
U.S.N.A.—Trident Scholar project report; no. 310 (2003)

Designing a Bluetooth-Based Wireless Network for Distributed
Shipboard Monitoring and Control Systems

by

Midshipman Kenneth J Hoover, Class of 2003
United States Naval Academy

Annapolis, Maryland

__
(signature)

Certification of Advisors Approval

Professor Antal A. Sarkady
Electrical Engineering Department

__
(signature)

(date)

Commander Charles B. Cameron
Electrical Engineering Department

__
(signature)

(date)

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Deputy Director of Research & Scholarship

__
(signature)

(date)

USNA-1531-2

REPORT DOCUMENTATION PAGE Form Approved OMB No.
0704-0188

Public reporting burder for this collection of information is estibated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burder to Department of Defense, Washington
Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of
law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
14-05-2003

2. REPORT TYPE 3. DATES COVERED (FROM - TO)
xx-xx-2003 to xx-xx-2003

4. TITLE AND SUBTITLE
Designing a Bluetooth-Based Wireless Network for Distributed Shipboard Monitoring
and Control Systems
Unclassified

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME AND ADDRESS
US Naval Academy
Annapolis, MD21402

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME AND ADDRESS
,

10. SPONSOR/MONITOR'S ACRONYM(S)
11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APUBLIC RELEASE
,
13. SUPPLEMENTARY NOTES
14. ABSTRACT
A Bluetooth based network has been developed for monitoring and controlling power systems on board US Navy Vessels. This network is
intended for distributed measurement and control and is ideally suited for controlling individual slave nodes. The slave nodes are individual
electronic systems which collect information from many sensors and make appropriate control decisions based on the occurrence of
well-defined events. Bluetooth is a low-cost, low-power wireless standard, which boasts a theoretical maximum baud rate of approximately
750 kbps. The Bluetooth standard allows networking of several slave nodes. An important advantage of this system is that it can be configured
for many shipboard applications. This wireless standard uses a spread-spectrum modulation scheme that allows reliable communication
between devices within several sub-networks (piconets) in the same physical vicinity. A robust wireless network has been designed to maintain
reliable connectivity among nodes even when the communication channels are adversely affected by the opening and closing of watertight
doors. For testing the throughput of the Bluetooth network a low-level C++ program has been designed. The program establishes a Bluetooth
piconet and records transmission times for several different size files. Experimental performance data have been collected using several
different Bluetooth packet types and network topologies. Initial tests were completed in a long hallway to provide baseline control data. In
addition, shipboard testing was done on board the ex-USS America. These tests have proved the practicability of using a Bluetooth network for
shipboard control and monitoring systems.
15. SUBJECT TERMS
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
Same as Report
(SAR)

18.
NUMBER
OF PAGES
144

19. NAME OF RESPONSIBLE PERSON
Cornell, Elizabeth
ecornell@dtic.mil

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE NUMBER
International Area Code
Area Code Telephone Number
DSN

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39.18

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
14 May 2003

3. REPORT TYPE AND DATE COVERED

4. TITLE AND SUBTITLE
 Designing a bluetooth-based wireless network for
distributed shipboard monitoring and control systems
6. AUTHOR(S)
 Hoover, Kenneth J. (Kenneth James), 1980-

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER

US Naval Academy
Annapolis, MD 21402

Trident Scholar project report no.
310 (2003)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT: A Bluetooth based network has been developed for monitoring and controlling power systems on board US Navy
Vessels. This network is intended for distributed measurement and control and is ideally suited for controlling individual slave nodes. The
slave nodes are individual electronic systems which collect information from many sensors and make appropriate control decisions based on
the occurrence of well-defined events. Bluetooth is a low-cost, low-power wireless standard, which boasts a theoretical maximum baud rate
of approximately 750 kbps. The Bluetooth standard allows networking of several slave nodes. An important advantage of this system is that
it can be configured for many shipboard applications. This wireless standard uses a spread-spectrum modulation scheme that allows reliable
communication between devices within several sub-networks (piconets) in the same physical vicinity. A robust wireless network has been
designed to maintain reliable connectivity among nodes even when the communication channels are adversely affected by the opening and
closing of watertight doors. For testing the throughput of the Bluetooth network a low-level C++ program has been designed. The program
establishes a Bluetooth piconet and records transmission times for several different size files. Experimental performance data have been
collected using several different Bluetooth packet types and network topologies. Initial tests were completed in a long hallway to provide
baseline control data. In addition, shipboard testing was done on board the ex-USS America. These tests have proved the practicability of
using a Bluetooth network for shipboard control and monitoring systems.

15. NUMBER OF PAGES
14114. SUBJECT TERMS: shipboard uses of Bluetooth; frequency

hopping spread spectrum (FHSS); piconet; scatternet; shipboard
wireless network, fault tolerance; adhoc network.

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298
 (Rev.2-89) Prescribed by ANSI Std. Z39-18

298-102

U.S.N.A.—Trident Scholar project report; no. 310 (2003)

Designing a Bluetooth-Based Wireless Network for Distributed Shipboard
Monitoring and Control Systems

Midshipman Kenneth J Hoover, Class of 2003
United States Naval Academy

Annapolis, Maryland

(signature)

Certification of Advisors Approval

Professor Antal A. Sarkady
Electrical Engineering Department

(signature)

(date)

Commander Charles B. Cameron
Electrical Engineering Department

(signature)

(date)

Acceptance for the Trident Scholar Committee

(signature)

(date)

1

Abstract

A Bluetooth based network has been developed for monitoring and controlling power sys-
tems on board US Navy Vessels. This network is intended for distributed measurement
and control and is ideally suited for controlling individual slave nodes. The slave nodes
are individual electronic systems which collect information from many sensors and make
appropriate control decisions based on the occurrence of well-defined events. Bluetooth is
a low-cost, low-power wireless standard, which boasts a theoretical maximum baud rate of
approximately 750 kbps. The Bluetooth standard allows networking of several slave nodes.
An important advantage of this system is that it can be configured for many shipboard
applications. This wireless standard uses a spread-spectrum modulation scheme that al-
lows reliable communication between devices within several sub-networks (piconets) in the
same physical vicinity. A robust wireless network has been designed to maintain reliable
connectivity among nodes even when the communication channels are adversely affected by
the opening and closing of watertight doors. For testing the throughput of the Bluetooth
network a low-level C++ program has been designed. The program establishes a Bluetooth
piconet and records transmission times for several different size files. Experimental perfor-
mance data have been collected using several different Bluetooth packet types and network
topologies. Initial tests were completed in a long hallway to provide baseline control data.
In addition, shipboard testing was done on board the ex-USS America. These tests have
proved the practicability of using a Bluetooth network for shipboard control and monitoring
systems.

Key Words: shipboard uses of Bluetooth; frequency hopping spread spectrum (FHSS);
piconet; scatternet; shipboard wireless network, fault tolerance; adhoc network.

2

Acknowledgments

I would like to thank the United States Naval Academy Electrical Engineering Department
for providing their support and equipment for this project. In particular, I would like to
thank my advisors Professor Antal A. Sarkady and CDR Charles B. Cameron for their
support, patience and instruction over the past year.

This project was suggested and sponsored by Henry Whitesel (Naval Surface Warfare
Center, Carderock Division Code 853, Naval Business Center, Philadelphia, Pennsylvania
19112) and Jack Overby of the Machinery Research and Development Directorate at the
Naval Surface Warfare Center Carderock Division (NSWCCD) in Philadelphia. Their sup-
port is greatly appreciated.

A special thanks to Dan Evans and Mic Robinson from the Naval Surface Warfare Center
for helping to provide ex-USS America as a testing platform.

I would like to thank the electrical engineering technical staff at the Naval Academy for
all their help and support, especially Bill Stanton and Daphi Jobe.

This project would not have been possible without the help of Professor Carl Wick from
the Weapons and Systems Engineering Department and his crash course in Borland C++
Builder.

I would like to thank my family and friends for all of their support. I would especially
like to thank my bride to be, Anna Wasienko, my mother and father, Kenneth and Susan
Hoover, and my brother, Matthew Hoover, for patiently listening to me describe to them
the intricate details of this project.

Finally, I would like to thank my Heavenly Father for the patience and endurance He has
given me, the wisdom he has given to all those who have helped me along the way, and the
comfort I have knowing that He has never left my side.

Contents

1 Project Description and Goals 8

1.1 Introduction . 8

1.2 Project Description . 9

2 Bluetooth 13

2.1 Bluetooth Basics . 13

2.2 Bluetooth Networking . 15

2.3 Interfacing a Bluetooth Device with a Host 17

2.4 Bluetooth Data Transmission . 19

2.5 Bluetooth Transmission Rates . 22

3 The Transmission Test Program 24

3.1 Program Operation . 27

4 Transmission Tests 32

4.1 Hallway Tests . 33

4.1.1 Test Setup . 33

4.1.2 Test Results . 35

4.2 Shipboard Tests . 41

4.2.1 Test Setup . 42

4.2.2 Test Results . 43

4.3 Test Statistics . 46

3

4
5 Conclusions 48

6 Future Research 49

A Bluetooth Include Functions 51

A.1 bluetooth.h . 51

A.2 BT functions.h . 56

A.3 BT functions.cpp . 62

B BTTest v. 1.1 71

B.1 BTTest1 1.h . 71

B.2 BTTest1 1.cpp . 75

C BTTest v. 3.1 105

C.1 BTTest3 1.h . 105

C.2 BTTest3 1.cpp . 109

List of Figures

1.1 Sinusoid and Pulse with Fourier Transforms 10

1.2 Intersymbol Interference . 11

2.1 Bluetooth tranceiver module . 14

2.2 Bluetooth Network . 17

2.3 A Bluetooth Node, Composed of the Host and Host Controller. 18

2.4 Bluetooth HCI Event Packet[1] . 19

2.5 Data encapsulation. 20

2.6 L2CAP Data Packet . 20

2.7 ACL Data Packets . 21

2.8 Illustration of baseband packet transmission 22

3.1 User Interface to the Transmission Test Program 25

3.2 Example of a test data file . 26

3.3 Example of a test results output file . 26

3.4 Bluetooth connection setup timing diagram 28

3.5 Flow Chart of the Test-data Transmission Routine 31

4.1 Bluetooth packet acknowledgement process [1] 32

4.2 Michelson hallway tests . 33

4.3 Hallway test topology . 34

5

6
4.4 Data Throughput vs. Door Position for DM3 Packet Type. (Error bars are

placed at ± two standard deviations providing a certainty of 95%) 35

4.5 One-way Transmission Time vs. File Size . 36

4.6 Data Throughput vs. Topology corrected, showing that throughput is largely

independent of file size. 38

4.7 Standard transmission times . 38

4.8 Properties of Baseband Packets [1] . 39

4.9 File Size vs. Packet Retransmissions for Hallway Tests (Error bars are set at

95% certainty) . 40

4.10 Hallway Piconet Test Topology . 41

4.11 ex-USS America Tests . 41

4.12 Shipboard Topology . 42

4.13 Test Results for DM3 Packet Type. (Error bars are placed at ± two standard

deviations providing a certainty of 95%) . 43

4.14 ENS Estes’ Powernode . 44

4.15 File Size vs. Packet Retransmissions for Shipboard Tests (Error bars are set

at 95% certainty) . 45

List of Tables

3.1 Bluetooth Initialization Commands . 27

4.1 Packet Retransmissions for the Hallway Test (DM1 Baseband Packet) 39

4.2 Packet Retransmissions for the Hallway Test (DM1 Baseband Packet) 44

4.3 Transmission Failures per Attempted Transmissions 46

4.4 Number of Failed Connections per Connection Attempts 47

7

Chapter 1

Project Description and Goals

1.1 Introduction

The Navy is always looking for efficient ways to improve its role in protecting our country.

One method to accomplish this task is the reduction of ships’ crew sizes. A military made

up of an all-volunteer force is very expensive. A large amount of money is spent every year

on training and salary for sailors and officers. Reducing crew sizes would greatly reduce the

cost of the Navy as a whole, if this could be done without a loss of efficiency.

Increased automation on board ship is one way to make smaller crew sizes possible. A lot

of man-hours are spent on board ships by sailors walking around the ship taking readings

and recording the data into logbooks. Much of this time could be eliminated through the

use of a computer network for centralized data logging and display. Such a network could

also be employed in the area of damage control, thereby increasing the safety of the ship.

One proposed method of increasing the automation on board ship is the use of a wireless

network. While a computer network such as the one described above could be implemented

using a wired network, wires add a great deal of weight to the ship and decrease the structural

and watertight integrity because of the holes which need to be cut into the bulkheads for

the wires to pass from compartment to compartment. Along with the structural advantages

8

9
of a wireless network there are also financial advantages. Maintenance and upgrades both

are much easier when there are fewer wires to deal with, because there are no installation

costs. A wired network is not easily or inexpensively reconfigured or upgraded. However,

a wireless network is easily and inexpensively reconfigured and upgraded; one simply needs

to download new software to reconfigure an entire network. Therefore, the advantages of a

wireless network are increased automation, increased structural integrity, decreased weight,

decreased installation costs (in both time and money), and increased reconfigurability.

The purpose of this proposed research is to determine the feasibility of a Bluetooth network

in a ship-board environment.

1.2 Project Description

This research project uses radio frequency (RF) attenuation data obtained by a previous

Trident Scholar at the U.S. Naval Academy, ENS Daniel R. J. Estes, completed in May 2001.

He performed RF transmission tests using sinusoidal sources ranging from 0.8− 2.5 GHz in

frequency on the ex-USS America, USS Ross, USS Carr, USS Leyte Gulf, and USS Oscar

Austin[4]. During his research ENS Estes measured the signal attenuation through closed

doors using five different geometries for the transmitter and receiver: open door in the direct

path from transmitter to receiver, open door not in the direct path from transmitter to

receiver, closed doors almost in the direct path from transmitter to receiver, a bulkhead

with no open doors, and closed doors not in the direct path from transmitter to receiver. He

concluded that the maximum RF signal attenuation was approximately 25 dB[4]. Bluetooth

devices currently have a receiver sensitivity of −75 dBm. This means that when using the

lowest power Bluetooth transmitter (0 dBm) in an environment with no external noise, a

signal with 75 dB of signal path loss is still receivable. This is the equivalent of passing

through three closed doors on board a ship. It is because of this characteristic of Bluetooth

that we believe Bluetooth is capable of operating in a shipboard environment.

10
ENS Estes concluded from his research that wireless transmission is possible on board

ships. However, he used only unmodulated sinusoidal carrier frequencies in his tests. Mod-

ulated carriers require much greater bandwidth.

Figure 1.1: Sinusoid and Pulse with Fourier Transforms

For example, look at figure 1.1. This figure shows four plots. The top two plots are

the time-domain representations of a sinusoidal signal and a square pulse. The bottom

two pictures are the frequency-domain representations of these two signals. The sinusoidal

signal occupies only one discrete frequency, whereas the square pulse requires considerably

more bandwidth because it is made up of many harmonically related sinusoids (a Fourier

Series). The sharp edges of the pulse are created by hundreds of Fourier Series components

and therefore imply large bandwidth. Though actual digital transmission signals do not

use square pulses, because of the large bandwidth associated with them, the signals do still

occupy much more bandwidth than a single sinusoid. Our research entailed another series of

shipboard wireless testing and therefore extended ENS Estes’ work to a broader frequency

11
range.

Because signal interference may affect the phase component of a signal along with its

magnitude, it is important to conduct a series of tests similar to those done by ENS Estes,

but using actual data communication. When data are transmitted and attenuated through

objects such as bulkheads and doors, a phenomenon known as Intersymbol Interference (ISI)

may occur.

2V

1ms

1.75V

Figure 1.2: Intersymbol Interference

ISI occurs when a signal comprised of distinct time-domain symbols or pulses is distorted

such that those pulses begin to “bleed” into one another. This “bleeding” leads to receiver

errors in the reconstruction of binary digits (bits). Figure 1.2 shows an example of the effects

of ISI. The figure, taken from an oscilloscope, shows the original signal and the signal after

passing it through a filter which caused ISI to occur. The figure shows many traces of the

same signals. The top signal is the original. It is a series of random square pulses two volts

in amplitude. The bottom signal was created by passing the initial top signal through a

filter that was used to model a transmission channel (e.g., a wire or electromagnetic waves).

The filter attenuated the signal (reduced its amplitude) and created ISI within the signal.

From this figure you can see how the transitions from a high amplitude to a low amplitude

are not as clear on the bottom signal as on the top. This is the problem with ISI. When the

12
transition of a signal from one state to another is not clear the signal may be misinterpreted

by the receiver.

Having seen the effects of ISI on the signal itself what are the affects of ISI on the actual

data sent? The most likely effect of ISI on digital data is bit errors. Bit errors are the alter-

ation of a single bit or multiple bits of data during transmission. Since a bit is represented

as a “0” or a “1”, a bit error occurs when, through ISI or noise, a bit is altered either from

a “1” to a “0”, or vice versa. Small numbers of bit errors have little or no effect on some

types of data (e.g., voice and video), however a single bit error in other data (e.g., files and

control information) may require retransmission of that data.

Chapter 2

Bluetooth

This chapter provides some background information about the Bluetooth Wireless Stan-

dard. We will define terms relative to the Bluetooth standard, discuss the proposed uses

for Bluetooth equipment, explain basic Bluetooth network operation, and discuss how to

interface a Bluetooth transmitter with a host.

