UNIV AT MANOA HONOLULU, Report Date: 1993, Media Count: 6 Page(s), Accession Number: ADD205983

David, Brian, Evaluation of the High Sea State Container Transfer System (HISEACOSTS) and Pontoon Air Cushion Kit (PACK) Technology Demonstration During Joint Logistics Over-the-Shore (J-LOTS III-91),, ARMY BELVOIR RESEARCH DEVELOPMENT AND ENGINEERING CENTER FORT BELVOIR VA, Report Number(s): BRDEC-2517 XA-BRDEC, Report Date: Apr 1992, Media Count: 93 Page(s), Accession Number: ADA250133

Citation Format: Custom User Definition, Level Flotation Compliance Guideline., AMERICAN BOAT AND YACHT COUNCIL NEW YORK, Report Number(s): USCG-B-004-78, Report Date: Jan 1978, Media Count: 101 Page(s), Accession Number: ADA052758

Jacquemin, Analyse de Deux Systemes D'Exploitation des Nodules a Grandes Profondeurs, Assurant Production Annuelle de 1 Million de Tonnes (An Analysis of Two Systems for Nodule Exploitation at Great Depths to Assure an Annual Production of a Million Tons),, ECOLE NATIONALE SUPERIEURE DE TECHNIQUES AVANCEES PARIS (FRANCE), Report Number(s): ENSTA-39, Report Date: 1975, Media Count: 46 Page(s), Accession Number: ADB024787

Seelig, William N., Salvage and Demolition of Two Navy Offshore Platforms., BARNETT AND CASBARIAN INC METAIRIE LA, Report Number(s): CHES/NAVFAC-FPO-1-84(32), Report Date: Oct 1984, Media Count: 97 Page(s), Accession Number: ADA168656
Strub, Christopher M., The International Legal Implications of the Mobile Offshore Base: No Army or Air Force is an Island., NAVAL POSTGRADUATE SCHOOL MONTEREY CA ,Report Number(s): XB-NPS ,Report Date: Mar 1997 ,Media Count: 93 Page(s) ,Accession Number: ADA329334

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Cusanelli, Dominic S. Bradel, Jeffrey A., Floating Platform Tow Post., DEPARTMENT OF THE NAVY WASHINGTON DC ,Report Number(s): PAT-APPL-127 618 PATENT-5 343 742 XB-SEC/NAV ,Report Date: 06 Sep 1994 ,Media Count: 11 Page(s) ,Accession Number: ADD017833

Citation Format: Custom User Definition, Mobile Offshore Base (MOB) Weight Estimate Report., MCDERMOTT SHIPBUILDING INC SAINT ROSE LA ,Report Number(s): NSWCCD/TSS-CR-97-014 XT- DARPA ,Report Date: Jun 1997 ,Media Count: 20 Page(s) ,Accession Number: ADB227510

Talkington, Howard R., The Floating Stable Platform: Transferring Navy Technology to Civilian Applications., NAVAL UNDERSEA CENTER SAN DIEGO CALIF ,Report Number(s): NUC-TP-335 ,Report Date: Dec 1972 ,Media Count: 17 Page(s) ,Accession Number: AD0754783

Smith, W. D., Dry Ferries for 80-Ton Vehicles., ENGINEER BOARD FORT BELVOIR VA ,Report Number(s): 961 ,Report Date: 19 Nov 1945 ,Media Count: 45 Page(s) ,Accession Number: ADB957824

Taggart, Robert, Analysis of Floating Platform Requirements for Ocean Construction Projects., TAGGART (ROBERT) INC FAIRFAX VA ,Report Number(s): RT-35101 CHES/NAVFAC-FPO-7300 ,Report Date: 30 Apr 1973 ,Media Count: 25 Page(s) ,Accession Number: ADA955050

247
Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Wootton, L. R., Use of Vibration Monitoring on Offshore Structures, JOURNAL ARTICLE-UNIDENTIFIED SOURCE, Report Date: 1977, Media Count: 9 Page(s), Accession Number: ADE604161

Taggart, Robert, Search for Literature and Sources of Information on Ocean Construction Platforms, TAGGART (ROBERT) INC FAIRFAX VA, Report Number(s): RT-35601 CHES/NAVFAC-FPO-7401, Report Date: 15 Jul 1974, Media Count: 106 Page(s), Accession Number: ADA955051

Kimmel, Kevin R. Sekelsky, Alan, Wind Load Measurements and Flow Visualization of a Model of the Mobile Offshore Base Conceptual Design, NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD HYDROMECHANICS DIRECT ORATE, Report Number(s): CRDKNSWC-HD-0279-09 XT-ARPA, Report Date: Jan 1997, Media Count: 78 Page(s), Accession Number: ADB222605

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Damasceno, S. Camerini, C.S., Computerized Ultrasonic Examination in Offshore Files: Prospects, Progress, and Problems, Report Date: 1992, Media Count: 4 Page(s), Accession Number: ADD335905

Citation Format: Custom User Definition, U.S. Army Lighter, Amphibian, Heavy Lift System Definition and Validation Plan Study. Executive Summary, AEROJET TECHSYSTEMS CO SACRAMENTO CA ADVANCED SYSTEMS DIV, Report Number(s): ATC-2482-01, Report Date: Nov 1983, Media Count: 292 Page(s), Accession Number: ADB081858

Citation Format: Custom User Definition, Ocean Construction Platform SEACON Trim & Stability Manual, NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV, Report Number(s): CHES/NAVFAC-FPO-1-80(5), Report Date: 28 Mar 1980, Media Count: 160 Page(s), Accession Number: ADA167226

Citation Format: Custom User Definition, Ocean Construction Platform 'SEACON' Trim & Stability Study. Revision, NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV, Report Number(s): CHES/NAVFAC-FPO-8005, Report Date: 05 Mar 1980, Media Count: 73 Page(s), Accession Number: ADA167227
Dadant, P. M. Barbour, A. A. Mooz, W. E. Walker, J. K., Jr, A Comparison of Methods for Improving U.S. Capability to Project Ground Forces to Southwest Asia in the 1990's., RAND CORP SANTA MONICA CA, Report Number(s): RAND/R-2963-AF, Report Date: Nov 1984, Media Count: 301 Page(s), Accession Number: ADB088921

Citation Format: Custom User Definition, Mobile Offshore Base (MOB) Science and Technology Program, NAVAL FACILITIES ENGINEERING SERVICE CENTER PORT HUENEME CA, Report Number(s): NFESC-TR-2125-OCN XB-ONR, Report Date: Dec 2000, Media Count: 271 Page(s), Accession Number: ADA398863

Rossignol, Grant A., MS CYGNUS, SS AMERICAN TROJAN, and Causeway Platform Facility Relative Motion Evaluation., DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP PERFORMANCE DEPT, Report Number(s): DTNSRDC/SPD-515-03, Report Date: Feb 1983, Media Count: 95 Page(s), Accession Number: ADB076826

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): WOOLVEN, JOHN, ALL IN A DAY'S WORK., Report Date: Nov 1989, Media Count: 1 Page(s), Accession Number: ADD330164

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Ante, Louis E. Lindquist, Richard A. Roeschlein, Eugene R., Simulator for Testing Sonobuoys., DEPARTMENT OF THE NAVY WASHINGTON DC, Report Number(s): PAT-APPL-380 152

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Carneval, R.O. Freire, F., Surface Crack Evaluation, ,Report Date: 1989 ,Media Count: 3 Page(s) ,Accession Number: ADD335085

Remez, Y. V., Dynamics of Seagoing Floating Structures in Wind and Wave Conditions., DEFENCE RESEARCH INFORMATION CENTRE ORPINGTON (ENGLAND),Report Number(s): DRIC-T-7127 DRIC-BR-91264 ,Report Date: Feb 1984 ,Media Count: 57 Page(s) ,Accession Number: ADB081905

Citation Format: Custom User Definition, Technical Feasibility of Floating Interim Manhattan STOLport., AMERICAN AIRLINES NEW YORK ,Report Number(s): FAA-RD-70-67 ,Report Date: Sep 1970 ,Media Count: 108 Page(s) ,Accession Number: AD0715223

Citation Format: Custom User Definition

Drisko, R. W., Urethane Foams for Navy Pontoon Structures., NAVAL CIVIL ENGINEERING LAB PORT HUENEME CALIF ,Report Number(s): NCEL-TR-750 ,Report Date: Nov 1971 ,Media Count: 22 Page(s) ,Accession Number: AD0736596

BRONSON, EARL D. GLOSTEN, LARRY R., FLIP. FLOATING INSTRUMENT PLATFORM, SCRIPPS INSTITUTION OF OCEANOGRAPHY SAN DIEGO CALIF MARINE PHYSICAL LAB ,Report Number(s): R62 24 ,Report Date: 01 Nov 1962 ,Media Count: 1 Page(s) ,Accession Number: AD0290756

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): MOSES, FRED, STRATEGIES FOR IMPLEMENTING RELIABILITY IN OFFSHORE DESIGN CODES ,Report Date: Sep 1979 ,Media Count: 4 Page(s) ,Accession Number: ADD315164

Citation Format: Custom User Definition, Ocean Technology - A Digest., NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA ,Report Number(s): NOSC/TD-149 ,Report Date: Mar 1978 ,Media Count: 56 Page(s) ,Accession Number: ADA058370

Citation Format: Custom User Definition, San Francisco Floating STOLport Study., MULTIDISCIPLINARY ASSOCIATES SAN FRANCISCO CALIF ,Report Date: 28 Feb 1974 ,Media Count: 174 Page(s) ,Accession Number: ADA009178

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): PETERS, V. A., OFFSHORE PLATFORM NDT INSTRUMENTATION REQUIREMENTS ,Report Date: 1977 ,Media Count: 6 Page(s) ,Accession Number: ADD315165

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): GELIUS, F. KORSNER, S. E., ROBOT SYSTEM FOR SUBSEA INSPECTION ,Report Date: Jun 1987 ,Media Count: 3 Page(s) ,Accession Number: ADD326228
Carpenter, Samuel T., HIGH STABILITY SEABORNE PLATFORMS FOR RANGE INSTRUMENTATION,, MITRE CORP BEDFORD MASS ,Report Number(s): SR 35 ESD-TDR63 380 ,Report Date: Dec 1961 ,Media Count: 1 Page(s) ,Accession Number: AD0408624

Gruner, H., Lessons from the Practical Use of Special Lighters FP-36,, ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER CHARLOTTESVILLE VA ,Report Number(s): FSTC-HT-207-86 ,Report Date: 12 May 1986 ,Media Count: 8 Page(s) ,Accession Number: ADB105490

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Sheldon, Rubin, Ambient Vibration of Offshore Platform, AEROSPACE CORP EL SEGUNDO CA VEHICLE ENGINEERING DIV ,Report Date: Jun 1980 ,Media Count: 17 Page(s) ,Accession Number: ADE604225

Denny, A. A., EVALUATION OF PIPE AND PONTOON HANDLING FORK LIFT,, NAVAL CIVIL ENGINEERING LAB PORT HUENEME CA ,Report Number(s): NCEL-TN-492 ,Report Date: 15 Apr 1963 ,Media Count: 17 Page(s) ,Accession Number: AD0405039

Parker, C. H., Shock Test of DT-512 Multimode; DT-513A-AN/BQA-8B, TR-
Citation Format: Custom User Definition, A Conceptual Study of Stable Floating Platforms., NAVAL UNDERSEA RESEARCH AND DEVELOPMENT CENTER PASADENA CALIF ,Report Number(s): NUC-TN-428 GIDEP-347.45.00.00-Y3-01 ,Report Date: Aug 1970 ,Media Count: 28 Page(s) ,Accession Number: AD0918292

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Schillmoller,C. M. Jasner,M. R., High Performance Alloys for Offshore Platform Process Piping, ,Report Date: Jan 1984 ,Media Count: 9 Page(s) ,Accession Number: ADD129144

Padman, Laurie Plueddemann, Albert J. Muench, Robin D. Pinkel, Robert, Diurnal Tides Near the Yermak Plateau,, OREGON STATE UNIV CORVALLIS COLL OF
Jones, Harry Hickok, James, Measured Hydrodynamic Response of a Five Unit Mobile Offshore Base (MOB), NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SHIP SYSTEMS AND PROG RAMS DIRECTORATE, Report Number(s): CRDKNSWC-0279-06 XT-DARPA, Report Date: Jan 1997, Media Count: 101 Page(s), Accession Number: ADB222640

Lewis, Richard R., Measured and Predicted Structural Responses and Connector Loads of a Mobile Offshore Base (MOB), NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SURVIVABILITY STRUCTURES AND MATERIALS DIRECTORATE, Report Number(s): CARDEROCK-U-SSM-65-95/10 XT-ARPA, Report Date: Dec 1994, Media Count: 331 Page(s)
Causey, Dan, Jr. Piad, Carlos A., Ribbon Bridge Rating Test for Bridge and Raft Configurations. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR VA, Report Number(s): MERADCOM-2317, Report Date: Jan 1981, Media Count: 470 Page(s), Accession Number: ADB056899 Citation Access Denied: Accessioned Document Number ADD457952 Not Available: DISCONTINUED PLASTC CITATION

Grace, Peter J. Mlakar, Paul F., Floating Breakwater Prototype Test Program: Summary of Data Analysis Efforts. COASTAL ENGINEERING RESEARCH CENTER VICKSBURG MS, Report Number(s): CERC-MP-89-1, Report Date: Jan 1989, Media Count: 37 Page(s), Accession Number: ADA205250

Citation Format: Custom User Definition, West Coast Ocean Construction Platform Preliminary Design Study. Volume 1., GLOBAL MARINE DEVELOPMENT INC NEWPORT BEACH CA, Report Number(s): GMDI-04072-001-VOL-1 CHES/NAVFAC-FPO-1-78-9-VOL-1, Report Date: Jul 1978, Media Count: 112 Page(s), Accession Number: ADB099981

Dolezalek, Hans, Oceanographic Research Towers in European Waters. OFFICE OF NAVAL RESEARCH ARLINGTON VA, Report Number(s): ONREUR-92-7-R XB-ONR, Report Date: 01 Dec 1992, Media Count: 27 Page(s), Accession Number: ADA264795

Citation Format: Custom User Definition, PRocedure for the Documentation of Vessel Modifications Ocean Construction Platform SEACON., TRACOR/MARINE INC FORT LAUDERDALE FL, Report Number(s): TRACOR-83-723518-2 CHES/NAVFAC-FPO-8370, Report Date: 30 Sep 1983, Media Count: 15 Page(s), Accession Number: ADA167301

Dragojevic, Stevan, Coastal Pillars Marking Ferry Approaches. ARMY FOREIGN

Citation Format: Custom User Definition, Amphibious Cargo Beaching (ACB) Lighter Development - Phase I., KVAERNER MASA MARINE INC ANNAPOLIS MD ,Report Number(s): NFESC-CR-96.014 XB-ONR ,Report Date: Oct 1996 ,Media Count: 419 Page(s) ,Accession Number: ADA322357

Haynes, H. H. Rail, R. D., Concrete for Ocean Thermal Energy, Conversion Structures., CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CALIF ,Report Number(s): CEL-TN-1448 ,Report Date: Aug 1976 ,Media Count: 50 Page(s) ,Accession Number: ADA031045

Hagerty, M. T. D'Spain, G. L. Hodgkiss, W. S., Preliminary Analysis of the FLIP Array Data from the NOBS Experiment., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA MARINE PHYSICAL LAB ,Report Number(s): MPL-TM-429 MPL-U-42/92 XB-ONR ,Report Date: May 1992 ,Media Count: 85 Page(s) ,Accession Number: ADA265911

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Priest, A. M., Influence of Simulated Service Conditions on the Reliability of Polyaramid Composite Tension Members., RESERVED SOURCE ,Report Date: 1991 ,Media Count: 11 Page(s) ,Accession Number: ADD853871

Burkhart,M. D. Dillon,E. S. Oakley,O. H., A Summary of Wave Data Needs and Availability., NATIONAL RESEARCH COUNCIL WASHINGTON DC SHIP RESEARCH COMMITTEE ,Report Date: Aug 1979 ,Media Count: 30 Page(s)
Very Large Mobile Offshore Base (VLMOB), NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SHIP SYSTEMS AND PROGRAMS DIRECTORATE, Report Number(s): CRDKNSWC-HD-0279-01 XT-ARPA, Report Date: Mar 1995, Media Count: 77 Page(s), Accession Number: ADB222657

Shuhong, Pan E., Researches on the Mechanical Properties of the Steels Used for Offshore Platforms and Large Ships (Haiyang Pingtai He Daxing Chuanpo Yong Gaogiangdu Gangxilie De Yingyong Xingneng Yanju), NAVAL MARITIME INTELLIGENCE CENTER SUITLAND MD FOREIGN LANGUAGE SERVICES DIV, Report Number(s): NAVMIC-TRANS-920035 XN-NAVMIC-TRANS, Report Date: 21 Feb 1992, Media Count: 19 Page(s), Accession Number: ADB162228