2.1 Bluetooth Basics

Engineers at Ericsson first conceived of a new standard for wireless ad-hoc networking in

the mid 90’s. The new standard was named after a king of Denmark who united Denmark

and Norway and brought Christianity to Scandinavia.[2] That Bluetooth is a standard. It is

not the name of a specific product. Different vendors design products which must conform

to this standard.

The Bluetooth specification defines a short-range, low-power consumption, radio frequency

(RF) technology for digital, wireless communication. Bluetooth is aimed at replacing the

serial cables which are used on a day-to-day basis with many electronic devices, such as the

cables connecting the mouse and keyboard to a personal computer. Bluetooth is also capable

of coding, decoding, and transmitting voice data, making it applicable to cellular telephones

and wireless headsets.

13

14

Figure 2.1: Bluetooth tranceiver module

Bluetooth transmits in the unlicensed frequency band (2.4–2.48 GHz). Because this fre-

quency range is used by many other devices (e.g., cordless telephones and microwave ovens),

Bluetooth devices must address the problem of interference with these other devices. To

accomplish this task, Bluetooth incorporates a Frequency Hopping Spread Spectrum (FHSS)

scheme. The frequency hopping pattern is chosen by a pseudonoise (PN) code generator.

Pseudonoise is defined as a seemingly random sequence or code. A pseudonoise code appears

random to an uninformed observer; however, it can actually be seen to be predictable by

a privileged user who knows the PN code generation system. A PN generator includes the

circuitry together with a seed value (initial value fed to the circuitry), and a clock which pro-

duce PN codes. Spread spectrum refers to dividing transmissions among several frequency

channels (79 channels for Bluetooth) as opposed to assigning them to a single channel for the

entire transmission. Thus there are specific times during which transmissions may occur on

a single frequency and these are called time slots. Bluetooth changes transmission channels

at a rate of 1600 hops/s creating 625 µs time slots. For example, if a user wanted to transmit

1 kbyte of data, instead of sending all of the information on a single channel where a burst of

noise could destroy the entire transmission, the data would be segmented and each segment

transmitted on a different channel. Therefore, if a burst of RF noise on a specific channel

15
corrupts that information the majority of the data would be preserved. The fact that data

were corrupted will be known at the receiver, so the corrupted data may be retransmit-

ted. Frequency hopping refers to the order in which each transmission channel is used. In

a frequency-hopping scheme, channels are chosen randomly. This builds security into the

system. Only the transmitting and receiving device will know what the next transmission

channel is because they will be synchronized before any transmissions take place. Along with

FHSS, Bluetooth also implements several error-detection and -correction techniques. One of

which is Cyclic Redundancy Codes (CRC). A CRC is a series of bits appended at the end

of a data packet with which the receiver’s hardware can determine if errors are present in

the received data. If an error is present the receiver will request a retransmission from the

originating device.

2.2 Bluetooth Networking

A Bluetooth network is made up of master and slave devices. The designation of a device

as a master or slave occurs as the network is being established. This designation is in

no way indicative of the capabilities of the device: it merely designates which device will

control network operations. The master device determines the frequency-hopping pattern

and synchronizes the PN generators of other devices, assigns network addresses to other

devices, and handles all communication procedures between devices. The master controls

the network.

The most basic Bluetooth network is a single point-to-point link. A point-to-point link is

a communication link from one remote device to another remote device. We will use this

type of network as an example of how to establish a Bluetooth network.

Bluetooth network setup is accomplished completely by the software and hardware within

a given Bluetooth device. No input from the user is necessary. The first step to establishing

a network is for one device to execute an inquiry. During an inquiry the device is sending

16
signals and waiting for replies to determine if there are any other Bluetooth devices within

range. When a second Bluetooth device receives this inquiry signal it will respond with,

among other information, its Bluetooth Device Address (BD ADDR). Upon receipt of this

response the inquiring device becomes master of the network and will use the BD ADDR of

the second device to contact that device until a communication link is established.

This leads to the next step: creating a link between devices. Bluetooth provides two types

of communication links between devices: Asynchronous Connection-Less (ACL) links and

Synchronous Connection-Oriented (SCO) links. SCO links are reserved for voice traffic so we

will not go into detail about them. ACL links are used for data traffic. They can be point-

to-point or point-to-multipoint (broadcast) transmissions and most ACL communications

can be retransmitted in case of errors. In order to establish an ACL link the master will

enter a page mode in which it will send connection requests to devices for which it has

the BD ADDR. In a two–device network, that would be the only device which responded

to the master’s inquiry. The slave device then has the option of accepting or rejecting the

connection request. Assuming that the slave accepts the connection request it will then

transmit more information about itself to the master. The master will use this information

to establish rules for transmissions on this link, such as data transmission rate or encryption

type. Once an ACL link is established, data transmission between master and slave can take

place.

The basic multi-slave Bluetooth network is a piconet (Figure 2.2). A piconet is defined as

a network consisting of a master and up to seven slaves. The master and slaves of a piconet

form a star topology. All transmissions must go through the master. For example if Slave

One wants to communicate with Slave Two, Slave One must first send the data to the master

and then the master will send the data to Slave Two.

The procedures to establish a link are the same in a piconet as described above for

a point-to-point connection. The only difference is that an inquiry may result in several

devices responding instead of only one. When the master is ready to create a link it can

17

Figure 2.2: Bluetooth Network

choose with which devices it wants to create a connection.

2.3 Interfacing a Bluetooth Device with a Host

The first step to creating a Bluetooth network is to create an interface or method of

communication from the Bluetooth device to a host. A host is the electronic device which

will be running Bluetooth applications (e.g., a computer, cell phone, or Palm Pilot). A host

and Bluetooth transceiver interfaced together make up a Bluetooth master or slave (figure

2.3. The majority of the transmission procedures and link policy controls for Bluetooth

are taken care of by the firmware included in the Ericsson Bluetooth module which we

used. Firmware is code which is written in read-only memory (ROM), normally within a

microcontroller. This firmware and the associated hardware on the Bluetooth transceiver

which handle the interface with the host are collectively known as the host controller. The

protocols and code used in dealing with this interface are known as the Host Controller

18
Interface (HCI) layer.

Physical Layer
(UART, RS232, or USB)

BT
Controller

(e.g. Laptop)

BT
Transceiver
(Master or

Slave)

Command Packets

Data Packets

Event Packets

Figure 2.3: A Bluetooth Node, Composed of the Host and Host Controller.

The HCI is the Bluetooth networking layer that provides a standard interface for a host

to communicate with a Bluetooth transceiver through a Universal Serial Bus (USB), RS-232

serial communication port, or a Universal Asynchronous Receiver-Transmitter (UART) serial

connection. A host passes commands and data to the host controller, which then interprets

the commands and passes instructions to the Link Manager Protocol (LMP) layer, which is

the Bluetooth layer that controls the actual wireless link and data transmission.

All information that is passed from the host to the host controller (or vice versa) is passed

in packets. A packet is basically a number of bytes arranged in a standard order so that they

can be interpreted by a receiving device. Bluetooth uses four types of packets: command

packets, event packets, and ACL and SCO data packets. ACL and SCO data packets are

used for transmitting the ACL and SCO data, respectively. Command and event packets are

used to transmit control or status information (figure 2.3). Command packets are sent only

from the host to the host controller and are instructions to be executed by the Bluetooth

device. Event packets are sent only from the host controller to the host and are used to

inform the host of the status of requested commands or events that take place within the

network or within the Bluetooth transceiver itself. Figure 2.4 shows the general layout of an

19
event packet.

Figure 2.4: Bluetooth HCI Event Packet[1]

2.4 Bluetooth Data Transmission

Once a Bluetooth link is set up and, in the case of ACL data, once a connection has

been successfully established, it is possible to transmit data. In order to prepare the data

for transmission the host must first encapsulate the data (figure 2.5). Encapsulated data

is referred to as a data packet. Data encapsulation is analogous to placing a letter inside

an addressed envelope. When data is encapsulated, a header (and sometimes a trailer) is

appended to the beginning (and end) of the data. The information contained in a header is

similar to an address on a letter. The header contains information regarding the recipient of

the packet, the size of the packet, and the type of data contained in the packet.

In the case of ACL data, the Bluetooth standard defines two types of packets in which the

data must be encapsulated prior to transmission. Each type of packet consists of a packet

header followed by the data payload. The first packet type is the Logical Link Control and

Adaptation Protocol (L2CAP) packet. The L2CAP basically determines the general type of

data being received and, if several programs are using the same Bluetooth link, the L2CAP

determines to which program the data belongs. The purpose then of the L2CAP packet is to

route the data to whichever application needs it. Encapsulation of data in an L2CAP packet

20

DATA DATA DATA

D
A
T
A

H
E
A
D
E
R

DATA

PKT

H
E
A
D
E
R

D
A
T
A

H
E
A
D
E
R

DATA

PKT

H
E
A
D
E
R

DATA

PKT

H
E
A
D
E
R

Bluetooth Data Ecapsulation

L2CAP (Higher Layer) Packet

ACL (HCI Layer) Packets

ACL Pkt 1 ACL Pkt 3ACL Pkt 2

Figure 2.5: Data encapsulation.

occurs as shown in figure 2.6. The packet header is composed of a two-byte data-length

parameter followed by a two-byte channel identifier (CID). The packet-length parameter

informs the receiver of the size of the data payload in bytes (65, 535 bytes maximum), while

the CID is used to route the data to the correct application. Directly following the CID is

the actual data (i.e., the payload of the L2CAP packet). This L2CAP packet is then itself

encapsulated in one or several ACL data packets.

Figure 2.6: L2CAP Data Packet

21

Figure 2.7: ACL Data Packets

An ACL packet header (figure 2.7) consists first of a twelve-bit connection handle. The

connection handle designates the connection over which the packet is intended to be trans-

mitted. Following the connection handle are two two-bit flags: the packet boundary (PB)

flag and the broadcast (BC) flag. The PB flag is used to designate whether the given ACL

packet is the first packet of an L2CAP message or a continuing fragment of an L2CAP mes-

sage. The BC flag designates whether the ACL packet is intended for one specific slave or

the whole piconet (multicasting). The last part of the ACL packet header is a two-byte data

length. This parameter specifies the length of the data payload (in bytes) contained in the

ACL packet. The maximum size of an ACL data packet is determined by the buffer size of

the host controller. If an L2CAP packet is larger than the maximum size of an ACL packet

then the L2CAP packet must be divided up amongst several ACL packets for transmission.

For example the Ericsson Bluetooth transceiver we used has an ACL buffer size of 672 bytes.

Therefore, if an L2CAP packet is larger than 672 bytes it will require several ACL data

packets to transmit that one L2CAP packet.

22
Encapsulation of an L2CAP packet within ACL packets takes place as shown in figure

2.7. The first ACL packet contains (as ACL data payload) the packet header of the L2CAP

packet followed by as much L2CAP data payload as needed to fill the ACL packet. The

remaining L2CAP data payload is then encapsulated in as many ACL packets as needed.

The ACL packets are then transmitted via UART or USB to the host controller on the

Bluetooth transceiver where they are then sent over the RF link to the receiving device.

2.5 Bluetooth Transmission Rates

 DM1, DH1

 DM3, DH3

 DM5, DH5

Figure 2.8: Illustration of baseband packet transmission

The Bluetooth standard provides for six different transmission rates made possible by

six different types of baseband data packets. Baseband data packets are different from the

packets previously discussed. When received by the Bluetooth transceiver the ACL packets

are broken up and their data are placed in baseband packets which are the packets actually

transmitted over the wireless channel. The six types of baseband packets are: DM1, DH1,

DM3, DH3, DM5, and DH5 where the “D” signifies a data packet; “M” or “H” signifies a

medium- or high-speed packet respectively; and the numbers 1, 3, and 5 signify the number

of time slots utilized by the packet. The difference between medium- and high-speed packets

is that high-speed packets have fewer error detection bytes and thus have a higher data

rate. The other key to increasing data rate is the number of time slots used by each packet.

23
The more time slots used by a packet the faster the data rate of that packet. This is

because as more time slots are being used for a single packet, more time is being allowed for

that transmission to take place, as opposed to halting transmission and continuing during

a subsequent time slot. The second example uses more header bytes (thus more overhead)

slowing down transmission of actual data. This is why the DM1 and DH1 packets are the

slowest. Figure 2.8 gives a graphical depiction of the baseband data packets.

Chapter 3

The Transmission Test Program

We have created two test programs along with the associated graphical user interfaces

(GUI’s) for running transmission tests and logging test data (figure 3.1). One program is

designed to be used only for a two device (point-to-point) network. The second program

is capable of conducting transmission tests between two or three devices. The program

that will be discussed in detail here is the point-to-point program. The goal of the test

program is to determine the performance of a Bluetooth link through a closed watertight

door onboard a United States Naval vessel. The value measured by the test program is the

round-trip transmission time for Bluetooth data transmissions. From the transmission time,

a value for data throughput can be calculated using equation (3.1), where R is the data

throughput in bits/s, ndata is the number of data bytes transfered, and tround trip is the round

trip transmission time in seconds.

R =
8ndata

tround trip/2
=

16ndata

tround trip

(3.1)

The test program is designed for measuring round trip transmission times of small (i.e.,

10− 6500 byte) text files across a Bluetooth link. To accomplish this the program reads

in two specially created test data files, then times and records the round-trip transmission

times for each file and repeats this for a number of trials specified by the user. The test

24

25

Figure 3.1: User Interface to the Transmission Test Program

program has been created such that it may be used as either a master or a slave, and may

be used as either the testing platform (transmitting the files and recording the test data) or

as the receiving platform (simply receiving and retransmitting the test data).

The test data files (figure 3.2) are specially formatted to be read into the transmission

test program. The file begins with an integer representing the size of the file, followed by

four characters to reserve buffer space for the L2CAP header, and finally the test data itself

(i.e., a simple character string).

Upon completion of each transmission the round-trip transmission time in seconds is

recorded in a text file of comma-separated values which may be read into an Excel spread-

sheet. In order to make data logging easier, information such as the time and date a given

test was performed, distance between nodes, topology, master and slave Bluetooth addresses,

receive signal strength (dB), baseband packet type, and test file sizes (in bytes) are recorded

26

Figure 3.2: Example of a test data file

at the start of each test. Distance between nodes, topology, and baseband packet type are

each selected by the user prior to beginning a test and written to the test data file. Time

and date, master and slave Bluetooth addresses, receive signal strength, and test file sizes

are each either read from the computer or from the Bluetooth transceiver automatically and

logged in the output data file. Once a test has begun the transmission number, round trip

transmission time (for the small and large file), processing time (from the remote computer),

and number of errors is recorded for each transmission. An example output file is shown in

figure 3.3.

Figure 3.3: Example of a test results output file

27
3.1 Program Operation

Prior to the transmission of any data a Bluetooth link must be established. In order

to begin establishing a network the Bluetooth transceiver must first be initialized. The

initialization process consists of a series of commands which must be sent from the host to

the host controller and summarized in table 3.1. These commands are issued to the host

controller in the order shown at the start of the program.

HCI Command Description
Reset Resets the Bluetooth module.

Read Buffer Size Informs the host of the size of the data buffer in the
Bluetooth module.

Host Buffer Size Informs the Bluetooth module of the size of the host’s
data buffer.

Write Scan Enable Enable the Bluetooth module to scan for inquiries and
connection requests from other Bluetooth devices.

Write Authentication Enable Informs the Bluetooth module if link authentication will
be used or not.

Set Event Filter Used to filter unwanted events and automate the
acceptance of a connection request.

Write Connection Accept Timeout Sets the amount of time the Bluetooth module is allowed
to wait for the remote device to accept a connection
request event before automatically rejecting the request.

Write Page Timeout Sets the amount of time the Bluetooth module is allowed
to wait for a remote device to respond to a connection
request.

Table 3.1: Bluetooth Initialization Commands

Once the transceiver is initialized, an inquiry is executed. The purpose of an inquiry

is to determine if there are any Bluetooth -capable devices within range of the inquiring

device. If a Bluetooth device is found within range, information about that device is passed

from the host controller to the host. The user can then decide to create a connection with

the discovered device. As stated earlier, after the connection is established it is possible to

transmit data from one device to another. The connection process is summarized in figure

3.4.

Transmission test timing is accomplished by starting a timer just before transmission of a

test file begins and stopping the timer after the last byte of the file has been received by the

28

Figure 3.4: Bluetooth connection setup timing diagram

host that originally sent the file. During data transmission there are several factors which

must be considered.

• What type of transmission is being requested? Small file? Large file? Or retransmission

of a received file? (e.g., A slave only re-transmits received data.)

• How many ACL data packets will be needed to transmit the file?

• Will the host controller’s data buffer overflow?

A detailed flow chart of the test data transmission routine is shown in figure 3.5.

The Bluetooth test program receives data by checking the host computer’s COMM port

buffer at an interval of one millisecond. If data are present the data are then inspected and

a decision is made on how to respond or process the received data. In the case that test

data are received, the receive routine enters a loop which continues reading the COMM port

until all test data are received. The reason for entering the loop is to reduce timing errors

caused by the inherent delay in the polling scheme. When the entire data file has been

received a timer is started to measure the computation time used by the remote computer

preparing the data for retransmission to the originating computer. After the data have been

29
prepared for retransmission, the timer is stopped and the processing time is transmitted to

the originating computer along with the test data file. Upon receipt of the entire test data

file by the originating computer, the transmission timer is stopped and the results written to

the output file along with the processing time used by the remote computer. After storing

the information this whole process is repeated for a number of iterations defined by the user.