Pochapsky, T. E., The Motion of a Neutral Float and Attached Diaphragm in a Pressure Gradient., COLUMBIA UNIV DOBBS FERRY NY HUDSON LABS, Report Number(s): TM-56, Report Date: 10 Feb 1961, Media Count: 27 Page(s), Accession Number: ADA068784

Derucher, K. N., Laboratory Model Testing of Bridge Protective Systems and Devices (Fendering), CIVIL DESIGN INC MORRISTOWN NJ, Report Number(s): 523-01-CG USCG-N-1-81, Report Date: Sep 1981, Media Count: 257 Page(s), Accession Number: ADA106771

Dominjon, G., The Sea, A New Outlet for the Metallurgical Industry (La Mer, un Debouche Nouveau pour l'Industrie Metallurgique), DEFENCE RESEARCH INFORMATION CENTRE ORPINGTON (ENGLAND), Report Number(s): DRIC-Trans-4088 DRIC-BR-45175, Report Date: Apr 1975, Media Count: 15 Pages, Accession Number: ADB005595

Freund, D. J. Vickers, T. K., Proposed ATC System for the Gulf of Mexico, Helicopter Operations Development Program, AUTOMATION INDUSTRIES INC SILVER SPRING MD VITRO LABS DIV, Report Number(s): FAA-RD-80-85, Report Date: Nov 1979, Media Count: 36 Pages, Accession Number: ADA089430

Howard, G. W., Bridging for Tidal Estuaries and Inundated Areas, ENGINEER BOARD FORT BELVOIR VA, Report Number(s): 788 SBI-AD-F560 281, Report Date: 15 Dec 1943, Media Count: 60 Pages, Accession Number: ADB957125

DE Jong, A. N., Visual and IR Point Detection Experiments during RED, August-September 2001 in Hawaii, FYSISCH EN ELEKTRONISCH LAB TNO THE HAGUE (NETHERLANDS), Report Number(s): FEL-01-A311 TDCK-TD01-0267 X5-TDCK, Report Date: May 2002, Media Count: 42 Page(s), Accession Number: ADB281841

Smith, A. B. Whitacre, Chris, Cost Estimate of the Seaworthy Very Large Mobile Offshore Base Concept., NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SHIP SYSTEMS AND PROG RAMS DIRECTORATE, Report Number(s): CRDKNSWC/SDD/12 XT-ARPA, Report Date: 25 Jan 1995, Media Count: 23 Page(s), Accession Number: ADB222660

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, Infrared Thermography Targets Offshore Scaling Problem, Report Date: Sep 1994, Media Count: 2 Page(s), Accession Number: ADD337284

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, Visual and IR Point Detection Experiments during RED, August-September 2001 in Hawaii, FYSISCH EN ELEKTRONISCH LAB TNO THE HAGUE (NETHERLANDS), Report Number(s): FEL-01-A311 TDCK-TD01-0267 X5-TDCK, Report Date: May 2002, Media Count: 42 Page(s), Accession Number: ADB281841

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, Cost Estimate of the Seaworthy Very Large Mobile Offshore Base Concept., NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD SHIP SYSTEMS AND PROG RAMS DIRECTORATE, Report Number(s): CRDKNSWC/SDD/12 XT-ARPA, Report Date: 25 Jan 1995, Media Count: 23 Page(s), Accession Number: ADB222660

Citation Format: Custom User Definition, Personal Author(s): Beissner, R.E. Birring, A.S., Nondestructive Evaluation Methods for Characterization of Corrosion., NONDESTRUCTIVE TESTING INFORMATION ANALYSIS CENTER SAN ANTONIO TX, Report Number(s): NTIAC-88-1, Report Date: Dec 1988, Media Count: 75 Page(s), Accession Number: ADD332012

Citation Format: Custom User Definition, Intermodule Connector Technology for Mobile Offshore Base Structures, MAINE UNIV AT ORONO, Report Number(s): XB-ONR, Report Date: Sep 1997, Media Count: 4 Page(s), Accession Number: ADA330599

Dietrich, Rolf A., The Effects of Wave Spreading on the Exciting Forces on a Tension Leg Platform., NAVAL POSTGRADUATE SCHOOL MONTEREY CA, Report Date: May 1979, Media Count: 73 Page(s), Accession Number: ADA086642

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***
Personal Author(s): Handal, E. Veland, N., Determination of Tension in Anchor Lines,
Report Date: 1998, Media Count: 5 Page(s), Accession Number: ADD344477

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***
Personal Author(s): CREMONINI, M.G. FERRO, G. JENKINS, R.D. RIGHETTI, G., APPLICATIONS OF MONITORING SYSTEMS IN STRUCTURAL AND GEOTECHNICAL ENGINEERING,
Report Date: May 1986, Media Count: 11 Page(s), Accession Number: ADD322033

Tierney, James M., Research, Design, and Development of the U.S. Coast Guard High Seas Oil Containment System., BATTELLE COLUMBUS LABS OHIO
Report Number(s): USCG-D-42-76, Report Date: Sep 1975, Media Count: 318 Page(s), Accession Number: ADA025749

Oversmith, Robert, Wave-Wind Current Research Facility., SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF ADVANCED OCEAN ENGINEERING LAB
Report Number(s): SIO-Ref-70-29 ARPA-11, Report Date: 01 Oct 1970, Media Count: 34 Page(s), Accession Number: ADA009258

Citation Format: Custom User Definition

EXPORT CONTROL

Personal Author(s): Fronk, A. D. Kennedy, P. G. Patterson, R. E., Ocean Engineering in Support of Surveillance., NAVAL COMMAND CONTROL AND OCEAN SURVEILLANCE CENTER RDT AND E DIV SAN DIEGO CA
Report Number(s): NRAD-TD-2346 XB-NRAD, Report Date: Sep 1992, Media Count: 78 Page(s), Accession Number: ADB168621

Wahab, R., Waves Induced Motions and Drift Forces on a Floating Structure (Door Golven Opgewekte Bewegingen en Driftkrachten voor een Drijvende Constructie), NEDERLANDS SCHEEPS-STUDIECENTRUM TNO DELFT SHIPBUILDING DEPT, Report Number(s): 186-S TDCK-64645, Report Date: Mar 1974, Media Count: 26 Page(s), Accession Number: AD0923392

Citation Format: Custom User Definition

270
EXP...

Barrick, Donald E., Status of HF Radars for Wave-Height Directional Spectral Measurements, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION BOULDER CO WAVE PROPAGATION LAB ,Report Date: Nov 1982 ,Media Count: 6 Page(s) ,Accession Number: ADP000379

Oliver, R. E., Shock Testing of SS(N)637 Class Main Lube Oil Pumps (DELAVAL) and Sump Tank Package on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB ,Report Number(s): SML-TR-780-11 ,Report Date: Apr 1965 ,Media Count: 23 Page(s) ,Accession Number: ADC959519

Citation Format: Custom User Definition, Follow-on Operational Evaluation of the Powered Causeway Section/Side Loadable Warping Tug., OPERATIONAL TEST AND EVALUATION FORCE NORFOLK VA ,Report Number(s): OPNAV-
Citation Format: Custom User Definition, Ocean Construction Platform Compendium., NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV ,Report Number(s): CHES/NAVFAC-FPO-1-78(17) ,Report Date: Sep 1978 ,Media Count: 104 Page(s) ,Accession Number: ADA165619

Citation Format: Custom User Definition, German Tugboat Type 7/67 and Trailer., ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT
McDonald, James E. Liu, Tony C., Precast Concrete Elements for Structures in Selected Theaters of Operations., ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS, Report Number(s): WES-TR-C-78-1, Report Date: Feb 1978, Media Count: 290 Page(s), Accession Number: ADA053165

Citation Format: Custom User Definition, Twenty-Five-Foot Steel Bridge Erection Boat., ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR VA, Report Number(s): USAMERDC-2046, Report Date: Dec 1972, Media Count: 31 Page(s), Accession Number: ADB955436

Citation Format: Custom User Definition, United Kingdom General-Purpose Tug., ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR VA, Report Number(s): USAMERDC-2043, Report Date: Dec 1972, Media Count: 31 Page(s), Accession Number: ADB955437

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): BOSSI, RICHARD BOYD, DONALD OBERG, DENNIS HEIN, NORMAN W., JR. SKILBECK, FRANK, COMPUTER-AIDED ULTRASONIC INSPECTION OF AN OFFSHORE TENSION LEG PLATFORM, Report Number(s): ASME 84-PVP-125, Report Date: 1984, Media Count: 7 Page(s), Accession Number: ADD317024