The test program has certain limitations worthy of note.

1. The test file sizes are limited to 6.7 kbytes by the buffers available on the Bluetooth

transceiver. This problem could be overcome. However, there are bugs in this part

of the code which have yet to be solved. A buffer overflow has been occurring in the

host controller when files larger than 6.7 kbytes is used. HCI flow control has been

implemented; however, the details have yet to be worked out.

2. The maximum possible data rate of the UART is 115 kbps. Bluetooth, however, allows

six different data rates, five of which are greater than 115 kbps. This means that

transmission tests using the faster Bluetooth data rates appear to transmit at the UART

rate instead of the expected Bluetooth rate.

During testing of the program a few transmission errors seemed to escape detection by

the error detection and correction methods implemented in the Bluetooth hardware. As

these errors occurred, the program was thrown into an infinite loop, effectively crashing

the program. Upon further inspection we realized that the error was a missing byte in

the received data. Since a whole byte was missing from the data file, the program hung

up waiting for a byte that would never be received. This problem was solved by adding a

timeout.

The timeout prevents the program from staying in an infinite loop caused by a missing

byte in a received file. When this occurs the program then throws out all of the data that had

been received and makes a note of the error in the output file. For a program to eliminate this

30
process of discarding the data it would need to implement an algorithm capable of searching

for the missing byte and adapting to this error.

The three-node test program works in much the same way. However, instead of a round-

trip transmission being between just two computers, the data file must be transmitted four

times to complete a round-trip. The first transmission is from one slave to the master, next

from the master to the second slave, then back to the master, and finally back to the original

slave. The transmit and receive routines are similar to those of the point-to-point program.

One change is that in the three-node system the master decides to which slave to transmit

the file based on which slave it is being received from. Secondly the processing times used by

the master and second slave are summed, resulting in the total processing time used during

the complete round-trip transmission.

31

Transmit Test Data
Function Call

Transmit
what?

Read Large
Data File &

Create L2CAP
Packet

Read Small
Data File &

Create L2CAP
Packet

Create Error
Information

L2CAP Packet

Add Data from
Stored Data

Buffer to LCAP
Packet for

Retransmission

Large Data File

Retransmit Received Data

Small Data File Error Notification

Will this
L2CAP

packet fit in
a single ACL

Packet?

YES

NO

Create ACL
Packet &
Transmit

Fill ACL
Packet

& Transmit

Add remaining
Data to ACL

Packet &
Transmit

Set ACL header
for First ACL

Packet

Is there
remaining
data to be

transmitted?

Fill ACL
Packet

& Transmit

Set ACL header
for Continuing
ACL Packet

Is there
enough data
remaining to
fill an ACL
pakcet?

End Function

End Function

YES

YESNO

Continue Previously Started Transmission

Will the Host
Conroller's
Buffer hold

more packets?

End Function & wait for the
Host Controller to clear its

Buffers

NO

NO

YES

Start Transmission Timer

Figure 3.5: Flow Chart of the Test-data Transmission Routine

Chapter 4

Transmission Tests

We ran two sets of tests for this project. The first set of tests was run in the basement

hallway of Michelson Hall at the United States Naval Academy. The purpose of this set of

tests was to provide a baseline for evaluating the results of the second set of tests completed

on board the ex-USS America. The data throughput for shipboard tests was expected to

drop due to packet retransmissions caused by a decrease in signal to noise ratio, which in

fact did occur.

Figure 4.1: Bluetooth packet acknowledgement process [1]

32

33
As a way of ensuring reliable packet delivery Bluetooth implements an automatic repeat

request (ARQ) packet retransmission scheme. Bluetooth ARQ works by having the recipient

of a packet reply with an acknowledgment indicating the success or failure of the previous

data transmission. The acknowledgement is transmitted in the recipient’s next transmission

time slot immediately following the data transmission. Figure 4.1 shows this process. An

ACK (positive acknowledgement) is transmitted in the case of a successful transmission

and a NACK (negative acknowledgment) is transmitted in the case of a packet arriving with

errors. The default value for this acknowledgment is NACK so that if a packet is not received,

the recipient’s transmission time slot following the transmitter’s unsuccessful attempt will

contain a NACK. When a NACK is received by the originator, the last packet transmitted is

retransmitted. This sequence will continue for a vendor specified number of attempts until

the transmitting device finally times out and drops the packet.

4.1 Hallway Tests

Figure 4.2: Michelson hallway tests

4.1.1 Test Setup

The first set of transmission tests were completed in the hallway of the basement of

Michelson just outside room ML1. One laptop set up outside ML1 on a lab cart (shown in

the left half of figure 4.2) and another laptop was set on a chair in the middle of ML1 (shown

34

7.00m

2.50m

3.00m

4.30m
5.00m

Michelson Hallway

ML 1

Hallway Test Topology

θ

Master
(Transmitter)

Slave

(Receiver)

c

Figure 4.3: Hallway test topology

in the right half of figure 4.2). In order to reduce interference from metal objects near the

Bluetooth transceivers they were attached to wooden dowels using velcro, with the dowel

rods being placed in a retort stand. The topology was arranged such that the computers

were 5 m apart and the computer in the hallway was offset from the door to ML1 (figure

4.3). The topology was changed for each test by changing the angle that the door was open

(angle θ in figure 4.3). Tests were run with the door in five different positions: wide open

(90◦), 45◦ open, 15◦ open, cracked open (approx. 1◦), and closed (0◦).

Hallway testing was completed using four different file sizes: 500 bytes, 1 kbytes, 2.5 kbytes,

and 5 kbytes. Each file was transmitted ten times to complete a test. Tests were completed

using all six of the available Bluetooth baseband packets in each of the five topologies,

resulting in a total of 1200 file transmissions.

35
4.1.2 Test Results

The results from the hallway tests revealed that the position of the door had essentially no

effect on transmission rates and therefore no effect on the error rates within the Bluetooth

transmissions. As is shown in figure 4.4 the data throughput rate remains fairly constant

regardless of the position of the door. This was the case for all tests.

Four Transmission Tests Using the DM3 Packet Type

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

90000.00

Door Open Door Open
45

Door Open
15

Door
Cracked

Door Closed

Topology

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
s)

500 Byte File

1k Byte File

2.5k Byte File

5k Byte File

Figure 4.4: Data Throughput vs. Door Position for DM3 Packet Type. (Error bars are placed at ± two
standard deviations providing a certainty of 95%)

These results are as expected because the hallway imposes minimal attenuation and few, if

any, packet retransmissions are expected. Also of note is the fact that the walls in Michelson

are sheet-rock which is transparent to RF energy, therefore the door position essentially had

no effect on the Bluetooth transmissions. The graphs also seem to show that larger file sizes

will have a higher transmission rate. However, after further analysis this conclusion is proved

to be false.

The apparently higher transmission rates of the larger packets is in fact due to some

overhead time introduced into the test times by the test program itself. This is shown by

graphing data throughput vs. file size (figure 4.5). By performing a linear regression on

this data we discovered that there is an offset in the y-direction indicating a small portion

36
of overhead common to all four file sizes. This offset also implies that it would take a finite

amount of time to transmit a zero-byte file, which we know cannot be true, since in practice

we simply would not do it.

One-way Transmission time vs. File Size Using DM3 Packet
Type

y = 9E-05x + 0.0702

R2 = 0.9997

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000 6000

File Size (bytes)

O
n

e-
w

ay
 T

ra
n

sm
is

si
on

 T
im

e
(s

)

One-way Transmissio time vs. File Size Using DM5 Packet Type

y = 9E-05x + 0.0698

R2 = 0.9997

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000 6000

File Size (bytes)

O
n

e-
w

ay
 T

ra
n

sm
is

si
o

n
 t

im
e

(s
)

Figure 4.5: One-way Transmission Time vs. File Size

Also, calculations prove that the overhead time revealed by the graph is not the overhead

one would expect from packet headers and UART start and stop bits. We will use the 500

byte file transmitted in using DM3 baseband packets as an example.

The graph in figure 4.5 shows a 70.2 ms overhead. Given a 114.6 ms one-way total trans-

mission time we can compute the apparent overhead to be 61.3%.

Now we will compare this value to the expected overhead. First the file will receive a

four-byte L2CAP header. Next, the 500 byte file will be split into two ACL packets based

on a maximum buffer size of 400 bytes. Each ACL data packet has a five byte header. The

total header size is now 14 bytes. The UART will add a start and a stop bit to each byte

that is transmitted, therefore the total number of overhead bytes is given by:

nOH = 2(ndata + nheader)/8 + nheader (4.1)

where ndata is the number of bytes of data and nheader is the number of bytes of header

information. Applying equation (4.1) to the 500 byte file gives nOH = 128.5 bytes. This

37
gives us 20.4% expected overhead (%OH= nOH/(ndata + nOH)).

When this value is compared with the value obtained from the graph in figure 4.5 we can

see that they are not even close. The final proof that the overhead value obtained from

the graph represents program overhead is that when this value is subtracted from the total

transmission time and the transmission bit rate is calculated using this corrected transmission

time we find that the calculated bit rate is approximately equal to the bit rate of the UART.

(The Bluetooth bit rate will not be obtained because the UART is slower, therefore it is the

limiting factor for transmission time.)

R =
8(nOH + ndata)

ttrans

, where R is the bit rate. (4.2)

Applying equation (4.2) to the example and using the corrected transmission time as ttrans

we get R = 113.2kbps. This value is within 1.5% error of the actual UART rate (155.0 kbps).

Therefore the overhead time revealed by the graph in figure 4.5 is test program overhead.

The source of this overhead is most likely the timeout values that are part of reading and

writing data to the computer’s serial data port.

When the program overhead is taken into consideration and the graph from figure 4.4 is

regenerated (figure 4.6) it can be seen that file size does not affect data throughput rates.

The apparent deviations of the 500 byte file may be due to the resolution of the timer in the

test program. The resolution of the timer is one millisecond so any inaccuracy in timing will

have a much greater effect on results for the smaller file sizes.

Once the existence of the test program overhead was established, several values for

tprogram OH were computed using linear regressions and a mean value of tprogram OH = 70.0ms

was computed. Knowing this we calculated standard values for the expected transmission

time of overhead bytes (tOH bytes), the expected transmission time of data bytes (tdata), and

the expected total transmission time (ttrans) for each file size. These standard values are

38

Data Throughput After Correcting for Program Overhead DM3
Packet Type

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Door Open Door Open
45

Door Open
15

Door
Cracked

Door Closed

Topology

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
s)

500 Byte File

1k Byte File

2.5k Byte File

5k Byte File

Figure 4.6: Data Throughput vs. Topology corrected, showing that throughput is largely independent of file
size.

Figure 4.7: Standard transmission times

shown in figure 4.7. The values were then used as a reference for determining the percent

overhead due to packet retransmissions in the shipboard tests, assuming that the hallway

tests experienced few or no packet retransmissions. This assumption is reasonable given that

the calculated bit rate was within 1.5% of the actual bit rate for these tests.

Knowing the overhead associated with the transmission test program and the header bytes

of each file size it is possible to calculate the number of retransmitted baseband packets. First

39

Figure 4.8: Properties of Baseband Packets [1]

we must determine the number of packets a given file would be expected to occupy (ptheoretical)

using equation (4.3).

ptheoretical =

⌈
nfile

npayload

⌉
(4.3)

where nfile equals the number of bytes in the file to be transmitted and npayload equals the

maximum number of payload bytes of the baseband packet type being used (figure 4.8).

Then using the data from figure 4.7 we can compute the actual number of packets used to

transmit the file (pactual).

pactual =

⌈
ttrans − tprogram OH − tOH bytes

2ttime slot

⌉
(4.4)

Equation (4.4), however, is limited to use with only DM1 and DH1 baseband packet types.

The number of packets retransmitted is then the difference between ptheoretical and pactual.

The results of these calculations are shown in table 4.1.

File Size ptheoretical pactual pretransmissions

500 30 40 10
1000 59 73 14
2500 148 182 34
5000 295 355 60

Table 4.1: Packet Retransmissions for the Hallway Test (DM1 Baseband Packet)

40

Packet Retransmission vs. File Size y = 4.8305e0.6263x

R2 = 0.9745

-10

0

10

20

30

40

50

60

70

80

500 1000 2500 5000

File Size (Bytes)

N
u

m
b

er
 o

f
P

ac
ke

ts
 R

et
ra

n
sm

it
te

d

Figure 4.9: File Size vs. Packet Retransmissions for Hallway Tests (Error bars are set at 95% certainty)

It can be seen from this data that relatively few packet retransmissions were required in

Michelson Hall. It is also interesting to note that the number of retransmitted packets seems

to increase exponentially as the size of the transmitted file increases (figure 4.9). This figure

shows an exponential regression (dark line) plotted on top of actual test data (light line).

The equation for the regression function is shown in the upper right corner of the plot along

with the R2 value. The R2 value represents how well the regression fit the actual data points.

The closer R2 is to 1 the better regression fits the actual data.

Hallway tests were also performed using a piconet topology as shown in figure 4.10. The

only difference between this topology and the topology shown in figure 4.3 is the addition

of a third node to the left of the door. In this case the data was transmitted from the

slave-transmitter through the master to the slave-receiver and finally retransmitted back to

the slave-transmitter through the master. These tests provided similar results as the point-

to-point tests. Piconet testing, however, was not carried out onboard the ex-USS America

due to bugs in the test program at the time the shipboard tests were being carried out.

41

7.00m

2.50m

3.00m

4.30m
5.00m

Michelson Hallway

ML 1

Hallway Test Topology
(Piconet)

θ

Slave

(Transmitter)

Master

(Receiver)

1.50m

2.50

Slave

(Receiver)

Figure 4.10: Hallway Piconet Test Topology

Figure 4.11: ex-USS America Tests

4.2 Shipboard Tests

The second set of tests was completed onboard the ex-USS America, a decommissioned

aircraft carrier docked at the naval shipyard in Philadelphia. Tests were conducted in an

42
open aircraft hangar bay onboard the ship. The Philadelphia Naval Shipyard is near the

Philadelphia International Airport, and it may well be that the radar from the airport

interfered with some of the tests. During testing, the receive-signal-strength indicator in the

hangar bay was very erratic. At times it showed receive-signal-strengths greater than the

transmission power. Directly behind the area of the hangar bay in which we were testing

was an open aircraft elevator in direct view of the airport radar. Therefore, we concluded

the receive-signal-strength indicator was of no practical use in these tests.

4.2.1 Test Setup

ex-USS America Test Topology

θ

2.15m

2.50m

5.00m
4.30

Door
1-101-2

Compartment
1-100-2-L

F
O
R
W
A
R
D

A
F
T

Hanger Bay

Master
(Transmitter)

Slave
(Receiver)

ex-USS America Test Topology

θ
Hatch

1-101-2

Compartment
1-100-2-L

F
O
R
W
A
R
D

A
F
T

Hanger Bay

4.30m

2.15m

2.50m

5.00m

Master
(Transmitter)

Slave
(Receiver)

Figure 4.12: Shipboard Topology

Shipboard testing was conducted much like the hallway testing. Tests were run from the

hangar bay through door 1-101-2 (left side of figure 4.11 and into compartment 1-100-2-L

(right side of figure 4.11. One laptop was placed inside of the compartment and the other

was placed in the hangar bay offset from the door. Tests were conducted with the laptop

offset on both the right and left side of the door. The total distance between the transceivers

was 5 m and the topology was changed by varying the angle of the door: wide open (90◦),

43
45◦ open, 15◦ open, cracked open (approx. 1◦), closed (0◦), and door dogged (0◦, A dogged

door is closed tightly using levers.).

As with the hallway tests the Bluetooth transceivers were attached to wooden dowel rods

and placed in retort stands to reduce interference from nearby metal objects. Also, as with

the hallway tests, 10 transmissions of each file were completed for each test.

4.2.2 Test Results

Two Shipboard Tests Using DM3 Packet Type

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

Hatch
Open

Hatch
Open 45

Hath Open
15

Hatch
Cracked

Hatch
Closed

Hatch
Dogged

Topology

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
s)

500 Byte File

1k Byte File

Four Shipboard Tests Using DM3 Packet Type

0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

90000.00

Hatch Open Hath Open 15 Hatch Closed

Topology

D
at

a
T

h
ro

u
g

h
p

u
t

(b
it

s/
s)

500 Byte File

1k Byte File

2.5k Byte File

5k Byte File

Percent Overhead Due to Packet Retransmissions

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Hatch
Open

Hatch
Open 45

Hath Open
15

Hatch
Cracked

Hatch
Closed

Hatch
Dogged

Topology

P
er

ce
n

t
O

ve
rh

ea
d

500 Byte File

1k Byte File

Percent Overhead Due to Packet Retransmissions

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Hatch Open Hath Open 15 Hatch Closed

Topology

P
er

ce
n

t
O

ve
rh

ea
d

500 Byte File

1k Byte File

2.5k Byte File

5k Byte File

Figure 4.13: Test Results for DM3 Packet Type. (Error bars are placed at ± two standard deviations
providing a certainty of 95%)

The shipboard tests prove that wireless data transmission through a closed and dogged

door is possible, though a significant decrease in data throughput was experienced. A range

of 30–70% overhead due to packet retransmissions was observed. As seen in figure 4.13, the

overhead due to packet retransmissions was substantial but not completely overwhelming.