Citation Format: Custom User Definition

EXPORT CONTROL

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): LAUTZENHEISER, CLARENCE E. WHITING, ALLEN R., ULTRASONIC INSPECTION OF OFFSHORE PLATFORM WELDMENTS, Report Date: Apr 1977, Media Count: 13 Page(s), Accession Number: ADD305681

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): REEMSNYDER, HAROLD S., OBSERVATIONS, PREDICTIONS, AND PREVENTION OF FATIGUE CRACKING IN OFFSHORE STRUCTURES, Report Date: 1986, Media Count: 17 Page(s), Accession Number: ADD329486

Walker, David T. Lyzenga, David R., Wave-Coherence Measurements Using Synthetic Aperture Radar, VERIDIAN ERIM INTERNATIONAL ANN ARBOR MI, Report Number(s): 10018100-1-F XB-ONR, Report Date: Nov 2000, Media Count: 66 Page(s), Accession Number: ADA385054

Citation Format: Custom User Definition, Antisubmarine Warfare Area System, OFFICE OF NAVAL RESEARCH EUROPEAN OFFICE FPO NEW YORK 09510, Report Number(s): ONREUR-MASB-37-89 XN-ONREUR, Report Date: 17 Jul 1989, Media Count: 2 Page(s), Accession Number: ADA233491
ITEM*** Personal Author(s): Hihara, L. H. Bregman, R. Takahashi, P. K., Marine Applications for Advanced Composite Materials., HAWAII UNIV AT MANOA HONOLULU ,Report Date: 1993 ,Media Count: 6 Page(s) ,Accession Number: ADD854994

Korobkin, I. Leonard, J. S., Strategic Systems Study II. Volume 7. Submarine Platform Technology-A,, NAVAL SURFACE WEAPONS CENTER WHITE OAK LAB SILVER SPRING MD ,Report Number(s): NSWC/WOL/X-152-VOL-7 XB-NSWC/WOL ,Report Date: 30 Sep 1975 ,Media Count: 164 Page(s) ,Accession Number: ADC005533

Carter,J. W., Feasibility Study of a 50,000 Gallon, Floating Collapsible, Fuel, Storage Tank., TEMCO INC NASHVILLE TENN ,Report Date: 15 Oct 1956 ,Media Count: 158 Page(s) ,Accession Number: ADB956121

Citation Format: Custom User Definition, Dredge Mooring Study Conceptual Design, Phase 1 Report., SOFEC INC HOUSTON TX ,Report Number(s): DRP-92-1 XA-COE/DC ,Report Date: May 1992 ,Media Count: 83 Page(s) ,Accession Number: ADA254144

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Bruk, M.V. Khain, N.V. Kreg, S.M., A System for Ultrasonic Weld Quality Inspection in Tubular Tendons of Marine Oil Platforms, ,Report Date: Oct 1993 ,Media Count: 6 Page(s) ,Accession Number: ADD339473

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Valenti, M., A Drier Way to Clean Turbines. ,Report Date: Mar 1998 ,Media Count: 3 Page(s) ,Accession Number: ADD815389

279
Mork, Tracy L., Lodgment: A Thing of the Past, NAVAL WAR COLL NEWPORT RI ,Report Number(s): XB-NWC ,Report Date: 18 May 1998 ,Media Count: 20 Page(s) ,Accession Number: ADA351715

Lorman, W. R., Concrete Cover in Thin-Wall Reinforced Concrete Floating Piers., CIVIL ENGINEERING LAB (NAVY) PORT HUENEME CALIF ,Report Number(s): CEL-TN-1447 ,Report Date: Jul 1976 ,Media Count: 45 Page(s) ,Accession Number: ADA028616

Spiess, F. N., OCEANOGRAPHIC AND EXPERIMENTAL PLATFORMS., SCRIPPS INSTITUTION OF OCEANOGRAPHY SAN DIEGO CALIF MARINE PHYSICAL LAB ,Report Number(s): MPL-U-63/65 ,Report Date: 1968 ,Media Count: 36 Page(s) ,Accession Number: AD0678832

Oliver, R. E., Shock Testing of MK 112 Fire Control System Components on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC ,Report Number(s): DTMB-C-1454 ,Report Date: Jan 1963 ,Media Count: 20 Page(s) ,Accession Number: ADC957392

Black, W. E., Service Tests on the Floating Panel Bridge (Bailey Type),, ENGINEER BOARD FORT BELVOIR VA ,Report Number(s): XA-DA ,Report Date: 21 Aug 1943 ,Media Count: 34 Page(s) ,Accession Number: ADB956097

Davis, Michael J. Hering, James A., Mobile Offshore Base Cargo Transfer System and Platform Survival Motion Criteria., NAVAL SURFACE WARFARE CENTER CARDEROCK DIV BETHESDA MD HYDROMECHANICS DIRECT ORATE ,Report Number(s): CRDKNSWC/HD-0279-03 XT-ARPA ,Report Date: Dec 1994 ,Media Count: 31 Page(s) ,Accession Number: ADB222747

Anderson, SDteven P. Pinkel, Robert, Double Diffusively Unstable Intrusions Near an Oceanic Front: Observations from R/P FLIP., WOODS HOLE OCEANOGRAPHIC INSTITUTION MA ,Report Number(s): WHOI-CONTR-8726 XB-ONR ,Report Date: Aug 1995 ,Media Count: 18 Page(s) ,Accession Number: ADA325642

Godewols, G., Welding in Ship Construction (Development and Prospects) (Schweissen im Schiffbau (Entwicklung und Perspektiven)), NAVAL INTELLIGENCE SUPPORT CENTER SILVER SPRING MD FOREIGN LANGUAGES SERVICES DIV ,Report Number(s): NISC-TRANS-8775 ,Report Date: 09 Jun 1988 ,Media Count: 9 Page(s) ,Accession Number: ADB122385
Willemsen, E., Aerodynamic Aspects of Offshore Structures., NATIONAL AEROSPACE LAB AMSTERDAM (NETHERLANDS) ,Report Number(s): NLR-TP-91188 ,Report Date: 13 May 1991 ,Media Count: 18 Page(s) ,Accession Number: ADB166948

Citation Format: Custom User Definition, Project METEOR San Nicolas Island Site Survey. Volume 3., NAVAL FACILITIES ENGINEERING COMMAND WASHINGTON DC CHESAPEAKE DIV ,Report Number(s): CHES/NAVFAC-FPO-1-77(17)-VOL-3 ,Report Date: Jun 1977 ,Media Count: 49 Page(s) ,Accession Number: ADA167402

Atturio, J. M. Valent, P. J. Taylor, R. J., Preliminary Selection of Anchor Systems for OTEC., CIVIL ENGINEERING LAB (NAVY) PORT HUENEHEME CALIF ,Report Number(s): CEL-TR-853 ,Report Date: Mar 1977 ,Media Count: 49 Page(s) ,Accession Number: ADB018106

Mayo, Henry C., DESIGN OF A MILITARY, MONO-MOORING SYSTEM FOR TANKERS., ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT CENTER FORT BELVOIR VA ,Report Number(s): USAMERDC-1969 ,Report Date: Nov 1969 ,Media Count: 240 Page(s) ,Accession Number: AD0704330

Citation Format: Custom User Definition, Demolition/Salvage Analysis of Offshore Platforms. Stages I and II at the Naval Coastal Systems Center, Panama City, Florida., BARNETT AND CASBARIAN INC METAIRIE LA ,Report Number(s): CHES/NAVFAC-FPO-1-83(31) ,Report Date: Aug 1983 ,Media Count: 129 Page(s) ,Accession Number: ADA180700

Citation Format: Custom User Definition, Platform Strength Evaluation, Offshore Panama City, Florida. Stage I and II., BARNETT AND CASBARIAN INC METAIRIE LA ,Report Number(s): CHES/NAVFAC-FPO-8331A ,Report Date: Feb 1981 ,Media Count: 293 Page(s) ,Accession Number: ADA180701

Citation Format: Custom User Definition, Operation Plan. Ocean Hauldown Facility (OHDF) Installation., TRACOR/MARINE INC FORT LAUDERDALE FL ,Report Number(s): TRACOR-86-723617-2 CHES/NAVFAC-FPO-8680 ,Report Date: 05 Sep 1986 ,Media Count: 142 Page(s) ,Accession Number: ADA180702 Citation Access Denied: Accessioned Document Number ADD433461 Not Available: DISCONTINUED PLASTC CITATION

Axelson,E. W., Engineering Tests of M4 Floating Bridge Equipage., ARMY ENGINEER RESEARCH AND DEVELOPMENT LABS FORT BELVOIR VA ,Report Number(s): AERDL-1135 ,Report Date: 05 Aug 1949 ,Media Count: 138 Page(s) ,Accession Number: ADB956535

Chambers,Charles E., Sea-Based Air Forces of the Future: A Summary of CNA Sea-Based Air Studies., CENTER FOR NAVAL ANALYSES ALEXANDRIA VA NAVAL STUDIES GROUP ,Report Number(s): CNSR-10 ,Report Date: Jun 1981 ,Media Count: 53 Page(s) ,Accession Number: ADC027235

LEENDERTSE,J.J., ANALYSIS OF CRITICAL MOTIONS OF A FLOATING

Rossignol, G. A., Environmental and Motion Data Obtained during the JLOTS (Joint Logistics Over-the-Shore) II RO/RO (Roll-On/Roll-Off) Phase Trial Conducted with the MV CYGNUS, DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP PERFORMANCE DEPT, Report Number(s): DTNSRDC/SPD-515-04 XB-DTNSRDC/SPD, Report Date: Sep 1983, Media Count: 52 Page(s), Accession Number: ADA142098

Citation Format: Custom User Definition, Firing of Standard Artillery, Self-Propelled Mounts, and Tanks from Landing Craft and Pontoons, ABERDEEN PROVING GROUND MD, Report Date: 17 Mar 1944, Media Count: 381 Page(s), Accession Number: ADB963689

Mullins, C. E., Increased Capacity for the 71/2-Ton Ponton Equipage, ENGINEER BOARD FORT BELVOIR VA, Report Number(s): 632, Report Date: 18 Jul 1941, Media Count: 69 Page(s), Accession Number: ADB957579 Citation Access Denied: Accessioned Document Number ADD440650 Not Available: DISCONTINUED PLASTC CITATION

Mullins, H. H., Tests on 10-Ton Tubular Steel Transom, ENGINEER BOARD FORT BELVOIR VA, Report Number(s): 702, Report Date: 20 Jul 1942, Media Count: 30 Page(s), Accession Number: ADB957614

Number: ADA123248

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Tang, Wilson H., Probabilistic Evaluation of Penetration Resistances, JOURNAL ARTICLE-UNIDENTIFIED SOURCE ,Report Date: Oct 1979 ,Media Count: 19 Page(s) ,Accession Number: ADE602239

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM***, OTC 87 PROCEEDINGS, VOLUME 4 ,Report Date: Apr 1987 ,Media Count: 580 Page(s) ,Accession Number: ADD325710

Ertekin, R. Kim, Cengiz Whan, Jang, Proceedings of the Third International Workshop on Very Large Floating Structures, Volumes 1, Honolulu, HI, September 22-24, 1999, HAWAII UNIV HONOLULU SCHOOL OF OCEAN AND EARTH SCIENCE AND TECHNOLOGY ,Report Number(s): XB-ONR ,Report Date: 21 Sep 1999 ,Media Count: 463 Page(s) ,Accession Number: ADA369383

Muga, B. J., NON-PERIODIC WATER WAVE EFFECTS., NAVAL CIVIL ENGINEERING LAB PORT HUENEME CALIF ,Report Number(s): NCEL-TN-519 ,Report Date: Jul 1963 ,Media Count: 1 Page(s) ,Accession Number: AD0414863

Chastain, John A., Surveillance and Warning Applications for Stable Floating Platforms., OHD DATA COLLECTION AND ANALYSIS CENTER MENLO PARK CALIF ,Report Date: Sep 1969 ,Media Count: 34 Page(s) ,Accession Number: AD0506567

Oliver, R. E., Shock Testing of Westinghouse 300-KW Motor Generator Set on the Floating Shock Platform., DAVID TAYLOR MODEL BASIN WASHINGTON DC STRUCTURAL MECHANICS LAB ,Report Number(s): SML-TR-780-8 ,Report Date: Jan 1965 ,Media Count: 24 Page(s) ,Accession Number: ADC957843

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): STANKOFF ,ALAIN G. COLLINS,DALE H., APPLICATION OF ACOUSTICAL HOLOGRAPHY TO THE INSPECTION OF OFFSHORE PLATFORMS ,Report Date: May 1978 ,Media Count: 8 Page(s) ,Accession Number: ADD306393

Parker, C. H., Shock Test of TR-155F/BQ Transducers (FSP Item 265)., NAVAL SEA SYSTEMS COMMAND WASHINGTON DC ,Report Number(s): NAVSEA-TR-1-75 XB-NAVSEC ,Report Date: Mar 1975 ,Media Count: 22 Page(s) ,Accession Number: ADB227278

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): SUZUKI,Y. KATAYAMA,K. OGAWA,M. EGI,K. HIRAHARA,K., INVESTIGATION OF A NOISE PREDICTION METHOD FOR OFFSHORE STRUCTURES ,Report Date: Apr 1986 ,Media Count: 8 Page(s) ,Accession Number: ADD321849

Turner,Charles R., Zero Speed Seakeeping Characteristics of a Causeway Ferry Consisting of Four Pontoons Connected End-to-End., DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA MD SHIP PERFORMANCE DEPT ,Report Number(s): DTNSRDC/SPD-1075-01 ,Report Date: Jun 1983 ,Media Count: 38 Page(s) ,Accession Number: ADA134316

Nevel,Donald E., Creep Theory for a Floating Ice Sheet., COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER N H ,Report Number(s): CRREL-SR-76-4 ,Report Date: Jun 1976 ,Media Count: 112 Page(s) ,Accession Number: ADA026122

Tudor, W. J., UPLIFT PRESSURES UNDER A PIER DECK FROM WATER WAVES., NAVAL CIVIL ENGINEERING LAB PORT HUENEME CA , Report Number(s): NCEL-TN-668 , Report Date: Dec 1964 , Media Count: 1 Page(s) , Accession Number: AD0460518

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): TURNER, D. M., QUALITY CONTROL AND LIFETIME PREDICTION OF RUBBER FABRIC COMPOSITES , Report Date: Sep 1984 , Media Count: 9 Page(s) , Accession Number: ADD320411

Citation Format: Custom User Definition, Mon Ark Boat, ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR VA , Report Number(s): MERADCOM-2047 , Report Date: Dec 1972 , Media Count: 19 Page(s) , Accession Number: ADB955472

Citation Format: Custom User Definition ***DTIC DOES NOT HAVE THIS ITEM*** Personal Author(s): Keeler, T., Innershield Welding--Part 2: Properties, Report Date: Dec 1981, Media Count: 4 Page(s), Accession Number: ADD124007

Citation Format: Custom User Definition, ARPA Stable Floating Platform: Engineering Feasibility Analysis, SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CALIF, Report Date: 05 May 1969, Media Count: 65 Page(s), Accession Number: ADA009002

Bystrov, V., Yudin, G., French Crossing and Bridging Equipment, ARMY FOREIGN SCIENCE AND TECHNOLOGY CENTER CHARLOTTESVILLE VA, Report Number(s): FSTC-HT-0275-84, Report Date: 19 Mar 1984, Media Count: 7 Page(s), Accession Number: ADB082741

Citation Format: Custom User Definition

EXPORT CONTROL

Personal Author(s): Levitt, Ben B. Ryll, Ewald, Stable Floating Platform Special Task Completion Report, CORNELL AERONAUTICAL LAB INC BUFFALO NY, Report Number(s): CAL-GM-2752-C-2, Report Date: 10 Oct 1969, Media Count: 77 Page(s), Accession Number: AD0504900

VLFS Database

Kon, Y. and Yoshida, A. and Hoshi, M., An Examination of Introducing Japan's Mitigation Style into Mega-Float, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 451--456, 1996
Ochi, M. and Hong, N., Method for Evaluating Forces and Moments for Joining Elements of Large Floating Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), R.C. Ertekin and H.R. Riggs, Honolulu, Hawaii, Univ. of Hawaii, 1 April, 7--22, 1991

Liu, Y.H. and Xie, X. and Lou, J., The Effect of Large Structural Deformation on Hydrodynamic Loads for a Huge Floating Platform, First Int. Workshop on Very Large Floating Structures (VLFS '91), Honolulu, Hawaii, Univ. of Hawaii, 1 April, 23--38, 1991

Paulling, J.R. and Tyagi, S., Multi-Module Floating Ocean Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 39--58, 1991

Wu, Y. and Wang, D. and Riggs, H.R. and Ertekin, R.C., Composite Singularity Distribution with Application to Hydroelasticity, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 59--79, 1991

Yoshida, K. and Arima, T. and Goo, J. and Oka, N., A Conceptual Design of a Huge Ring-like Semisubmersible, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 81--96, 1991

Chow, P. and Lin, T. and Riggs, H.R., Engineering Concepts for Design and Construction of Very Large Floating Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 97--106, 1991