Data were still successfully transmitted through the closed and dogged doors.

44

Figure 4.14: ENS Estes’ Powernode

It is of note that the intended use for such a network is monitoring and control systems

and not file transfers. These applications do not require much data to be transferred. The

smallest file size used in tests was 500 bytes. Monitoring and control data do not usually

require nearly that much data to be transferred. For example ENS Estes designed and built

a power node (figure 4.14, a device used to simulate shipboard monitoring and controls).

This power node requires only one byte to transfer control information and less than twenty

bytes to transfer monitoring information. Therefore, the data throughput rates achieved in

the shipboard tests would be acceptable for such a system.

File Size ptheoretical pactual pretransmissions

500 30 152 122
1000 59 308 249
2500 148 401 253
5000 295 809 514

Table 4.2: Packet Retransmissions for the Hallway Test (DM1 Baseband Packet)

Packet retransmission data was calculated for the a test run using DM1 baseband packets

and the closed door topology (table 4.2). As was the case with the hallway tests, the number

of packet retransmissions seems to increase exponentially as file size is increased (figure 4.15).

The plot on the right was obtained by excluding the 1000 byte file, which had a great deal

45

Packet Retransmission vs. File Size
(DM1 Pkt Type, Hatch Closed) y = 84.914e0.4331x

R2 = 0.9065

-100

0

100

200

300

400

500

600

700

500 1000 2500 5000

File Size (Bytes)

P
ac

ke
t

R
et

ra
n

sm
is

si
o

n
 T

im
e

(s
)

Packet Retransmissions vs. File Size
(DM1 Pkt Type, Hatch Closed)

y = 59.641e0.7191x

R2 = 0.9999

-100

0

100

200

300

400

500

600

700

500 2500 5000

File Size (Bytes)

N
u

m
b

er
 o

f
P

ac
ke

ts
 R

et
ra

n
sm

it
te

d

Figure 4.15: File Size vs. Packet Retransmissions for Shipboard Tests (Error bars are set at 95% certainty)

of error associated with it. By excluding the data from this file the exponential increase

in packet retransmissions can be clearly seen. This data suggests that the probability of

packet retransmission in a given environment is similar to the arrival process in queuing

theory[8]. The arrival process is modeled as a Poisson process where the arrival of data is an

independent, random process. Similarly in this case packet retransmission is an independent

and random process and the time for a given transmission is proportional to the size of the

file being transmitted. The probability distribution for such a process is given by

Parrival(x) = λe−λx (4.5)

where λ is the average arrival rate. The corresponding cumulative distribution is given by[9]

FX(x) = 1− e−λx (4.6)

We may then relate the expression found by the exponential regression of our test data

(f(x)) in figure 4.15 to the cumulative distribution function for packet retransmissions

(FX(x)) by the equation

f(x) =
1

1− FX(x)
(4.7)

46
Solving equation (4.7) for FX(x) gives

FX(x) = 1− 1

f(x)
(4.8)

This then gives us the desired form for the cumulative distribution function

FX(x) = 1− 1

59.641
e−0.7191x (4.9)

However, in practical use this expression must be refined by further testing. In order

to refine this expression the number of times a single baseband packet is retransmitted

must be measured. Our testing was only able to measure the total number of baseband

packet retransmissions in the transmission of an entire file. A more practical version of this

expression would be to determine the cumulative distribution function for the number of

times a packet is dropped due to the vendor specified timeout cause by excessive packet

retransmission.

4.3 Test Statistics

Test 500 Byte File 1k Byte File 2.5k Byte File 5k Byte File
Hallway Tests 0/300 0/300 1/297 0/296

Shipboard Tests 0/422 3/422* 0/157 1/157
* Two of the three errors encountered here may have been due in part to partially discharged batteries in the laptop.

Table 4.3: Transmission Failures per Attempted Transmissions

Several of the tests completed onboard the ex-USS America and one hallway test resulted

in the test program timing out. The cause of these timeouts is insufficient data transferred

(i.e. a byte or several bytes missing from the transferred data). These are the only errors ex-

perienced which were not corrected by the Bluetooth error-detection-and-correction schemes.

Based on the number of test transmissions attempted the number of failed transmission is

relatively low (0.71% for the 1k byte file and 0.21% overall).

47
Test Failed Connections

All Hallway Tests 0 failed of 60 attempts
All Shipboard Tests 13 failed of 73 attempts

Shipboard Tests w/ Door Open or Cracked 0 failed of 48 attempts
Shipboard Tests w/ Door Closed or Dogged 13 failed of 25 attempts

Table 4.4: Number of Failed Connections per Connection Attempts

Several times during the shipboard testing the paging process timed out while attempting

to establish a connection between the two Bluetooth transceivers. The difficulty creating

connections occurred only in the topologies with the door closed or dogged. This suggests

that though data transfer through the door in the closed and dogged positions is possible,

the signal-to-noise ratio may be at or near its limit in these two topologies. A connection

success rate of 82.2% overall and only 48.0% with the door in the closed and dogged positions

is not very encouraging, given that the network must be capable of operating in the extreme

conditions experienced at battle stations, during which all watertight doors will be dogged.

We must also keep in mind, however, that during the connection establishment process

the master and slave are not using the same frequency hopping sequence. Therefore, the

difficulties in connection establishment do not indicate problems with data transfer. After

a connection is established both slave and master are using synchronized frequency hopping

sequences and are always on the same transmission channel.

One possible solution to this problem is the use of a higher power Bluetooth tranceiver.

Our tests were conducted using the low-power (1mW) Bluetooth transceiver. Presumably

the higher power (100mW) Bluetooth transceiver will be able to overcome this obstacle.

Another possible solution to the connection problem is software that will continually at-

tempt to establish a connection. The test program we created was not written to do this.

Chapter 5

Conclusions

The goal of this research project was to determine the feasibility of a Bluetooth wireless

network in a shipboard environment. Based on the results obtained from the shipboard

tests, Bluetooth wireless transmission is feasible through closed and dogged doors. However,

a decrease in data throughput (30–70% packet retransmission overhead) was experienced.

Taking into consideration the fact that the proposed uses for a Bluetooth network (shipboard

montitoring and control systems) typically require very little data transfer the decrease in

data throughput should not preclude the success of such a network. Problems may arise,

however, due to the rate of failed connections when the door is in the closed or dogged

position. This problem itself would be enough to disqualify Bluetooth from use onboard naval

vessels. There does remain the possiblity that this problem could be solved by using a higher

power Bluetooth transceiver and modifying the software which establishes a connection.

Since higher power devices have been unavailable to us thus far, more tests will need to be

conducted to demonstrate this.

48

Chapter 6

Future Research

The possibility and usefulness of a shipboard Bluetooth network still remains. A Blue-

tooth network would provide ease of use and an inexpensive solution to the implementation

of a wireless shipboard monitoring and control network. This project answered the question

of the possibility of data transfer through a closed door, but also gave rise to the question

of reliability in establishing a connection through closed and dogged doors. Further research

should be conducted using newer versions of Bluetooth hardware. A higher power transceiver

will be available soon and newer versions of Bluetooth will implement adaptive frequency

hopping schemes. [3] Both of these advances will have a favorable impact on the problem

of connection establishment. It is also of note that Bluetooth is still in infant stages of

development. The Bluetooth project was only begun by Ericsson in 1994, the Special Inter-

est Group was not created until 2001,[2] and Bluetooth devices have only recently become

available to the consumer. The possibility of a Bluetooth shipboard monitoring and control

network should be pursued as the Bluetooth technology itself develops.

49

Bibliography

[1] Bluetooth SIG, Specification of the Bluetooth System, Vol. 1, 2001.

[2] Brent A. Miller, Chatschik Bisdikian, Ph.D., Bluetooth Revealed: The Insider’s Guide

to an Open Specification for Global Wireless Communications, Upper Saddle River, NJ:

Prentice Hall, PTR, 2002.

[3] Robert Morrow, Bluetooth Operation and Use, New York: McGraw-Hill, 2002.

[4] Daniel R.J. Estes, ENS, A Trident Scholar Project Report: Assessment of Radio Fre-

quency Propagation in a Naval Shipboard Environment, United States Naval Academy,

Annapolis, MD, 2001.

[5] Ericsson, ROK 101 008 Bluetooth PtP Module: Specification Sheet, Kista-Stockholm,

Sweden, 2000.

[6] Ferrel G. Stremler, Introduction to Communication Systems, Third Edition, New York:

Addison–Wesley Publishing Company, 1992.

[7] Jorgen Ostlund, Infineon Technologies North America Corporation Sales Applications

Specialist, Email Correspondence, 21 November 2002.

[8] Alberto Leon-Garcia, Indra Widjaja, Communication Networks Fundamental Concepts

and Key Architectures, Boston: McGraw-Hill, 2000.

[9] Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, New

York: Addison-Wesley, 1989.

50

Appendix A

Bluetooth Include Functions

A.1 bluetooth.h

//bluetooth.h

//Written on 19OCT02 by MIDN Kenneth J. Hoover

//Last updated 02APR03

//This header file defines the Host Controller Interface (HCI)

//commands, events, error codes, and UART packet headers for

//bluetooth devices.