Innis, D., Pneumatically Stabilized Floating Platforms, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 107--116, 1991

Winkler, R.S., Positioning of Very Large Floating Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 117--132, 1991

Hickey, E.I. and Dailey, J. and Nolan, C.E. and Gaul, R.D., Mobile Offshore Bases, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 133--147, 1991
Kagemoto, H. and Yue, D., Hydrodynamic Interaction Analyses of Very Large Floating Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), Honolulu, Hawaii, Univ. of Hawaii, April, 1 149--170, 1991

Seidl, L.H., Iterative Source Distribution Technique, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 171--190, 1991

Noblesse, F., On the Calculation of Wave-Loads on Very Large Floating Structures, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 191--208, 1991

Marthinsen, T., Second-Order Hydrodynamic Load and Response Statistics, First Int. Workshop on Very Large Floating Structures (VLFS '91), April, Honolulu, Hawaii, Univ. of Hawaii, 1 209--221, 1991

Ertekin, R.C. and Riggs, H.R., Assessment of Research and Development Needs for Very Large Floating Structures, Coastal Ocean Space Utilization Symposium (COSU '97), Singapore, 1, May, 229-237, 1997

Gerwick, B.C. and Firth, C.R., Materials and Fabrication of Very Large Floating Structures: Criteria for Structural Performance, First Int. Workshop on Very Large Floating Structures (VLFS '91), Honolulu, Hawaii, Univ. of Hawaii, 1, 367-377, 1991

Riggs, H.R., Hydrostatic Stiffness of Flexible Floating Structures, Int. Workshop on Very Large Floating Structures (VLFS '96), Japan Ship Research Institute, Hayama, Japan, 229-234, 1996

Takahashi, P.K. and Ertekin, R.C., The Shape of VLFS to Come in the Next Millennium, with Design and Analysis Issues, Int. Workshop on Very Large Floating Structures (VLFS ’96), Japan Ship Research Institute, Hayama, Japan, 13-20, 1996

Kashiwagi, M., A B-spline Galerkin method for computing hydroelastic behaviors of a very large floating structure, Second Int. Workshop on Very Large Floating Structures (VLFS ’96), Hayama, Japan, Ship Research Institute, Japan, 149, 1996

Ohkusu, M. and Nanba, Y., Analysis of hydroelastic behavior of a large Floating platform of thin plate configuration in waves, Second Int. Workshop on Very Large Floating Structures (VLFS '96), Hayama, Japan, Ship Research Institute, Japan, 143--148, 1996

Kagemoto, H. and Zhu, T. and Murai, M. and Fujino, M., On hydrodynamic Forces and Hydroelastic behavior of a very large floating structure in waves, Second Int. Workshop on Very Large Floating Structures (VLFS '96), Ship Research Institute, Japan Hayama, Japan, 165--171, 1996

Takaki, M. and Gu, X., On Motion Performance of a Huge Floating Structures in Waves, Second Int. Workshop on Very Large Floating Structures (VLFS '96), Ship Research Institute, Japan Hayama, Japan, 157--164, 1996

Pinkster, J.A. and Van Oortmserssen, G., Computation of the First and Second Order Wave Forces on Oscillating Bodies in Regular Waves, Second Int. Conf. on Numerical Ship Hydrodynamics, Berkeley, Univ. of California, 136-156, 1977

Ogilvie, T.F., Second-Order Hydrodynamic Effects on Ocean Platforms, Int. Workshop on Ship and Platform Motions, Berkeley, Univ. of California 205--265, 1983,

Watanabe, E., Large offshore facilities in Japan -Present and future, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 3--16, 1994

Landet, E., Planning and construction of floating bridges in Norway, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 43--55, 1994

Lwin, M.M., Floating bridges in the United States , Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 56--73, 1994

Ueda, S. and Miyai, S. and Masui, N., Study on floating bridge in Japan, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 74--85, 1994

298
Shirai, S., Introduction of floating facilities in the coastal zone of Japan, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 86--103, 1994

Ito, T. and Chiba, H. and Kato, E., Main offshore structures of Shirashima floating oil storage terminal, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 104--120, 1994

Yamamoto, H., Concept for a super-large floating structure, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 121--136, 1994

Isobe, M., Theoretical consideration on joint distribution of wave heights and directions, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 139--150, 1994

Yoshida, A. and Tashiro, K. and Nakamura, T. and Irie, I., Wave interception by vertically moving submerged horizontal plate, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 151--162, 1994

Kunisu, H. and Tada, A. and Mizuno, Y. and Saeki, H., The wave force characteristics acting on the submerged floating tunnel, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 163--174, 1994

Mathieesen, M. and Lothe, A. and Vold, S., External forces on a floating structure due to seiching - Validation of a computational model, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 175--188, 1994

Aoki, S.I. and Kim, H.T. and Sawaragi, T., Effects of friction damping on a pile-supported floating body, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 189--200, 1994

Ohmatsu, S., On the wind and current forces acting on a ultra large floating platform, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 201--209, 1994
Yoneyama, H. and Shiraishi, S. and Ueda, S., A study on the characteristics of motions of long flexible floating structures in waves, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 210--221, 1994

Suzuki, Y., Numerical analysis on movements and wave transmission coefficient of flexible floating structure in waves, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 222--233, 1994

Kinoshita, T. and Bao, W. and Sunahara, S., Wave drift damping of multiple vertical cylinders prediction and measurement, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 234--253, 1994

Stansberg, C.T., Low frequency excitation and damping of a moored semisubmersible, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 254--261, 1994

Stansberg, C.T. and Nygaard, I., Estimation of extreme values of non-Gaussian slow-drift responses, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 261--270, 1994

Chun, L., For the good time of floating breakwaters in Korea - A numerical and experimental study -, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 271--281, 1994

Torsethaugen, K., Model for a doubly peaked spectrum - Lifetime and fatigue strength estimation implications, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 282--292, 1994

Nygard, I., Combination of model testing and numerical analysis for design of floating structures, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 307--311, 1994

Ikegami, K. and Shuku, M., Design and field measurement of mooring system for the world's first floating type oil storage system in Kami-gotoh, Japan, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 324--335, 1994

Soreide, T.H., Design handbook for floating structures, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 336--347, 1994

Sekita, K. and Ohkubo, H. and Nakai, K., Concept of large-scale floating structures seated on jacket, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 372--382, 1994

Yokota, H. and Masui, N., Structural design on concrete floating body, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 383--394, 1994

Morikawa, M. and Suzuki, H. and Ishikawa, K. and Komiya, H. and Yoshida, K., On-site experiment for towing and upending procedure of pre-fabricated tendon

Yoshida, S. and Taketsuka, M., Setting work for 9P RC caisson of Kurusima Bridges, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 408--419, 1994

Sakurai, T., Construction of floating pier at Ujina Region in Hiroshima Port, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 454--464, 1994

Stabenfeldet, T., The Salhus bridge - Construction and installation, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 487--492, 1994

Fukute, T. and Hamada, H. and Abe, M., Durability and maintenance of marine concrete structures, Int. Workshop on Floating Structures in Coastal Zone, Port
and Harbor Research Institute, Ministry of Transport, Japan, October, 495--506, 1994

Arita, M., Maintenance technology of ultra large floating offshore structures, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 517--526, 1994

Mathiesen, L.E., FRAGIS - A safety system for inshore waters, Int. Workshop on Floating Structures in Coastal Zone, Port and Harbor Research Institute, Ministry of Transport, Japan, October, 527--532, 1994

Kashiwagi, M. and Furukawa, C., A Mode-Expansion Method for Predicting Hydroelastic Behavior of a Shallow Draft VLFS, 16th Int. Conf. on OMAE (OMAE97), ASME, Yokohama, Japan, April, 6, 179-186, 1997

Maeda, H., Rational Environmental Assessment for VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 457--462, 1996

Yeung, R.W. and Kim, J.W., Structural drag and deformation of a moving load on a floating plate, Hydroelasticity in Marine Technology, 2nd International

Koterayama, W. and Ohkusu, M., Yomei Printing Cooperative Society, RIAM, Kyushu University, Fukuoka, Japan, December, 145--154, 1998

Yomei Printing Cooperative Society, RIAM, Kyushu University, Fukuoka, Japan, December, 325--334, 1998

and Ohkusu, M., Yomei Printing Cooperative Society, RIAM, Kyushu University, Fukuoka, Japan, December, 449--460, 1998

Yoshida, K., Developments and Researches on VLFS in Japan, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 5--12, 1996

Champ, M.A., Preliminary Review of the Potential Environmental and Social Impacts from Nearshore Standing or Very Large Floating Platforms, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 463--470, 1996