//---

#ifndef bluetoothH

#define bluetoothH

/*********************** COMMANDS *****************************/

//-------LINK CONTROL COMMANDS OGF 0x01-------

//Inquiry Commands

#define HCI_INQUIRY 0x0401

#define HCI_INQUIRY_CANCEL 0x0402

#define HCI_PERIODIC_INQUIRY_MODE 0x0403

#define HCI_EXIT_PERIODIC_INQUIRY_MODE 0x0404

//Connect and Disconnect Commands

#define HCI_CREATE_CONNECTION 0x0405

#define HCI_DISCONNECT 0x0406

#define HCI_ADD_SCO_CONNECTION 0x0407

#define HCI_ACCEPT_CONNECTION_REQUEST 0x0409

#define HCI_REJECT_CONNECTION_REQUEST 0x040A

#define HCI_CHANGE_CONNECTION_PACKET_TYPE 0x040F //command not in order

//Security-related Commands

#define HCI_LINK_KEY_REQUEST_REPLY 0x040B

#define HCI_LINK_KEY_REQUEST_NEGATIVE_REPLY 0x040C

#define HCI_PIN_CODE_REQUEST_REPLY 0x040D

#define HCI_PIN_CODE_REQUEST_NEGATIVE_REPLY 0x040E

#define HCI_AUTHENTICATION_REQUEST 0x0411

#define HCI_SET_CONNECTION_ENCRYPTION 0x0413

#define HCI_CHANGE_CONNECTION_LINK_KEY 0x0415

#define HCI_MASTER_LINK_KEY 0x0417

//Remote Device Information Commands

#define HCI_REMOTE_NAME_REQUEST 0x0419

51

52
#define HCI_READ_REMOTE_SUPPORTED_FEATURES 0x041B

#define HCI_READ_REMOTE_VERSION_INFORMATION 0x041D

#define HCI_READ_CLOCK_OFFSET 0x041F

//-------LINK POLICY COMMANDS OGF 0x02-------

//Low-power Mode Commands

#define HCI_HOLD_MODE 0x0801

#define HCI_SNIFF_MODE 0x0803

#define HCI_EXIT_SNIFF_MODE 0x0804

#define HCI_PARK_MODE 0x0805

#define HCI_EXIT_PARK_MODE 0x0806

//Setup and Configuration Commands

#define HCI_QoS_SETUP 0x0807

#define HCI_ROLE_DISCOVERY 0x0809

#define HCI_SWITCH_ROLE 0x080B

#define HCI_READ_LINK_POLICY_SETTINGS 0x080C

#define HCI_WRITE_LINK_POLICY_SETTINGS 0x080D

//-------HOST CONTROLLER & BASBAND COMMANDS OGF 0x03-------

//Setup and Configuration Commands

#define HCI_SET_EVENT_MASK 0x0C01

#define HCI_RESET 0x0C03

#define HCI_SET_EVENT_FILTER 0x0C05

#define HCI_CHANGE_LOCAL_NAME 0x0C13 //command not in order

#define HCI_READ_LOCAL_NAME 0x0C14 //command not in order

#define HCI_READ_CLASS_OF_DEVICE 0x0C23 //command not in order

#define HCI_WRITE_CLASS_OF_DEVICE 0x0C24 //command not in order

#define HCI_READ_VOICE_SETTING 0x0C25 //command not in order

#define HCI_WRITE_VOICE_SETTING 0x0C26 //command not in order

#define HCI_READ_NUM_BROADCAST_RETRANSMISSIONS 0x0C29 //command not in order

#define HCI_WRITE_NUM_BROADCAST_RETRANSMISSIONS 0x0C2A //command not in order

//Security-related Commands

#define HCI_READ_PIN_TYPE 0x0C09

#define HCI_WRITE_PIN_TYPE 0x0C0A

#define HCI_CREATE_NEW_UNIT_KEY 0x0C0B

#define HCI_READ_STORED_LINK_KEY 0x0C0D

#define HCI_WRITE_STORED_LINK_KEY 0x0C11

#define HCI_DELETE_STORED_LINK_KEY 0x0C12

#define HCI_READ_AUTHENTICATION_ENABLE 0x0C1F //command not in order

#define HCI_WRITE_AUTHENTICATION_ENABLE 0x0C20 //command not in order

#define HCI_READ_ENCRYPTION_MODE 0x0C21 //command not in order

#define HCI_WRITE_ENCRYPTION_MODE 0x0C22 //command not in order

//Timeout Commands

#define HCI_READ_CONNECTION_ACCEPT_TIMEOUT 0x0C15

#define HCI_WRITE_CONNECTION_ACCEPT_TIMEOUT 0x0C16

#define HCI_READ_PAGE_TIMEOUT 0x0C17

#define HCI_WRITE_PAGE_TIMEOUT 0x0C18

#define HCI_READ_AUTOMATIC_FLUSH_TIMEOUT 0x0C27 //command not in order

#define HCI_WRTIE_AUTOMATIC_FLUSH_TIMEOUT 0x0C28 //command not in order

#define HCI_READ_LINK_SUPERVISION_TIMEOUT 0x0C36 //command not in order

#define HCI_WRITE_LINK_SUPERVISION_TIMEOUT 0x0C37 //command not in order

//Inquiry and Page Scan Commands

#define HCI_READ_SCAN_ENABLE 0x0C19

#define HCI_WRITE_SCAN_ENABLE 0x0C1A

#define HCI_READ_PAGE_SCAN_ACTIVITY 0x0C1B

53
#define HCI_WRITE_PAGE_SCAN_ACTIVITY 0x0C1C

#define HCI_READ_INQUIRY_SCAN_ACTIVITY 0x0C1D

#define HCI_WRITE_INQUIRY_SCAN_ACTIVITY 0x0C1E

#define HCI_READ_NUM_SUPPORTED_IAC 0x0C38 //command not in order

#define HCI_READ_CURRENT_IAC_LAP 0x0C39 //command not in order

#define HCI_WRITE_CURRENT_IAC_LAP 0x0C3A //command not in order

#define HCI_READ_PAGE_SCAN_PERIOD_MODE 0x0C3B //command not in order

#define HCI_WRITE_PAGE_SCAN_PERIOD_MODE 0x0C3C //command not in order

#define HCI_READ_PAGE_SCAN_MODE 0x0C3D //command not in order

#define HCI_WRITE_PAGE_SCAN_MODE 0x0C3E //command not in order

//Low-power Mode Commands

#define HCI_READ_HOLD_MODE_ACTIVITY 0x0C2B

#define HCI_WRITE_HOLD_MODE_ACTIVITY 0x0C2C

//Transmit Power Commands

#define HCI_READ_TRANSMIT_POWER_LEVEL 0x0C2D

//Flow Control Commands

#define HCI_FLUSH 0x0C08 //command not in order

#define HCI_READ_SCO_FLOW_CONTROL_ENABLE 0x0C2E

#define HCI_WRITE_SCO_FLOW_CONTROL_ENABLE 0x0C2F

#define HCI_SET_HOST_CONTROLLER_TO_HOST_FLOW_CONTROL 0x0C31

#define HCI_HOST_BUFFER_SIZE 0x0C33

#define HCI_HOST_NUM_COMPLETED_PACKETS 0x0C35

//-------INFORMATIONAL PARAMETERS OGF 0x04-------

#define HCI_READ_LOCAL_VERSION_INFORMATION 0x1001

#define HCI_READ_LOCAL_SUPPORTED_FEATURES 0x1003

#define HCI_READ_BUFFER_SIZE 0x1005

#define HCI_READ_COUNTRY_CODE 0x1007

#define HCI_READ_BD_ADDR 0x1009

//-------STATUS PARAMETERS OGF 0xO5-------

#define HCI_READ_FAILED_CONTACT_COUNTER 0x1401

#define HCI_RESET_FAILED_CONTACT_COUNTER 0x1402

#define HCI_GET_LINK_QUALITY 0x1403

#define HCI_READ_RSSI 0x1405

//-------TESTING COMMANDS OGF 0x06-------

#define HCI_READ_LOOPBACK_MODE 0x1801

#define HCI_WRITE_LOOPBACK_MODE 0x1802

#define HCI_ENABLE_DEVICE_UNDER_TEST_MODE 0x1803

//-------ERICSSON SPECIFIC HCI COMMANDS (ROK 101 008)-------

#define HCI_SET_UART_BAUD_RATE 0xFC09

//This command has one parameter one byte long

//The default value is 57.6kbps

//9600bps -> 10100

//BAUD RATES

#define BT_BR_9600 0x14

#define BT_BR_14400 0x05

#define BT_BR_57600 0x03

/*********************** EVENTS *****************************/

#define EV_INQUIRY_COMPLETE 0x01

#define EV_INQUIRY_RESULT 0x02

54
#define EV_CONNECTION_COMPLETE 0x03

#define EV_CONNECTION_REQUEST 0x04

#define EV_DISCONNECTION_COMPLETE 0x05

#define EV_AUTHENTICATION_COMPLETE 0x06

#define EV_REMOTE_NAME_REQUEST_COMPLETE 0x07

#define EV_ENCRYPTION_CHANGE 0x08

#define EV_CHANGE_CONNECTION_LINK_KEY_COMPLETE 0x09

#define EV_MASTER_LINK_KEY_COMPLETE 0x0A

#define EV_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE 0x0B

#define EV_READ_REMOTE_VERSION_INFORMATION_COMPLETE 0x0C

#define EV_QoS_SETUP_COMPLETE 0x0D

#define EV_COMMAND_COMPLETE 0x0E

#define EV_COMMAND_STATUS 0x0F

#define EV_HARDWARE_ERROR 0x10

#define EV_FLUSH_OCCURRED 0x11

#define EV_ROLE_CHANGE 0x12

#define EV_NUM_COMPLETED_PACKETS 0x13

#define EV_MODE_CHANGE 0x14

#define EV_RETURN_LINK_KEYS 0x15

#define EV_PIN_CODE_REQUEST 0x16

#define EV_LINK_KEY_REQUEST 0x17

#define EV_LINK_KEY_NOTIFICATION 0x18

#define EV_LOOPBACK_COMMAND 0x19

#define EV_DATA_BUFFER_OVERFLOW 0x1A

#define EV_MAX_SLOTS_CHANGE 0x1B

#define EV_READ_CLOCK_OFFSET_COMPLETE 0x1C

#define EV_CONNECTION_PAKCKET_TYPE_CHANGED 0x1D

#define EV_QoS_VIOLATION 0x1E

#define EV_PAGE_SCAN_MODE_CHANGE 0x1F

#define EV_PAGE_SCAN_REPETITION_MODE_CHANGE 0x20

/*********************** ERROR CODES *****************************/

#define ERR_UNKNOWN_HCI_COMMAND 0x01

#define ERR_NO_CONNECTION 0x02

#define ERR_HARDWARE_FAILURE 0x03

#define ERR_PAGE_TIMEOUT 0x04

#define ERR_AUTHENTICATION_FAILURE 0x05

#define ERR_KEY_MISSING 0x06

#define ERR_MEMORY_FULL 0x07

#define ERR_CONNECTION_TIMEOUT 0x08

#define ERR_MAX_NUM_CONNECTIONS 0x09

#define ERR_MAX_NUM_SCO_CONNECTIONS_TO_A_DEVICE 0x0A

#define ERR_ACL_CONNECTION_ALREADY_EXISTS 0x0B

#define ERR_COMMAND_DISALLOWED 0x0C

#define ERR_HOST_REJECTED_DUE_TO_LIMITED_RESOURCES 0x0D

#define ERR_HOST_REJECTED_DUE_TO_SECURITY_REASONS 0x0E

#define ERR_HOST_REJECTED_DUE_TO_REMOTE_DEVICE_IS_ONLY_PERSONAL_DEVICE 0x0F

#define ERR_HOST_TIMEOUT 0x10

#define ERR_UNSUPPORTED_FEATURE_0R_PARAMETER_VALUE 0x11

#define ERR_INVALID_HCI_COMMAND_PARAMETERS 0x12

#define ERR_OTHER_END_TERMINATED_CONNECTION_USER_ENDED 0x13

#define ERR_OTHER_END_TERMINATED_CONNECTION_LOW_RESOURCES 0x14

#define ERR_OTHER_END_TERMINATED_CONNECTION_POWER_OFF 0x15

#define ERR_CONNECTION_TERMINATED_BY_LOCAL_HOST 0x16

#define ERR_REPEATED_ATTEMPTS 0x17

#define ERR_PAIRING_NOT_ALLOWED 0x18

#define ERR_UNKNOWN_LMP_PDU 0x19

55
#define ERR_UNSUPPORTED_REMOTE_FEATURE 0x1A

#define ERR_SCO_OFFSET_REJECTED 0x1B

#define ERR_SCO_INTERVAL_REJECTED 0x1C

#define ERR_SCO_AIR_MODE_REJECTED 0x1D

#define ERR_INVALID_LMP_PARAMETERS 0x1E

#define ERR_UNSPECIFIED_ERROR 0x1F

#define ERR_UNSUPPORTED_LMP_PARAMETER_VALUE 0x20

#define ERR_ROLE_CHANGE_NOT_ALLOWED 0x21

#define ERR_LMP_RESPONSE_TIMEOUT 0x22

#define ERR_LMP_ERROR_TRANSACTION_COLLISION 0x23

#define ERR_LMP_PDU_NOT_ALLOWED 0x24

#define ERR_ENCRYPTION_MODE_NOT_ACCEPTABLE 0x25

#define ERR_UNIT_KEY_USED 0x26

#define ERR_QoS_NOT_SUPPORTED 0x27

#define ERR_INSTANT_PASSED 0x28

#define ERR_PAIRING_WITH_UNIT_KEY_NOT_SUPPORTED 0x29

/*********************** UART HEADERS **************************/

#define UART_HCI_COMMAND_PACKET 0x01

#define UART_ACL_DATA_PACKET 0x02

#define UART_SCO_DATA_PACKET 0x03

#define UART_EVENT_PACKET 0x04

/************************ PARAMETERS *********************************/

//------------ PACKET TYPES ------------

#define DM1 0x0008

#define DH1 0x0010

#define DM3 0x0400

#define DH3 0x0800

#define DM5 0x4000

#define DH5 0x8000

//------------ LINK TYPES ------------

#define SCO_LINK 0x00

#define ACL_LINK 0x01

//------------ GIAC LAP ------------

//(Generic Inquiry Access Code Lower Address Part) from BT Spec

#define GIAC_LAP 0x9E8B33

//------------ DATA PACKET BOUNDARY/P2P FLAGS -------------

//These flags representa a combination of a P2P BC Flag and

//either a First Packet PB Flag or a continuing packet PB Flag.

#define FIRST_PKT_P2P 0x20

#define CONT_PKT_P2P 0x10

//------------ DATA PACKET BROADCAST FLAGS ------------

#define P2P 0x00

#define ACTIVE_BC 0x40

#define PICONET_BC 0x80

56
//------------ EVENT FILTER TYPES ------------

#define CLR_ALL_FILTERS 0x00

#define INQUIRY_RESULT 0x01

#define CONNECTION_SETUP 0x02

//------------ AUTO ACCEPT FLAG VALUES ------------

//Only needed for CONNECTION SETUP FILTERS

//Auto Accept off

#define AA_OFF 0x01

//Auto Accept on

#define AA_ON_RS_DISABLED 0x02 //Role switch disabled

#define AA_ON_RS_ENABLED 0x03 //Role switch enabled

//------------ L2CAP CID (MSB) CODES ---------------

//These L2CAP CID codes are arbitrary codes that I chose to use

//for this project. They are not defined in the BT Spec

#define MESSAGE_MSB 0x03

#define TEST_DATA_MSB 0xEE

//------------ TRANSMISSION TEST TIMEOUT CODES -------------

#define TIME_OUT_LOCAL_COMP 0xFFEE

#define TIME_OUT_REMOTE_COMP 0xFFFF

//------------ TRANSMISSION TEST FILE SIZE CODES -------------

#define RETRANSMIT -1

#define LARGE_FILE 0

#define SMALL_FILE 1

#define CONTINUE_TRANSMISSION 2

#endif

A.2 BT functions.h

//BT_functions.h

//Written on 23OCT02 by MIDN Kenneth J. Hoover

//Last updated 03FEB03

//This header file contains the structures and function prototypes for

//functions used in creating a Bluetooth application or sending and recieving Bluetooth

//HCI commands and events from Bluetooth Host Controller.

//---

#ifndef BT_functionsH

#define BT_functionsH

#include "bluetooth.h"

#include "UART.h"

//---

struct BUFFERS {

int sizeACLBuff;

57
char sizeSCOBuff;

int numACLBuff;

int numSCOBuff;

};//end struct

struct BT_DEVICE {

char addrDisp[15];

unsigned char bd_addr[6];

char pgScnRepMode;

char pgScnPerMode;

char pgScnMode;

char deviceClass[2];

char clkOffset[2];

char connectHndl[2];

char linkType;

int pktType;

char encryptMode;

bool master;

bool conductingTest;

bool connection;

short rssi;

//Initialization and default values

BT_DEVICE(char c1=’0’, char c2=’x’, char c3=NULL){

addrDisp[0] = c1;

addrDisp[1] = c2;

addrDisp[14] = c3;

master = false;

conductingTest = false;

connection = false;

}

};//end struct

//---

//change2char():

//This function convert a nibble of data to the ASCII equivilent character

//of the hexidecimal digit represented by the nibble of data.

//

//Parameters n: should contain one nibble of data in the least significant

// nibble of a char variable type.

//

//Return: ASCII equivilent character of a hexidecimal digit

char change2char(char n);

//---

//nibbles():

//This function separates a 1 byte char variable into two char’s each containing

//one nibble of the data contained in the original char variable.

//

//Parameters x: data to be separated into nibbles.

// msn: most significant nibble.

// lsn: least significant nibble.

void nibbles(char x, char &msn, char &lsn);

//---

58

//FormatCommand():

//This function sets the first 3 bytes of a Bluetooth HCI command packet interfaced.

//via UART. [UART pkt header],[opcode lsb],[opcode msb]

//

//Parameters hciCmd: Some Bluetooth HCI command as defined in "bluetooth.h"

// pktHdr[]: The array in which the command packet will be stored

// until it is transmitted.

void FormatCommand(int hciCmd, char pktHdr[]);

//---

//Int2Char():

//This function converts an integer into four characters by saving each of the

//bytes of the integer in an array of four characters. This is usefull when an

//integer must be transmitted in a Bluetooth command or data packet.

//

//Parameters i: Integer to convert to characters.

// ch[]: 4 byte character array in which to store the 4 bytes

// of the integer. The bytes of the integer are stored in

// the array in little endian format. (i.e. ch[0] = lsb.

// ch[3] = msb)

void Int2Char(int i, char ch[]);

//---

//SetUartBaudRate():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Set_UART_Baud_Rate. This command changes the baud rate of the UART

//connection between the host and the host controller

//

//**NOTE:

//

//Parameters BR: New UART baud rate.

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD SetUartBaudRate(char BR, char cmdPkt[]);

//---

//ReadBD_ADDR():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Read_BD_ADDR. This command reads the Bluetooth Device Address of the

//local host contoller.

//

//Parameters cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD ReadBD_ADDR(char cmdPkt[]);

//---

59
//ReadBufferSize():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Read_Buffer_Size. This command reads the buffer size of the

//local host contoller.

//

//Parameters cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD ReadBufferSize(char cmdPkt[]);

//---

//HostBufferSize():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Host_Buffer_Size. This command sends the host controller the size of

//the host’s buffer sizes.

//

//Parameters *pHostBuff: A pointer to a BUFFERS structure containing the size

// of the host’s buffes.

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD HostBufferSize(BUFFERS *pHostBuff, char cmdPkt[]);

//---

//SetEventMask():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Set_Event_Mask. This command allows the host to mask off certain HCI

//events. If an event is masked the host controller will not create that event.

//

//Parameters evMask: Desired event mask.

// of the host’s buffes.

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD SetEventMask(int evMask, char cmdPkt[]);

//---

//WriteConnAcceptTimeout():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Write_Connectin_Accept_Timeout. This command sets the maximum period of

//time allowed for a remote device to respond to a connection request.

//

//

//Parameters TOInterval: Timeout interval in increments of 625ms. (i.e.

// timeout = TOInterval * 625ms.

// Range (0x0001 - 0xB540)

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

60

DWORD WriteConnAcceptTimeout(int TOInterval, char cmdPkt[]);

//---

//WritePageTimeout():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Write_Page_Timeout. This command sets the maximum period of

//time allowed for a remote device to respond to a page.

//

//

//Parameters TOInterval: Timeout interval in increments of 625ms. (i.e.

// timeout = TOInterval * 625ms.

// Range (0x0001 - 0xFFFF)

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD WritePageTimeout(int TOInterval, char cmdPkt[]);

//---

//WriteLinkSupTimeout():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Write_Link_Supervision_Timeout. The link supervision timeout is used

//to determine link loss. If no baseband packets are transmitted for the

//duration of the timeout the link is disconnected.

//

//

//Parameters connectHndl: Connection handle to an ACL or SCO link.

// TOInterval: Timeout interval in increments of 625ms. (i.e.

// timeout = TOInterval * 625ms.

// Range (0x0001 - 0xFFFF)

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD WriteLinkSupTimeout(int connectHndl, int TOInterval, char cmdPkt[]);

//---

//ReadTxPowLevel():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Read_Transmit_Power_Level. Read the transmit power level of the local

//Bluetooth Device.

//

//

//Parameters connectHndl: Connection handle to an ACL or SCO link.

// type: 0x00 - Read current transmit power level.

// 0x01 - Read maximum transmit power level.

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD ReadTxPowLevel(char connectHndl[], char type, char cmdPkt[]);

61
//---

//ReadRSSI():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Read_RSSI. Read the receive signal strength indicator (RSSI) of the

//local Bluetooth device.

//

//

//Parameters connectHndl: Connection handle to an ACL or SCO link.

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD ReadRSSI(char connectHndl[], char cmdPkt[]);

//---

//Reset():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Reset. Reset the local Bluetooth device.

//

//

//Parameters cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD Reset(char cmdPkt[]);

//---

//Inquiry():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Inquiry. Conduct an inquiry for other Bluetooth devices.

//

//

//Parameters inquiryLength: Maximum amount of time before inquiry is halted

// Range 0x00-0x30. Time = inquiryLength * 1.28s

// maxNumRes: Maximum number of responses to inquiry before the

// inquiry is halted 0x00-unlimited responses

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD Inquiry(char inquiryLength, char maxNumRes, char cmdPkt[]);

//---

//CreateConnection():

//This function creates a Bluetooth HCI command packet for the HCI command

//HCI_Create_Connection. Create a Bluetooth connection.

//

//

//Parameters *device: Pointer to the BT_DEVICE structure containing

// information about the device witch which to create

// a connection.

// pktType: Designates the baseband packet type to be used within

62
// the connection (DM1 DH1 DM3 DH3 DM5 or DH5)

// cmdPkt[]: The array in which the command packet will be stored

// until it is transmitted.

//

//Return: Packet size in bytes.

DWORD CreateConnection(BT_DEVICE *device, int pktType, char cmdPkt[]);

//---

DWORD WriteScanEnable(char scanEnable, char cmdPkt[]);

//---

DWORD AcceptConnectRqst(BT_DEVICE *device, char cmdPk[]);

//---

DWORD SendACLPkt(char connectHndl[], DWORD dataLength, char flags, char dataPkt[]);

//---

DWORD WriteVoiceSetting(int voiceSetting, char cmdPkt[]);

//---

DWORD WriteAuthEnable(char enable, char cmdPkt[]);

//---

DWORD SetEventFilter(char filterType, char autoAcceptFlag, char cmdPkt[]);

//---

DWORD Disconnect(char connHndl[2], char reason, char cmdPkt[]);

//---

AnsiString Error(char err);

//---

#endif

A.3 BT functions.cpp

//BT_functions.cpp

//Written on 23OCT02 by MIDN Kenneth J. Hoover

//Last updated 15NOV02

//This file contains the function definitions for functions used in

//creating a Bluetooth application or sending and recieving Bluetooth

//HCI commands and events from Bluetooth Host Controller.

//---

#include "BT_functions.h"

63
//---

char change2char(char n){

if (n >= 10) //if n is greater than 9 n is the hex digit A-F.

return (n+55); //ascii code 65-70 represents letters A-F.

else

return (n+48); //ascii code 48-57 represents numerals 0-9.

}

//---

void nibbles(char x, char &msn, char &lsn){

msn = x >> 4; //right shift the bits 4 places msn = most sig nibble

msn = msn & 0x0F; //mask off the unused bits

lsn = x & 0x0F;

msn = change2char(msn); //convert each nibble to a the ascii code

lsn = change2char(lsn); //hex digit for display

}

//---

void FormatCommand(int hciCmd, char pktHdr[]){

int temp = 0;

unsigned int mask = 0x000000FF;

pktHdr[0] = UART_HCI_COMMAND_PACKET; //add UART command packet header byte 0

temp = hciCmd & mask; //mask hci_cmd so only lsbyte is present

pktHdr[1] = static_cast<char>(temp); //convert to an 8 bit char

temp = (hciCmd>>8) & mask; //mask and shift hci_cmd so only msbyte is present

pktHdr[2] = static_cast<char>(temp); //convert to an 8 bit char

}

//---

void Int2Char(int i, char ch[]){

int temp = 0;

unsigned int mask = 0x000000FF;

for (int n=0; n<4; n++){ //loop through all 4 bytes of the int variable

temp = (i>>n*8) & mask; //shift int and mask as needed 8*byte number(n) bits

ch[n] = static_cast<char>(temp); //convert to char and return array of up to 4 chars

}//end for

}

//---

DWORD SetUartBaudRate(char BR, char cmdPkt[]){

DWORD pktSize = 5;

FormatCommand(HCI_SET_UART_BAUD_RATE, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x01; //lengeth of parameters 1 byte

cmdPkt[4] = BR; //Baud Rate parameter

return pktSize; //return total packet size (in bytes)

}

64
//---

DWORD ReadBD_ADDR(char cmdPkt[]){

DWORD pktSize = 4;

FormatCommand(HCI_READ_BD_ADDR, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x00; //lengeth of parameters 0 bytes

return pktSize; //return total packet size (in bytes)

}

//---

DWORD ReadBufferSize(char cmdPkt[]){

DWORD pktSize = 4;

FormatCommand(HCI_READ_BUFFER_SIZE, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x00; //lengeth of parameters 0 bytes

return pktSize; //return total packet size (in bytes)

}

//---

DWORD HostBufferSize(BUFFERS *pHostBuff, char cmdPkt[]){

DWORD pktSize = 11;

char temp[4];

FormatCommand(HCI_HOST_BUFFER_SIZE, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x07; //lengeth of parameters 7 bytes

//Add buffer size data to command packet array

Int2Char(pHostBuff->sizeACLBuff, temp);

cmdPkt[4] = temp[0];

cmdPkt[5] = temp[1];

cmdPkt[6] = pHostBuff->sizeSCOBuff;

Int2Char(pHostBuff->numACLBuff, temp);

cmdPkt[7] = temp[0];

cmdPkt[8] = temp[1];

Int2Char(pHostBuff->numSCOBuff, temp);

cmdPkt[9] = temp[0];

cmdPkt[10] = temp[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD SetEventMask(int evMask, char cmdPkt[]){

DWORD pktSize = 12;

char temp[4];

FormatCommand(HCI_SET_EVENT_MASK, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x08; //lengeth of parameters 8 bytes

Int2Char(evMask, temp);

for (int n=0; n<4; n++) //set remaining 4 bytes of event mask

cmdPkt[n+8] = temp[n];

for (int n=0; n<4; n++) //the most sig 4 bytes of the event mask are reserved

cmdPkt[n+4] = 0x00; //so set those bytes to 0

65

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WriteConnAcceptTimeout(int TOInterval, char cmdPkt[]){

DWORD pktSize = 6;

char temp[4];

FormatCommand(HCI_WRITE_CONNECTION_ACCEPT_TIMEOUT, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x02; //lengeth of parameters 2 bytes

Int2Char(TOInterval, temp);

cmdPkt[4] = temp[0]; //add timout interval parameters to cmd pkt array

cmdPkt[5] = temp[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WritePageTimeout(int TOInterval, char cmdPkt[]){

DWORD pktSize = 6;

char temp[4];

FormatCommand(HCI_WRITE_PAGE_TIMEOUT, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x02; //lengeth of parameters 2 bytes

Int2Char(TOInterval, temp);

cmdPkt[4] = temp[0]; //add timout interval parameters to cmd pkt array

cmdPkt[5] = temp[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WriteLinkSupTimeout(BT_DEVICE *pDevice, int TOInterval, char cmdPkt[]){

DWORD pktSize = 8;

char temp[4];

FormatCommand(HCI_WRITE_LINK_SUPERVISION_TIMEOUT, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x04; //lengeth of parameters 4 bytes

//Add connection handle and timout interval to cmd pkt array

cmdPkt[4] = pDevice->connectHndl[0];

cmdPkt[5] = pDevice->connectHndl[1];

Int2Char(TOInterval, temp);

cmdPkt[6] = temp[0];

cmdPkt[7] = temp[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD ReadTxPowLevel(char connectHndl[], char type, char cmdPkt[]){

DWORD pktSize = 7;

FormatCommand(HCI_READ_TRANSMIT_POWER_LEVEL, cmdPkt); //sets the first 3 bytes of the cmd pkt

66
cmdPkt[3] = 0x03; //lengeth of parameters 3 bytes

//Add parameter to cmd pkt array

cmdPkt[4] = connectHndl[0];

cmdPkt[5] = connectHndl[1];

cmdPkt[6] = type;

return pktSize; //return total packet size (in bytes)

}

//---

DWORD ReadRSSI(char connectHndl[], char cmdPkt[]){

DWORD pktSize = 6;

FormatCommand(HCI_READ_RSSI, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x02; //lengeth of parameters 2 bytes

//Add parameters to cmd pkt array

cmdPkt[4] = connectHndl[0];

cmdPkt[5] = connectHndl[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD Reset(char cmdPkt[]){

DWORD pktSize = 4;

FormatCommand(HCI_RESET, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x00; //lengeth of parameters 0 bytes

return pktSize; //return total packet size (in bytes)

}

//---

DWORD Inquiry(char inquiryLength, char maxNumRes, char cmdPkt[]){

DWORD pktSize = 9;

FormatCommand(HCI_INQUIRY, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x05; //lengeth of parameters 5 bytes

//LAP for GIAC is 0x9E8B33 so set that as LAP

cmdPkt[4] = 0x33;

cmdPkt[5] = 0x8B;

cmdPkt[6] = 0x9E;

//Add parameters to cmd pkt array

cmdPkt[7] = inquiryLength; //Durration of inquiry (inquiryLength*1.28s)

//inquiryLength ranges from 0x01 to 0x30 (0-61.44s)

cmdPkt[8] = maxNumRes; //maxNumRes ranges from 0x01 to 0xFF.

return pktSize; //return total packet size (in bytes)

}

//---

67
DWORD CreateConnection(BT_DEVICE *pDevice, int pktType, char cmdPkt[]){

DWORD pktSize = 17;

char temp[4];

FormatCommand(HCI_CREATE_CONNECTION, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x0D; //lengeth of parameters 13 bytes

//add BD_ADDR to cmd pkt

for (int n = 0; n<6; n++)

cmdPkt[n+4] = pDevice->bd_addr[n];

//add pkt type to cmd pkt

Int2Char(pktType, temp);

cmdPkt[10] = temp[0];

cmdPkt[11] = temp[1];

cmdPkt[12] = pDevice->pgScnRepMode;

cmdPkt[13] = pDevice->pgScnMode;

//add clock offeset to cmd pkt

cmdPkt[14] = pDevice->clkOffset[0];

cmdPkt[15] = pDevice->clkOffset[1];

cmdPkt[16] = 0x00; //do not allow role switch

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WriteScanEnable(char scanEnable, char cmdPkt[]){

DWORD pktSize = 5;

FormatCommand(HCI_WRITE_SCAN_ENABLE, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x01; //lengeth of parameters 0 bytes

cmdPkt[4] = scanEnable; //0x00 no scans; 0x01 inquiry scn only; 0x02 pg scn only;

//0x03 all scans enabled.

return pktSize; //return total packet size (in bytes)

}

//---

DWORD AcceptConnectRqst(BT_DEVICE *pDevice, char cmdPkt[]){

DWORD pktSize = 11;

FormatCommand(HCI_ACCEPT_CONNECTION_REQUEST, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x07; //lengeth of parameters 7 bytes

for (int n = 0; n<6; n++)

cmdPkt[n+4] = pDevice->bd_addr[n];

cmdPkt[10] = 0x01; //do not perform a master-slave switch

return pktSize; //return total packet size (in bytes)

}

//---

68
DWORD SendACLPkt(char connectHndl[], DWORD dataLength, char flags, char dataPkt[]){

DWORD pktSize;

char tempChar, tempAry[4];

const int headerSize = 5;

const char cnctHndlMsk = 0x0F;

pktSize = headerSize + dataLength;

//Shift data back 5 spaces in the array to make room for the header

for (unsigned int n=1; n<=dataLength; n++){

tempChar = dataPkt[dataLength - n]; //Move all array elements beginning with the last element

dataPkt[dataLength + (headerSize - n)] = tempChar; //back 5 spaces.

}//end for

//Adding ACL header to data pkt

dataPkt[0] = UART_ACL_DATA_PACKET; //UART header

dataPkt[1] = connectHndl[0]; //Connection Handle is 12 bits + 2 bits for each

dataPkt[2] = (connectHndl[1] & cnctHndlMsk) + flags;//pkt boundary flag and broadcast flag

Int2Char(dataLength, tempAry); //Convert int into 2 separate characters

dataPkt[3] = tempAry[0]; //for data transmission

dataPkt[4] = tempAry[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WriteVoiceSetting(int voiceSetting, char cmdPkt[]){

DWORD pktSize = 6;

char temp[4];

FormatCommand(HCI_WRITE_VOICE_SETTING, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x02; //lengeth of parameters 2 bytes

//Add parameters to cmd pkt array

Int2Char(voiceSetting, temp);

cmdPkt[4] = temp[0];

cmdPkt[5] = temp[1];

return pktSize; //return total packet size (in bytes)

}

//---

DWORD WriteAuthEnable(char enable, char cmdPkt[]){

DWORD pktSize = 5;

FormatCommand(HCI_WRITE_AUTHENTICATION_ENABLE, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x01; //lengeth of parameters 1 byte

//Add parameters to cmd pkt array

cmdPkt[4] = enable;

return pktSize; //return total packet size (in bytes)

}

//---

69

DWORD SetEventFilter(char filterType, char autoAcceptFlag, char cmdPkt[]){

DWORD pktSize;

FormatCommand(HCI_SET_EVENT_FILTER, cmdPkt); //sets the first 3 bytes of the cmd pkt

//What filter is being set?

switch (filterType){

case CLR_ALL_FILTERS:

//Only filterType parameter needed.

pktSize = 5;

cmdPkt[3] = 0x01; //lengeth of parameters 1 byte

//Add parameters to cmd pkt array

cmdPkt[4] = filterType;

break;

case INQUIRY_RESULT:

//2 parameters required: filterType and filter condition type

pktSize = 6;

cmdPkt[3] = 0x02; //length of parameters 2 bytes

//Add parameters to cmd pkt array

cmdPkt[4] = filterType;

cmdPkt[5] = 0x00; //Always set Inquiry filter condtion type to 0x00

//(A new device responded to the Inquiry process.)

break;

case CONNECTION_SETUP:

//3 parameters required: filterType, filter condition type, and

//auto accept flag.

pktSize = 7;

cmdPkt[3] = 0x03; //length of parameters 3 bytes

//Add parameters to cmd pkt array

cmdPkt[4] = filterType;

cmdPkt[5] = 0x00; //Always set Inquiry filter condtion type to 0x00

//(Allow Connections from all devices.)

cmdPkt[6] = autoAcceptFlag;

break;

}//end switch

return pktSize; //return total packet size (in bytes)

}

//---

DWORD Disconnect(char connHndl[2], char reason, char cmdPkt[]){

DWORD pktSize = 7;

FormatCommand(HCI_DISCONNECT, cmdPkt); //sets the first 3 bytes of the cmd pkt

cmdPkt[3] = 0x03; //lengeth of parameters 3 byte

//Add parameters to cmd pkt array

cmdPkt[4] = connHndl[0]; //Connection handle of

cmdPkt[5] = connHndl[1]; //the connection to disconnect

//Reason for disconnect 0x13 = user ended connection 0x15 = about to power off

70
cmdPkt[6] = reason;

return pktSize; //return total packet size (in bytes)

}

//---

AnsiString Error(char err){

//Search for the error code and return the

//corresponding error message to be displayed

switch(err){

case ERR_UNKNOWN_HCI_COMMAND:

return "ERROR: Unknown HCI Command";

case ERR_NO_CONNECTION:

return "ERROR: No Connection";

case ERR_HARDWARE_FAILURE:

return "ERROR: Hardware Failure";

case ERR_PAGE_TIMEOUT:

return "Page Timeout";

case ERR_MEMORY_FULL:

return "ERROR: Memory Full";

case ERR_ACL_CONNECTION_ALREADY_EXISTS:

return "ERROR: ACL Connection Already Exists";

case ERR_COMMAND_DISALLOWED:

return "ERROR: Command Disallowed";

case ERR_UNSUPPORTED_FEATURE_0R_PARAMETER_VALUE:

return "ERROR: Unsupported Feature or Parameter Value";

case ERR_INVALID_HCI_COMMAND_PARAMETERS:

return "ERROR: Invalid HCI Command Parameters";

default:

return "Unknown Error";

}//end swtich

}

//---

Appendix B

BTTest v. 1.1

B.1 BTTest1 1.h

//BTTest1_1.h

//Written on 19OCT02 by MIDN Kenneth J. Hoover

//Last updated 02APR03

//

//This header file defines forms and variables and contains function

//prototyes for the BTTest program.

//---

#ifndef BTCommH

#define BTCommH

//---

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include "BT_functions.h"

#include "UART.h"

#include <ExtCtrls.hpp>

#include <Menus.hpp>

#include "transTest.h"

DWORD BaudRate[] = {CBR_9600, CBR_14400, CBR_57600, CBR_115200};

const DWORD testDataBuffSize = 100100, inBuffSize = 100100, outBuffSize = 600;//595 bytes usable (5 byte header for data pkts)

COMMTIMEOUTS CT1, CTinit;

BT_DEVICE slave[7], localDevice;

BUFFERS host, hostCtrl;

unsigned long pktSize;

bool readRssi = true, transmitInProgress = false;

DCB myDCB, initDCB;

//DATA VARIABLES

char inBuff[inBuffSize], outBuff[outBuffSize], testDataBuff[testDataBuffSize];

TransTest cTest;

unsigned int numTestTrans;

//---

class TBT_net : public TForm{

71

72

__published: // IDE-managed Components

TTimer *Timer1;

TGroupBox *GroupBox1;

TGroupBox *GroupBox2;

TGroupBox *GroupBox3;

//STATIC LABELS

TLabel *Label1;

TLabel *Label2;

TLabel *Label3;

TLabel *Label4;

TLabel *Label5;

TLabel *Label9;

TLabel *Label13;

TLabel *Label6;

//DYNAMIC LABELS

TLabel *LBD_ADDR_rd; //BT_ADDR for remote device

TLabel *LBD_ADDR_ld; //BT_ADDR for local device

TLabel *LLinkType;

TLabel *LConnectHndl;

TLabel *LInqRes;

TLabel *LRSSI;

TLabel *LRx;

TLabel *LTestStatus;

TLabel *LStatus1;

TLabel *LStatus2;

//INPUT BOX

TLabeledEdit *Message;

//BUTTONS

TButton *BBeginTest;

TButton *BSend;

TButton *BReset;

TButton *BConnect;

TButton *BInquiry;

//COMBOBOXES

TComboBox *CBDist;

TComboBox *CBTopology;

TComboBox *CBControl;

TComboBox *CBTestRole;

TComboBox *CBPktType;

TComboBox *CBNumTrans;

TLabel *Label10;

TLabel *Label11;

TLabel *LCurTrans;

TLabel *LPktNum;

TLabel *LStatus3;

void __fastcall FormCreate(TObject *Sender);

void __fastcall FormDestroy(TObject *Sender);

//TIMER INTERUPT

void __fastcall Timer1Timer(TObject *Sender);

73
//BUTTON CLICKS

void __fastcall BInquiryClick(TObject *Sender);

void __fastcall BBeginTestClick(TObject *Sender);

void __fastcall BSendClick(TObject *Sender);

void __fastcall BResetClick(TObject *Sender);

void __fastcall BConnectClick(TObject *Sender);

//COMBOBOXES CLOSE

void __fastcall CBControlCloseUp(TObject *Sender);

void __fastcall CBPktTypeCloseUp(TObject *Sender);

void __fastcall CBTestRoleCloseUp(TObject *Sender);

void __fastcall CBNumTransCloseUp(TObject *Sender);

private: // User declarations

public: // User declarations

__fastcall TBT_net(TComponent* Owner);

};

//---

//***** FUNCTIONS *****

//FindOpCode:

//This function looks up the OpCode returned in a Command Complete or

//Command Status event packet and processes the data contained within

//the event packet accordingly.

//

//Parameters *pBuff: Pointer to the first byte in the returned

// event packet

void FindOpCode(char *pBuff);

//---

//Find Event:

//This function looks up Event retruned in an event packet and processes the

//data contained within the event packet accordingly

//

//Parameters *pBuff: Pointer to the first byte in the returned

// event packet

void FindEvent(char *pBuff);

//---

//ResetBuffer:

//This function resets an array of characters to NULL

//

//Parameters buff[]: Buffer to reset.

// buffSize: Size of the buffer to reset.

void ResetBuffer(char buff[], DWORD buffSize);

//---

//NumDataPkts:

74
//This function is used to determine the number of Bluetooth HCI pakcets

//contained in a string of characters. It also determines if all of the

//packets are complete or if a packet was segmented during the read.

//

//Parameters buff[]: Buffer in which the data is contained.

// numBytesRead: Number of bytes contained in the buffer

// &numPkts: Address of an integer which contains the

// number of data packets contained in the

// buffer.

// *pLastPkt: Pointer to the first byte of the last packet

// contained in the buffer.

// &dataError: Returns true if data is incomplete

//

//Return: (bool) True if a the buffer contains a segmented packet.

bool NumDataPkts(char buff[], DWORD numBytesRead, DWORD &numPkts, char *pLastPkt, bool &dataError);

//---

//TransmitTestData:

//This function prepares and transmits or retransmits the test data.