Takarada, N., Some Very Short Comments on Further Considerations for Huge Floating Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 29--30, 1996

Moe, G., Design Philosophy of Floating Bridges with Emphasis on Ways to Ensure Long Life, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 31--38, 1996

Arita, M., On the Philosophy of VLFS Maintenance, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 39--44, 1996

Ohkawa, Y., Concept and Outline of Mega-Float, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 45--52, 1996

Murdoch, M. and Bretz, G., Conceptual Design of a Moored Floating Pier System, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 61--64, 1996

Blood, H., Model Tests of a Pneumatically Stabilized Platform, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 77--84, 1996

Ohmatsu, S., Proposal of SRI Type VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 85--90, 1996

Faltinsen, O.M., Bottom Slamming on a Floating Airport, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 97--106, 1996

Takagi, K., Elastic Deformation and Mooring Force of a Very Large Floating Body on Tsunami Waves, Proc. of Int. Workshop on Very Large Floating
Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 119--126, 1996

Inoue, Y. and Zhang, X. and Tabeta, S., On the Hydrodynamic Forces of a Very Large Floating Structure in Oceans, Proc. of Int. Workshop on Very Large
Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 183--192, 1996

Hirayama, T. and Ma, N. and Miyakawa, K. and Takayama, T., Long Life Floating Airport - Conceptual Proposal and Basic Study on Response and Attitude Control, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 193--200, 1996

Yago, K. and Endo, H., Model Experiment and Numerical Calculation of the Hydroelastic Behavior of Matlike VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 209--216, 1996

Ohmatsu, S. and Yago, K. and Endo, H., Tank Test of the Hydroelastic Behavior of VLFS Using 50m long Flat Plate Model, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 217--220, 1996

Riggs, H.R., Hydrostatic Stiffness of flexible Floating Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 229--234, 1996

Kim, J.W. and Webster, W.C., The Drag of an Airplane Taking Off from a Floating Runway, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 235--242, 1996

Watanabe, E. and Utsunomiya, T., Transient Response Analysis of a VLFS at Airplane Landing, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 243--248, 1996

Stansberg, C.T., Motions of Large Floating Structures Moored in Irregular Waves Experimental Studies, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 275--282, 1996

Mansour, A.E. and Wirsching, P.H., Safety Assessment and Target Reliabilities for Floating Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 283--292, 1996

Okada, H. and Tsubogo, T. and Murotsu, Y., A Method for Reliability Analysis of Large Scale Floating Structures Based on Numerical Simulation, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 293--300, 1996

Endo, H. and Yago, K., On the Extreme Load for VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 301--308, 1996

Yao, T. and Fujikubo, M., On the Structural Analysis of VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 317--324, 1996
Sekita, K. and Okubo, H. and Okamura, A., Design of Mooring Facilities for Large Floating Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 325--334, 1996

Koike, T. and Hiramoto, T. and Mori, H., Seismic Response Analysis of Very Large Floating Structure Supported with Dolphins, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 335--342, 1996

Ikegami, K. and Shuku, M., Mooring System for The World's First Floating Type Oil Storage System in Kami-Gotoh, Japan, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 343--350, 1996

Hara, S. and Yamakawa, K. and Kokubun, K. and Iwai, M., At-sea Towing Experiment of Floating Unit of VLFS, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 357--364, 1996

Ogawa, Y. and dos Santos, J.F., Underwater Joining Technology for Marine Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 379--386, 1996

Wu, C. and Mills, R.J., Wave Induced Connector Loads and Connector Design Considerations for the Mobile Offshore Base, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 387--392, 1996

Messier, R.H. and Thompson, L.D., Effect of Connector Structural Stiffness on Intermodule Displacements and Forces for Large Modular Floating Structures, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 393--400, 1996

Miyake, H. and Tamura, K. and Tohge, Y. and Shiobara, O., Research and Development of Inspection and Maintenance System for Oil Storage Vessels at Mooring Site, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 405--410, 1996

Harada, S., Recent Rule Development of Survey Program in Service for Very Large Floating Structure, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 411--418, 1996

Kyozuka, Y. and Hasemi, H., An Ecohydrodynamic Model for Environmental Assessment of Mega-Float in a Bay, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 427--434, 1996
Murakami, K., Study on Environmental Impacts Assessment of a Huge Floating Structure, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 435--442, 1996

Nakata, K., Development of Ecological Model to Evaluate an Environmental Water Quality, Proc. of Int. Workshop on Very Large Floating Structures, (VLFS'96), Ship Research Institute, Japan, Hayama, Japan, 443--450, 1996

Remmers, Gene and Taylor, Robert and Palo, Paul and Brackett, Ron, Mobile Offshore Base A Seabasing Option (Keynote Address), Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 1--6, 1999

Isobe, Eiichi, Research and Development of Mega-Float (Keynote Address), Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 7--13, 1999

Rognaas, Gunnar and Xu, Jun and Lindseth, Severin and Rosendahl, Finn, Mobile Offshore Base Concepts - Hybrid Concrete Hull and Steel Topsides, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 60--69, 1999

Kashiwagi, Masashi, A Time-Domain Green Function Method for Transient Problems of a Pontoon-Type VLFS, Proc. of the Third Int. Workshop on Very
Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 97--104, 1999

Nagata, Shuichi and Yoshida, Hisafumi and Fujita, Takashi and Isshiki, Hiroshi, Wave-Induced Motion of an Elastic Floating Plate in the Sea with a Breakwater, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 114-122, 1999

Edwards, Michael J. and Raj, David, Non-linear Time-domain Response of Connected Mobile Offshore Base Units Using Linear Frequency Domain Hydrodynamic Forces, Proc. of the Third Int. Workshop on Very Large Floating
Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 155--161, 1999

Bandyopadhyay, Biswajit and Menon, Balji, MOB Stability Assessment, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 220--228, 1999

Cybulsky, M. Ken and Currie, Richard, Simulation as a Tool for Cargo Rate Determination, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 229--237, 1999

325

Bjerkeli, Lars and Munkeby, Jan and Rosendahl, Finn, High Performance Concrete, - An Ideal Material for Large Floating Structures, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 316--320, 1999

Weems, Kenneth and Lin, Woei-Min and Zhang, Sheguang and Treakle, Thomas, Application of the Large Amplitude Motion Program (LAMP) for Design and
Operation of a Mobile Offshore Base (MOB), Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 339--347, 1999

Mansour, Alaa E., Combining Low and High Frequency Loads Acting on Large Floating Structures, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, I, September, 381--387, 1999

Tateyama, T., Demonstrative Experiments on Airport Functions in Mega-Float Research Phase 2, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 498--505, 1999

Kobayashi, Masanori and Hineno, Motohiro and Shimada, Kiyoshi and Hyodo, Takashi and Kawamoto, Atsushi and Ueda, Shigeru and Maruyama, Tadaaki, Model Experiments on Swinging of a Movable Floating Bridge in waves, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 546--554, 1999

Takaishi, Yoshifumi and Masuda, Koichi and Minemura, Koji, Relative Wave Motion and Shipping Water on Deck of Mega-float Structure, BOOK Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 577--585, 1999

Ma, Jian and Webster, William C., Optimization of the Strength Distribution for a Model of Large-Scale Floating Runway, BOOK Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 586--593, 1999

Talavera, Alejandro L. and Masaoka, Koji and Tsubogo, Takashi and Okada, Hiroo and Murotsu, Yoshisada, A Study on Reliability-Based Design Systems of Very

Torii, Tadashi and Isshiki, Kazuya and Kobayashi, Masanori and Shimada, Kiyoshi and Nagata, Shuichi, Design and Construction of Mooring System for 1000M VLFS As Mega-Float on Sea Test Model, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 748--757, 1999

Takagi, Ken and Shimada, Kiyoshi and Ikebuchi, Tetsuro, An Anti-Motion Device for a Very Large Floating Structure, Proc. of the Third Int. Workshop on Very
Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 786--794, 1999

Pettersen, Erik, SeaBase, the Flexible Alternative, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 812--818, 1999

Ma, Ning and Hirayama, Tsugukiyo, Motion Compensation of a Very Large Floating Structure by Utilizing Pneumatic Pressure, Proc. of the Third Int. Workshop on Very Large Floating Structures, (VLFS ‘99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 865--873, 1999

Bai, Kwang June and Yoo, Byeong Suk and Kim, Jang Whan, A Localized Finite-Element Analysis on a Floating Runway in a Harbor, Proc. of the Third Int. 335
Workshop on Very Large Floating Structures, (VLFS '99), R.C. Ertekin and J.W. Kim, Honolulu, Hawaii, Univ. of Hawaii, II, September, 906--915, 1999