//

//Parameters fileSize: SMALL_FILE - Send small file

// LARGE_FILE - Send large file

// RETRANSMIT - Retransmit received data

// CONTINUE_TRANSMISSION - Continue with a

// transmission that is currently in progress

// tDataSize: Size of test data received. (only used when

// retransmitting data)

void TransmitTestData(int fileSize, unsigned int tDataSize);

//---

//ResetDisplay():

//This function resets the labels and controls on the Graphical User Interface.

void ResetDisplay();

//---

//ClearStatus():

//This function resets the Status labels on the Graphical User Interface.

void ClearStatus();

//---

//Disconnecting():

//This function resets the Status labels and other labels related to an ACL

//connection on the Graphical User Interface.

void Disconnecting();

//---

#define CLEAR 0x0000

75
extern PACKAGE TBT_net *BT_net;

//---

#endif

B.2 BTTest1 1.cpp

//BTTest1_1.cpp

//Written on 24OCT02 by MIDN Kenneth J. Hoover

//Last updated 02APR03

//

//This program sets up and creates a Bluetooth wireless link through which

//data is sent via a virtual serial link between two computers, each running

//this program. It then runs a test program used to test data transmision times

//between a single master and slave using two differnt size text files. This

//program is written for use with the Ericsson ROK 101 008 Bluetooth baseband

//controller and tranciever.

//---

#include <vcl.h>

#pragma hdrstop

#include "BTTest1_1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TBT_net *BT_net;

//---

__fastcall TBT_net::TBT_net(TComponent* Owner)

: TForm(Owner)

{

}

//---

void __fastcall TBT_net::FormCreate(TObject *Sender){

//INITIALIZATION OF THE SERIAL PORT (COMM 1)

C1 = CreateFile(Port[0], GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING,

FILE_FLAG_OVERLAPPED, NULL);

GetCommState(C1, &initDCB); //Save inital DCB in order to reset Comm 1 on exit of program

myDCB = initDCB; //Initailize myDCB to current Comm Port settings

myDCB.BaudRate = BaudRate[3];

myDCB.fBinary = TRUE;

myDCB.fParity = FALSE; //No parity check

myDCB.fOutxCtsFlow = TRUE; //should be true ********

myDCB.fOutxDsrFlow = FALSE;

myDCB.fDtrControl = DTR_CONTROL_DISABLE;

myDCB.fDsrSensitivity = FALSE;

myDCB.fOutX = FALSE;

myDCB.fInX = FALSE;

myDCB.fNull = FALSE;

76
myDCB.fRtsControl = RTS_CONTROL_TOGGLE; //should be toggle *****

myDCB.ByteSize = 8;

myDCB.Parity = NOPARITY;

myDCB.StopBits = ONESTOPBIT;

SetCommState(C1, &myDCB);

//COMM TIMEOUTS

GetCommTimeouts(C1, &CT1);

GetCommTimeouts(C1, &CTinit);

CT1 = CTinit; //Initialize CT1 to current comm timeout settings.

CT1.ReadIntervalTimeout = 10; //Timeout on read if delay is greater than 100ms

//between chars.

CT1.ReadTotalTimeoutMultiplier = 0; //Timeout on read if total read time is greater

CT1.ReadTotalTimeoutConstant = 50; //than 200ms

SetCommTimeouts(C1,&CT1);

//INITIALIZE BT MODULE

pktSize = Reset(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//INITIALIZE DATA VARIABLES

ResetBuffer(inBuff, inBuffSize);

host.sizeACLBuff = 400;

host.sizeSCOBuff = 400;

host.numACLBuff = 1;

host.numSCOBuff = 1;

//GUI SETUP

ResetDisplay();

}

//---

void __fastcall TBT_net::FormDestroy(TObject *Sender){

//RESET COMM STATES BEFORE CLOSING PROGRAM

SetCommState(C1, &initDCB);

SetCommTimeouts(C1, &CTinit);

CloseHandle(&C1);

}

//---

void __fastcall TBT_net::Timer1Timer(TObject *Sender){

//****** VARIABLES ******

//-----Buffer Variables -----

DWORD numBytesRead, numPkts = 0;

char *pPkt = inBuff, *pLastPkt = inBuff;

static char *pReadPt = inBuff;

static unsigned int buffAvail = inBuffSize;

//----- Packet and Data Control Variables

bool segmentedPkt = false;

unsigned int pktSize, mask = 0x000000FF, amtProcData = 0;

static unsigned int segSize = 0;

//----- RSSI Variables

77
static unsigned int cycle = 0;

const unsigned int rssiFreq = 12;

//----- Display Variables -----

char dataDisp[255] = {NULL};

//----- Temporary Variables -----

char tempAry[450] = {0};

unsigned int temp1, temp2;

//******** TRANSMISSION TEST VARIABLES *********

static unsigned int testDataReceived = 0, numTestsRan = 0;

static unsigned int l2capPktSize, storedL2capData = 0;

short fileType;

unsigned int n; //loop control variable

char aclFlags, flagMask = 0xF0;

Timer cTimer;

char bytesOfInt[4];

unsigned int processedPkts = 0, curProcPkts = 0, t_proc = 0, errors = 0;

DWORD newBytesRead = 0, loopLimit = 200, loopCount = 0;

bool timeOut = false;

// DETERMINE IF DATA HAS ARRIVED AND PROCESS IT

//**

Timer1->Enabled = false;//Disable timer while processing data

ReadFile(C1, pReadPt, buffAvail, &numBytesRead, &OVL);//read data from COMM 1

if(numBytesRead != 0){ //If data is present ... If not end.

numBytesRead = numBytesRead + segSize;

segmentedPkt = NumDataPkts(inBuff, numBytesRead, numPkts, pLastPkt, timeOut); //Does a partial packet exist in the buffer

for(unsigned int p=0; p<numPkts; p++){ //Process data from all available data packets

switch(*pPkt){ //switch UART header

case UART_EVENT_PACKET:

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

FindEvent(pPkt);

break;

case UART_ACL_DATA_PACKET:

ClearStatus();

LStatus1->Caption = "Data Received";

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

LStatus2->Caption = pktSize;

78

// CHECK THE MOST SIGNIFICANT BYTE OF THE L2CAP CHANNEL ID

// THIS BYTE TELLS WHAT TYPE OF DATA IS BEING RECIEVED:

// TEST DATA OR MESSAGE DATA. TEST DATA MUST BE PROCESSED

// AND RETRANSMITTED, BUT MESSAGE DATA IS DISPLAYED TO THE

// USER AND THEN DISCARDED.

//**

// IF THE ACL FLAGS INDICATE A CONTINUING PACKET THE PAKCET MUST

// TRANSMISSION TEST DATA. SINCE CONTINUING PACKETS DO NOT

// CONTAIN L2CAP HEADER INFORMATION THE l2capCIDmsb VARIABLE

// MUST BE MANUALLY SET TO TEST_DATA_MSB.

//**

switch (*(pPkt+8)){ //Switch L2CAP CID msb

case MESSAGE_MSB:

//########### ACL Data Display for ONLY one BT Slave ############

for(unsigned int n=9; n<pktSize; n++)

dataDisp[n-9] = *(pPkt+n); //Move data from data pkt to a string for display

dataDisp[pktSize-9] = NULL; //Add a null char to end for string output

LRx->Caption = dataDisp;

break;

case TEST_DATA_MSB:

//IF EXECUTION REACHES THIS POINT AT LEAST ONE COMPLETE PKT EXISTS

/**

IF TEST DATA IS BEING RECIEVED EXECUTION WILL REMAIN IN THIS LOOP UNTIL THE WHOLE

TEST DATA FILE HAS BEEN READ INTO THE INPUT BUFFER. DURING EACH ITERATION THE DATA

READ WILL BE COUNTED AND COMPARED TO THE TOTAL SIZE OF THE PAKCET. IT WILL ALSO BE

FOR OTHER TYPES OF DATA WHICH MAY BE MIXED IN AND STORE THAT DATA SEPARATELY. ONCE

THE COMPLETE FILE IS READ THE DATA WILL BE PROCESSED. THIS WHOLE PROCESS WILL BE

TIMED AND RETURNED TO THE TESTING DEVICE AS Tproc (PROCESSING TIME).

***/

do{ // continue loop until the complete test file has been read

for(curProcPkts=processedPkts; curProcPkts<numPkts; curProcPkts++){//loop through all counted data pkts

ClearStatus();

LStatus1->Caption = "Receiving Test Data";

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask;//Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask;//into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//* IS THIS THE FIRST ACL PACKET OF A LARGE L2CAP PACKET? *

aclFlags = (*(pPkt+2) & flagMask);// Extract ACL flags

switch(aclFlags){

case FIRST_PKT_P2P:

//YES THIS IS THE FIRST OF MANY

79
//Subtract 9 bytes from the total pkt size

//5 bytes for the ACL pkt header and 4 bytes

//for the L2CAP pkt header.

testDataReceived = pktSize - 5 - 4;

//Find L2CAP Pkt Size

temp1 = (static_cast<unsigned int>(*(pPkt+5))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+6))) & mask; //into an int variable.

temp2 = temp2 << 8;

l2capPktSize = temp1 + temp2; //Size of exptected l2cap pkt

LStatus2->Caption = "L2CAP Packet Size:";

LStatus3->Caption = l2capPktSize;

break;

case CONT_PKT_P2P:

//NO THIS IS A CONTINUING PACKET TO ADD TO A PREVIOUSLY

//RECIEVED L2CAP FRAGMENT.

//Subtract only the 5 bytes for the ACL pkt header.

testDataReceived = testDataReceived + pktSize - 5;

break;

default:

LTestStatus->Caption = "Unknown ACL Data Packet Flags";

if(*pPkt == UART_EVENT_PACKET){//if an event packet was recieved store it for processing later

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

ClearStatus();

LStatus1->Caption = "Event Received During Test";

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

FindEvent(pPkt);

}//end if

}//end switch aclFlags

//Finished with present packet...move pointer to next data packet

pPkt = pPkt + pktSize;

amtProcData = amtProcData + pktSize;

pktSize = 0;

LPktNum->Caption = curProcPkts;

}//end for

processedPkts = numPkts; // update the number of processed packets

//WILL THERE BE MORE DATA COMING?

if(testDataReceived < l2capPktSize){//more data is coming

do{

//If there is a segmented packet compute the amount of data that does exist

if(segmentedPkt)

segSize = numBytesRead - amtProcData;

else{

segSize = 0;

LStatus2->Caption = " ";

}//end else

pReadPt = inBuff + amtProcData + segSize; //move the read point to the end of the data in the buffer

buffAvail = inBuffSize - amtProcData; //How much of the buffer is still free

ReadFile(C1, pReadPt, buffAvail, &newBytesRead, &OVL); //read data from COMM 1

80

//**** DEBUGING CODE ***

if(newBytesRead == 0){

loopCount++;

if(loopCount == loopLimit)

timeOut = true;

BT_net->LTestStatus->Caption = "Waiting for data. No Bytes Read";

}//end if

//**********************

else{

newBytesRead = newBytesRead + segSize; //Add segment size to newBytesRead so that a complete packet is sent to NumDataPkts()

segmentedPkt = NumDataPkts(pPkt, newBytesRead, numPkts, pLastPkt, timeOut); //Does a partial packet exist in the buffer

numBytesRead = numBytesRead + newBytesRead - segSize; //add the new bytes read to the number of bytes already in the buffer

numPkts = numPkts + processedPkts; //add the new number of packets to the number of packets already in the buffer

}//end else

}while(segmentedPkt && !timeOut); //continue loop until a segmented pkt no longer exists

}//end if more data is coming

}while((testDataReceived<l2capPktSize) && !timeOut); //Continue loop until the whole Test file (L2CAP

//pkt) is recieved or a timeout occurs.

//**************************** PROCESS RECIEVED TEST DATA ***************************************

if (testDataReceived == l2capPktSize || timeOut){

//NO MORE DATA IS COMING OR A TIMEOUT HAS OCCURED

pPkt = inBuff;//reset the pkt pointer to point to the beginning of the data

while(*pPkt == UART_EVENT_PACKET){//make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

if(localDevice.conductingTest){

//LOCAL DEVICE IS CONDUCTING THE TEST

//Stop Timer. The LSB of the L2CAP CID contains a

//0 for a small file and a 1 for a large file.

fileType = static_cast<short>(*(pPkt+7));

//Read the processing time used by the other computer (1st and 2nd data bytes in the test data pkt)

temp1 = (static_cast<unsigned int>(*(pPkt+9))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+10))) & mask; //into an int variable.

temp2 = temp2 << 8;

t_proc = temp1 + temp2; //Processing time used on remote computer

if(t_proc == TIME_OUT_REMOTE_COMP){ //A timeout occured on remote computer

LTestStatus->Caption = "Timeout occured on remote computer";

cTest.endReceive(fileType, t_proc, errors); //end test

}//end if

else {

if(timeOut){ //A timeout occured on this computer

LTestStatus->Caption = "Timeout occured on this computer";

cTest.endReceive(fileType, TIME_OUT_LOCAL_COMP, errors); //end test

}//end if

else{

81
cTimer.startTimer();

//STORE RECIEVED DATA

storedL2capData = 0;

for(unsigned int b=0; b<numPkts; b++){ //loop through all packets and save them for retransmission

while(*pPkt == UART_EVENT_PACKET){ //make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//STORE THIS DATA

for (n=0; n<pktSize-5; n++)

testDataBuff[n+storedL2capData] = *(pPkt+n+5);

storedL2capData = storedL2capData + pktSize - 5; //Account for ACL pkt header

pPkt = pPkt + pktSize;

}//end for

//ALL DATA HAS BEEN SAVED..RESET pPkt and pktSize

pPkt = inBuff;

pktSize = 0;

//CHECK FOR ERRORS

for(unsigned int k=6; k<l2capPktSize+4; k++){ //Begin k @ 6 to account for L2CAP pkt header and t_proc bytes

if(cTest.dataLong[k] != testDataBuff[k]) //If the saved test data does not

errors++; //equal the transmitted data then an

}//end for //error occured.

t_proc = t_proc + static_cast<unsigned int>(cTimer.stopTimer()*1000);

cTest.endReceive(fileType, static_cast<float>(t_proc)/1000, errors); //end this test

}//end else

}//end else

numTestsRan++;

LCurTrans->Caption = numTestsRan;

//IF MORE TESTS NEED TO BE RUN...

//TRANSMIT MORE DATA

if (numTestsRan < numTestTrans){

TransmitTestData(fileType, 0);

LTestStatus->Caption = "Transmit next pkt";

}//end if

else{

readRssi = true;

numTestsRan = 0;

LTestStatus->Caption = "Finished!";

MessageBox(0, "Test Finished", 0, MB_OK);

82
}//end else

}//end if local device conducting test

else{

//LOCAL DEVICE IS NOT CONDUCTING THE TEST

cTimer.startTimer();

storedL2capData = 0;

for(unsigned int b=0; b<numPkts; b++){ //loop through all packets and save them for retransmission

while(*pPkt == UART_EVENT_PACKET){ //make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//STORE THIS DATA

for (n=0; n<pktSize-5; n++)

testDataBuff[n+storedL2capData] = *(pPkt+n+5);

storedL2capData = storedL2capData + pktSize - 5; //Account for ACL pkt header

pPkt = pPkt + pktSize;

if(timeOut) //If a timeout has occured only store 1st ACL pkt

b = numPkts;

}//end for

//ALL DATA HAS BEEN PROCESSED..RESET pPkt and pktSize

pPkt = inBuff;

pktSize = 0;

if(timeOut) //If a timeout has occured set t_proc to 0xFFFF

t_proc = TIME_OUT_REMOTE_COMP;

else{

//convert the float (seconds) value to an unsigned int (milliseconds) value for transmission

t_proc = static_cast<unsigned int>(cTimer.stopTimer()*1000);

}//end else

Int2Char(t_proc, bytesOfInt);

testDataBuff[4] = bytesOfInt[0]; //The first 4 bytes of the test data are the L2CAP header

testDataBuff[5] = bytesOfInt[1]; //store the value of t_proc in bytes 5 and 6.

//Retransmit

if(timeOut) //Let the transmit test function know if a timeout occured

TransmitTestData(RETRANSMIT, 2);

else

TransmitTestData(RETRANSMIT, l2capPktSize);

}//end else local device is not conducting the test

//RESET VARIABLES

83
testDataReceived = 0;

l2capPktSize = 0;

numPkts = 0;

timeOut = false;

}//end if (testDataReceived == l2capPktSize)

else{

//SOMETHING SCREWED UP

LTestStatus->Caption = "SOMETHING SCREWED UP: Too much data received";

}//end else someting screwed up

break;

//**

default:

LTestStatus->Caption = "Unknown L2CAP CID";

}//end switch L2CAP CID msb

}//end switch UART header

//Finished with present packet...move pointer to next data packet

pPkt = pPkt + pktSize;

amtProcData = amtProcData + pktSize;

pktSize = 0;

}//end for

// IF A SEGMENTED DATA PACKET EXISTS MOVE EXISTING DATA

// TO THE BEGINING OF THE BUFFER AND SET THE READ POINT

// AT THE END OF THE PARTIAL DATA

//***

if(segmentedPkt){ //The last packet read was not complete

segSize = numBytesRead - amtProcData;

for(unsigned int c=0; c<segSize; c++) //Temporarily store incomplete pkt

tempAry[c] = *(pLastPkt+c);

ResetBuffer(inBuff, inBuffSize); //Reset inBuff

for(unsigned int c=0; c<segSize; c++) //Place incomplete pkt in the front

inBuff[c] = tempAry[c]; //of inBuff

pReadPt = inBuff + segSize; //Set the Read Point pointer to the end of the incomplete pkt

buffAvail = inBuffSize - segSize; //Adjust the buffer size to reflect the portion used

//by the incomplete pkt. (Needed for reading from COM 1)

}//end if segmentedPkt

else{ //Last packet was complete

ResetBuffer(inBuff, inBuffSize); //Reset inBuff

pReadPt = inBuff; //Reset Read Point pointer

buffAvail = inBuffSize; //Reset available buffer size.

segSize = 0;

}//end else

}//end if data is present

// IF A CONNECTION EXISTS READ AND RECEIVE SIGNAL

// STRENGTH (RSSI) FOR THE EXISTING LINKS.