Mechanics and Arctic Engineering (OMAE '99), ASME, Newfoundland, Canada, OMAE99-OSU-3252, June, 1999

Hanson, T. and Otteren, A. and Sodahl, N., Response calculation using an enhanced model for structural damping in flexible risers compared with full scale measurements, Hydroelasticity in Marine Technology, 1st International Conference, Faltinsen, O. and Larsen, C.M. and Moan, T., A.A. Balkema, Trondheim, Norway, May, 63--74, 1994

Fei, C. and Vandiver, J.K., Vortex-induced vibrations of structural members in unsteady winds, Hydroelasticity in Marine Technology, 1st International Conference, Faltinsen, O. and Larsen, C.M. and Moan, T., A.A. Balkema, Trondheim, Norway, May, 131--147, 1994

Kvalsvold, J. and Faltinsen, O., Slamming loads on wetdecks of multihull vessels, Hydroelasticity in Marine Technology, 1st International Conference, Faltinsen, O. and Larsen, C.M. and Moan, T., A.A. Balkema, Trondheim, Norway, May, 205--219, 1994

Kagemoto, H. and Yue, D., Hydroelastic analyses of a structure supported on a large number of floating legs, Hydroelasticity in Marine Technology, 1st International Conference, Faltinsen, O. and Larsen, C.M. and Moan, T., A.A. Balkema, Trondheim, Norway, May, 417--432, 1994

Hyakudome, T. and Nakamura, M. and Kajiwara, H. and Kotayama, W., Experimental Study on Dynamic Positioning Control for Semi-Submersible

Watanabe, Y., Int. Workshop on Very Large Floating Structures (VLFS '96), Ship Research Institute, Hayama, Japan, November, 1996

St.Denis, M. and Pierson, Jr., W.J., On the Motions of Ships in Confused Seas, Society of Naval architects and Marine Engineers, 61, 281, 1953

Hanyu, Jeffery, Conceptual Design of a Mat-like Prestressed Concrete Floating Airport, Dept. of Civil Engineering, U. of Hawaii at Manoa, Honolulu, M.S. Thesis, May, 1999

Che, X.L., Techniques for Hydroelastic Analysis of Very Large Floating Structures, Department of Ocean Engineering, University of Hawaii at Manoa, Ph.D. Thesis, 1992

Wang, Suqin, Evaluation of Flexible Hull Types for Very Large Floating Structures, Department of Ocean Engineering, University of Hawaii at Manoa, Ph.D. Thesis, 1995

Liu, Xiaoqing, Dynamics of Long Flexible Pipes During Surface Towing and Drift Loads on Flexible Floating Structures, Department of Ocean Engineering, University of Hawaii at Manoa, Ph.D. Thesis, 1995

Gerritsma, J. and Beukelman, W., Analysis of the Resistance Increase in Waves of a Fast Cargo Ship, Delft Shipbuilding Laboratory, Report, 217, The Netherlands, 1972,

Author = Kim, J.W. and Webster, W.C.,Title = The Drag on an Airplane Taking off from a Floating Runway,Journal = J. Marine Science and Technology,Volume = 3,Number = 2, 76--81,Year = 1998

Davys, J.W. and Hosking, R.H. and Sneyd, A.D., Waves due to a steadily moving source on a floating ice plate, J. Fluid Mechanics, 158, 269--287, 1997

Takagi, K., Interaction between solitary wave and floating elastic plate, J. Waterway, Port, Coastal, and Ocean Engineering, 123, 2, March/April, 57--62, 1997

Fox, C. and Squire, V.A., On the oblique reflexion and transmission of ocean waves at shore fast ice, Phil. Trans. R. Soc. London., 347, A, 185--218, 1994

Maruo, H., The drift of a floating body on waves, J. Ship Research, 4, 1--10, 1960

Yamashita, S., Motions and Hydrodynamic Pressures of a Box-Shaped Floating Structure of Shallow Draft in Regular Waves, J. Soc. of Nav. Arch. of Japan, 146, 165--172, 1979

Newman, J.N., The Drift Force and Moment on Ships in Waves, J. Ship Research, 6, 1, 10--17, 1967,

Pinkster, J.A., Mean and Low Frequency Wave Drifting Forces on Floating Structures, Ocean Engineering, 6, 593--615, May, 1979

Grue, J., Drift Force and Drift Moment on Ships Advancing With Small Speed in Oblique Waves, Ship Technology Research, 39, 22--31, May, 1992,

Hasselmann, K. et al., Measurement of Wind-wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), Deutsche Hydrographischen Zeitschrift, A8, 12, 1973

Faulkner, D. and Sadden, J.A., Toward a Unified Approach to Ship Structural Safety, Royal Institute of Naval Architects, 121, 1--28, 1979

Troesck, A.W., Sway, Roll, and Yaw Motion Coefficients Based on a Forward-Speed Slender-Body Theory - Part 1, Journal of Ship Research, 25, 1, 8--15, 1981

Inglis, R.B. and Price, W.G., A Three-Dimensional Ship Motion Theory - Comparison between Theoretical Predictions and Experimental Data of Hydrodynamic Coefficients with Forward Speed, Transactions of the Royal Institution on Naval Architects, 124, 4, 141--158, 1982

Xia, D., Kim, J.W. and Ertekin, R.C., On the Hydroelastic Behavior of 2-Dimensional Articulated Plates, Marine Structures, 13, 4-5, 261--278, 2000

NFESC MOB PAGE

Bombs get smarter; what about generals. The Army recently conducted a $1 million war game, and the enemy lived to fight again. U.S. News & World Report, May 18, 1998, pg 43 (MOB graphic included in magazine, not on website).

Calibration of Suction Pile Installation Design with Centrifuge Model Tests (S. Bang and Y. Cho, South Dakota School of Mines and Technology, OMAE ’01, June 3-8, 2001).

Concrete Technology for Offshore Structures-Bibliography (Band Lavis, 15 April 1998, pdf).

Contributions to Offshore Engineering from the Mobile Offshore Base Program (P. Palo, et al., Naval Facilities Engineering Service Center, OMAE ’01, June 3-8, 2001).

Mean Wave Drift Loads on Connected Multiple Semisubmersible Modules (X. Liu et al., OMAE '98, July 1998, pdf).

presentation (8MB, ppt) and

paper (pdf).

PowerPoint file includes Speaker Notes (4.5MB) and pdf version (3.7MB).

Mobile Offshore Base Project Summary and Technology Spin-Offs (R. Taylor, Naval Facilities Engineering Service Center, January 2003 –

PowerPoint (14.5MB) and pdf (4MB).

Modeling a virtual ocean. Engineers are using simulation-based design to test the digital prototype of a floating military base that will be the largest structure ever to voyage on the high seas. By Dan Deitz, Executive Editor, Mechanical Engineering, May 1998, pp 66-68.

A Parametric Study of the Hydroelastic Response of a Floating, Mat-Type Runway
in Regular Waves (C. Ertekin and J. Kim, University of Hawaii, OCEANS '98, 3.6MB, pdf).

Reliability-Based Combination of Environmental Parameters for the Design of Novel Floating Structures, OMAE '99 (B. Bhattacharya et al., American Bureau of Shipping, July 1999, pdf).

Rogue Waves and Holes in the Sea - Report 9-2-99 (A.R. Osborne, Department of Physics, University of Turin, September 1999).

Sea Assault. The pentagon is proposing to build floating modules that could be connected at sea to create a gigantic offshore military base (Popular Science, October 1998, pg 32).

Simulation Tools for Evaluating the Operational Performance of the Mobile Offshore Base (R.L Brackett and M.A. Murdoch, NFESC, NLC '00, November 2000) –

presentation (pdf) and paper (pdf)

The Ultimate Water Rocket Opens the Next Chapter in Space Exploration (Jim Wilson, Popular Mechanics, August 1999).

USA floats plan for offshore base. The US DoD is stepping up its attempts to determine how feasible it is to develop and deploy a floating base to support US military operations next century. (Janes' Defense Weekly, Vol. 29, 22 April 1998, Issue No. 16, pg 5).

U.S. Industrial Capacity and Risk-Based Simulation for the Construction of the Mobile Offshore Base (W. Bender, et al., Central Washington University, OMAE '01, June 3-8, 2001).

"Virtual Ocean" Computer Simulation Using Offshore Oil Technology, Computer Model of World's Largest Floating Structure 'Goes to Sea' to Test Simulations, Visualizations of Mobile Offshore Base. (Sea Technology, November 1998, pg
Wave-Induced Response of a 5-Module MOB (Riggs et al., OMAE '98, July 1998, pdf).