//**

//############### THIS CODE MUST BE EDITED FOR USE WITH MORE THAN 2 DEVICES

//RSSI

if(readRssi&&(!segmentedPkt)){

if(slave[0].connection && localDevice.conductingTest){

84
if(cycle%rssiFreq == 0){

pktSize = ReadRSSI(slave[0].connectHndl, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

} //end if

cycle++;

}//end if

}//end if readRssi

Timer1->Enabled = true;//Data processing complete...re-enable timer

}

//---

void FindOpCode(char *pBuff){

//******* VARIABLES *******

//----- Control Variables

unsigned int opCode, mask = 0x000000FF;

static bool inquiryFilter; //Used to determine which filter needs to be set

//(connection or inquiry) for each call to setEventFilter

//----- Display Variables -----

char opCodeDisp[7] = {’0’,’x’}, tempOpCode[4];

unsigned int x;

//----- Temporary Varialbes -----

unsigned int temp1, temp2;

//*************************

// FIND THE OPCODE AND STORE IT IN AN INTEGER VARIABLE

// FOR USE IN A SWITCH STATEMENT. THE OPCODE IS CONTAINED

// IN A DIFFERENT PART OF THE EVENT PACKET FOR A COMMAND COMPLETE

// EVENT AND A COMMAND STATUS EVENT.

//**

if (*(pBuff+1) == EV_COMMAND_COMPLETE){

temp1 = static_cast<unsigned int>(*(pBuff+4)) & mask; //mask out all unwanted

temp2 = static_cast<unsigned int>(*(pBuff+5)) & mask; //bytes.

temp2 = temp2<<8; //shift the msbyte to its position

opCode = temp1 + temp2; //combine the two bytes into one integer variable

}//end if

if (*(pBuff+1) == EV_COMMAND_STATUS){

temp1 = static_cast<unsigned int>(*(pBuff+5)) & mask; //mask out all unwanted

temp2 = static_cast<unsigned int>(*(pBuff+6)) & mask; //bytes.

temp2 = temp2<<8; //shift the msbyte to its position

opCode = temp1 + temp2; //combine the two bytes unsigned into one integer variable

}//end if

// FIND THE RETURNED OPCODE AND EXEUTE ACCORDINGLY

//***

switch (opCode){

//####### NOTE: 1st Parameter in command complete event pkt is array index #6

//####### Status parameter for command status event is array index #3

// THE RESET COMMAND TRIGGERS A CHAIN OF SETUP COMMANDS

85
// TO PREPARE THE BT MODULE FOR USE. EACH RESPECTIVE

// COMMAND COMPLETE EVENT LEADS TO THE EXECUTION OF THE

// NEXT COMMAND IN THE CHAIN ENDING WITH "WRITE PAGE

// TIMEOUT" THE COMMAND COMPLETE EVENTS FOR ALL OF THE

// SETUP COMMMANDS ARE LISTED HERE IN THIER ORDER OF EXECUTION

// BEGINING WITH THE RESET COMMAND.

//***

//----------- RESET -----------

case HCI_RESET:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If reset sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Device Reset";

//ISSUE NEXT SETUP COMMAND

pktSize = ReadBD_ADDR(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called

inquiryFilter = false;

}//end if

else { //If host buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Reset FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- READ BLUETOOTH DEVICE ADDRESS ----------

case HCI_READ_BD_ADDR:

//Extract the BD ADDR parameter and convert it to a string of

//ASCII characters for display to the user.

for (unsigned int n=0; n<6; n++) //Extract 6 byte address from

localDevice.bd_addr[n] = *(pBuff+7+n);//the event packet

//Convert each nibble of the address to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int n=0; n<12; n=n+2){

x=n/2;

nibbles(localDevice.bd_addr[5-x], localDevice.addrDisp[n+2], localDevice.addrDisp[n+3]);

}//end for

localDevice.addrDisp[14] = NULL; //Append a null for string display.

BT_net->LBD_ADDR_ld->Caption = localDevice.addrDisp;

//ISSUE NEXT SETUP COMMAND

pktSize = ReadBufferSize(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

break;

//---------- READ BUFFER SIZE ----------

case HCI_READ_BUFFER_SIZE:

//WHAT IS THE STATUS OF THE COMMAND

86
if (*(pBuff+6) == 0){ //If read buffer size sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Read Buffer Size Complete";

//EXTRACT DATA FROM PACKET

//ACL buff size

temp1 = static_cast<unsigned int>(*(pBuff+7)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+8)) & mask;

temp2 = temp2<<8;

hostCtrl.sizeACLBuff = temp1 + temp2;

//SCO buff size

hostCtrl.sizeSCOBuff = *(pBuff+9);

//number of ACL data buffers

temp1 = static_cast<unsigned int>(*(pBuff+10)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+11)) & mask;

temp2 = temp2<<8;

hostCtrl.numACLBuff = temp1 + temp2;

//number of SCO data buffers

temp1 = static_cast<unsigned int>(*(pBuff+12)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+13)) & mask;

temp2 = temp2<<8;

hostCtrl.numSCOBuff = temp1 + temp2;

//ISSUE NEXT SETUP COMMAND

pktSize = HostBufferSize(&host, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

/*//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(INQUIRY_RESULT, 0, outBuff);//set inquiry result filter

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = true;*/

}//end if

else { //If read buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Read Buffer Size FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- HOST BUFFER SIZE ----------

case HCI_HOST_BUFFER_SIZE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If host buffer size sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Host Buffer Size Sent";

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(INQUIRY_RESULT, 0, outBuff); //set inquiry result filter

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

87
inquiryFilter = true;

}//end if

else { //If host buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Host Buffer Size FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- SET EVENT FILTER ----------

case HCI_SET_EVENT_FILTER:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If set event filter sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Event Filter Set";

//ISSUE NEXT SETUP COMMAND (depends on which filter was last set)

if (inquiryFilter){ //was the inquiry filter the last one set?

pktSize = WriteScanEnable(3, outBuff); //Setting WSE to 3 enables all scans

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if inquiry filter

else{ //the connection filter was the last filter set

pktSize = WriteConnAcceptTimeout(0x2000, outBuff); //0x2000*625us = 5.12s

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end else inquiry filter

}//end if

else { //If set event filter failed

ClearStatus();

BT_net->LStatus1->Caption = "Set Event Filter FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- WRITE SCAN ENABLE ----------

case HCI_WRITE_SCAN_ENABLE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write scan sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Write Scan Enable Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = WriteVoiceSetting(0x0060, outBuff); //0x0060 sets 16bit 2’s complement input type

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write scan failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Scan Enable FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- WRITE VOICE SETTING ----------

case HCI_WRITE_VOICE_SETTING:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write voice setting sucessful

88
ClearStatus();

BT_net->LStatus1->Caption = "Write Voice Setting Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = WriteAuthEnable(0x00, outBuff); //0x00 Disables authentication

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write voice setting failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Voice Setting FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- WRITE AUTHENTICATIO ENABLE ----------

case HCI_WRITE_AUTHENTICATION_ENABLE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write authentication enable sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Write Authentication Enable Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(CONNECTION_SETUP, AA_ON_RS_DISABLED, outBuff);

//set connection setup filter and auto accept off

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = false;

}//end if

else { //If write authentication enable failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Authentication Enable FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- SET UART BAUD RATE ----------

case HCI_SET_UART_BAUD_RATE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If set uart baud rate sucessful

ClearStatus();

BT_net->LStatus1->Caption = "UART Baud Rate Set to 460.8kbps";

//Set Baud Rate on Comm 1 to 460.8kbps

myDCB.BaudRate = CBR_115200;

SetCommState(C1, &myDCB);

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(CONNECTION_SETUP, AA_ON_RS_DISABLED, outBuff);

//set connection setup filter and auto accept off

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

89
//each time this command is called.

inquiryFilter = false;

}//end if

else { //If set uart baud rate failed

ClearStatus();

BT_net->LStatus1->Caption = "Set UART Baud Rate FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- WRITE CONNECTION ACCEPT TIMOUT ----------

case HCI_WRITE_CONNECTION_ACCEPT_TIMEOUT:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write connection accept timeout sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Connection Accept Timeout Written";

//ISSUE NEXT SETUP COMMAND

pktSize = WritePageTimeout(0x3000, outBuff); //0x3000*625us = 7.68s

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else{ //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Connection Accept Timeout FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- WRITE PAGE TIMEOUT (END OF SETUP COMMANDS) ----------

case HCI_WRITE_PAGE_TIMEOUT:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write page timeout sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Page Timeout Written";

//If execution makes it to this point the setup is successful.

BT_net->LStatus2->Caption = "Setup Completed Successfully";

}//end if

else { //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Page Timeout FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- INQUIRY STATUS ----------

case HCI_INQUIRY:

//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Conducting Inquiry";

}//end if

else{

BT_net->LStatus1->Caption = "Inquiry Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

90

//---------- CREATE CONNECTION STATUS ---------

case HCI_CREATE_CONNECTION:

//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Creating Connection";

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Create Connection Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

//---- ACCEPT CONNECTIO REQUEST STATUS (NOT NECCESSARY BECAUSE THE AUTO ACCEPT ----

// ---- FLAG IS CURRENTLY SET ON THE CONNECTION FILTER ----

case HCI_ACCEPT_CONNECTION_REQUEST:

//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Accepting Connection Request";

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Accept Connection Request Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

//---------- WRITE LINK SUPERVISION TIMOUT ----------

case HCI_WRITE_LINK_SUPERVISION_TIMEOUT:

/******INSERT CODE HERE*****/

break;

//---------- READ TRANSMIT POWER LEVEL ----------

case HCI_READ_TRANSMIT_POWER_LEVEL:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If read transmit power level sucessful

//Display Tx Power Level

//BT_net->LTxPower->Caption = (static_cast<unsigned int>(*(pBuff+9))) & mask;

//########### THIS CODE MUST BE EDITED FOR USE WTIH MORE THAN 2 DEVICES

//ISSUE READ RECIEVE SIGNAL STRENGTH INDICATOR (RSSI) COMMAND

pktSize = ReadRSSI(slave[0].connectHndl, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else{ //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Read Transmit Power Level FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

91

//---------- READ RECIEVE SIGNAL STRENGTH INDICATOR ----------

case HCI_READ_RSSI:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If read RSSI sucessful

//Display Receive signal strength

localDevice.rssi = static_cast<short>(*(pBuff+9));

BT_net->LRSSI->Caption = localDevice.rssi;

}//end if

else { //If read RSSI failed

ClearStatus();

BT_net->LStatus1->Caption = "Read RSSI FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//--

case CLEAR:

break;

default:

ClearStatus();

BT_net->LStatus1->Caption = "Unknown OpCode";

//Convert each nibble of the opcode to an ASCII

//char representative of the hex digit contained in each nibble.

Int2Char(opCode, tempOpCode);

nibbles(tempOpCode[1], opCodeDisp[2], opCodeDisp[3]);

nibbles(tempOpCode[0], opCodeDisp[4], opCodeDisp[5]);

BT_net->LStatus2->Caption = opCodeDisp;

}//end switch

}//end function

//---

void FindEvent(char *pBuff){

//******** VARIABLES ********

//------ Control Variables ------

char evt;

unsigned int x = 0, numHndls = 0, numResp = 0;

unsigned int mask = 0x000000FF;

//------ Display Variables ------

//char addrDisp[15] = {’0’,’x’};

char connectHndlDisp[7] = {’0’,’x’}, evtDisp[5]={’0’,’x’};

unsigned int errorCode, numCompPkts = 0;

//***************************

evt=*(pBuff+1);

// FIND THE RECEIVED EVENT AND EXECUTE ACCORDINGLY

//***

switch (evt){

92
//###### NOTE: 1st Parameter in event pkt is array index #3

case EV_COMMAND_COMPLETE:

FindOpCode(pBuff);

break;

case EV_COMMAND_STATUS:

FindOpCode(pBuff);

break;

case EV_INQUIRY_COMPLETE:

ClearStatus();

BT_net->LStatus1->Caption = "Inquiry Complete";

if (*(pBuff+3) == 0)

BT_net->LStatus2->Caption = "Completed Sucessfully";

else

BT_net->LStatus2->Caption = Error(*(pBuff+3));

break;

case EV_INQUIRY_RESULT:

//###### NOTE: MUST ADD COUNTER TO COUNT RESPONSES. ALL RESPONDING DEVICES MAY NOT BE

//###### CONTAINED IN ONE EVENT BUT MAY CREATE SEVERAL EVENTS THEREFORE YOU NEED

//###### TO KNOW HOW MANY DEVICES HAVE PREVIOUSLY RESPONED AND ARE ALREADY ACCOUNTED FOR.

numResp = (static_cast<unsigned int>(*(pBuff+3))) & mask;

BT_net->LInqRes->Caption = numResp;

//Load the Bluetooth device address for each device that responded

//into the bd_addr array for each of the slave structures (up to 7

//slaves possible) and other device specific data using nested for loops

for (unsigned int n=0; n<numResp; n++){

for (unsigned int c=0; c<6; c++)

slave[n].bd_addr[c] = *(pBuff+4+(6*n)+c);

}//end for

for (unsigned int n=0; n<numResp; n++){

slave[n].pgScnRepMode = *(pBuff+4+(6*numResp)+n);

}//end for

for (unsigned int n=0; n<numResp; n++){

slave[n].pgScnPerMode = *(pBuff+4+(7*numResp)+n);

}//end for

for (unsigned int n=0; n<numResp; n++){

slave[n].pgScnMode = *(pBuff+4+(8*numResp)+n);

}//end for

for (unsigned int n=0; n<numResp; n++){

for (unsigned int c=0; c<3; c++)

slave[n].deviceClass[c] = *(pBuff+4+(9*numResp)+(3*n)+c);

}//end for

for (unsigned int n=0; n<numResp; n++){

for (unsigned int c=0; c<3; c++)

slave[n].clkOffset[c] = *(pBuff+4+(12*numResp)+(2*n)+c);

}//end for

93

//**** These following lines of code are for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

//Convert each nibble of the address to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int n=0; n<12; n=n+2){

x=n/2;

///##### Counter will affect this code

nibbles(slave[0].bd_addr[5-x], slave[0].addrDisp[n+2], slave[0].addrDisp[n+3]);

}//end for

slave[0].addrDisp[14] = NULL; //Append a null for string display.

BT_net->LBD_ADDR_rd->Caption = slave[0].addrDisp;

break;

case EV_CONNECTION_COMPLETE:

//**** This Code is for connecting only two computers

//**** This must be modified before attempting to use with

//**** more than two computers in a piconet

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Connection Completed";

BT_net->LStatus2->Caption = "Successfully";

//#### Counter will affect this code

//Load the information recieved about the

//remote device into a BT_DEVICE structure

slave[0].connection = true; //Yes a connection exists

slave[0].connectHndl[0] = *(pBuff+4);

slave[0].connectHndl[1] = *(pBuff+5);

slave[0].linkType = *(pBuff+12);

slave[0].encryptMode = *(pBuff+13);

//Inform user of the type of link established

if (slave[0].linkType == ACL_LINK)

BT_net->LLinkType->Caption = "ACL";

if (slave[0].linkType == SCO_LINK)

BT_net->LLinkType->Caption = "SCO";

//Convert each nibble of the Connection Handle to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int n=0; n<4; n=n+2){

x=n/2;

///##### Counter will affect this code

nibbles(slave[0].connectHndl[1-x], connectHndlDisp[n+2], connectHndlDisp[n+3]);

}//end for

connectHndlDisp[6] = NULL; //Append a null for string display.

BT_net->LConnectHndl->Caption = connectHndlDisp;

94

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Connection Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

case EV_NUM_COMPLETED_PACKETS:

//#### NOTE: THIS CODE IS WRITTEN FOR A SINGLE POINT TO POINT CONNECTION WHEN EDITING

//#### CODE TO HANDLE SEVERAL DEVICES THE CONNECTION HANDLES RETURNED MAY NEED

//#### TO BE CHECKED AND COMPARED.

//BEGIN EXTRACTING DATA FROM PACKET

numHndls = *(pBuff+3); //number of connection handles returned

if(numHndls > 1){

//Because of the nature of this test program (transmit...wait for remote

//computer to process data then re-transmit...there should be no more than

//one connection handle returned from a Number of Completed Packets event.

MessageBox(0, "ERROR: More than 1 connection handle\nreturned in NUM_COMP_PKTS event",0 , MB_OK);

}//end if

else{

numCompPkts = *(pBuff+6); //Only need to read LSB of comp ACL pkts because the device buffer

//only holds 10 pkts

if(transmitInProgress){ //If there is a transmit in progress continue with it

TransmitTestData(CONTINUE_TRANSMISSION, numCompPkts);

}//end if

}//end else

break;

case EV_DATA_BUFFER_OVERFLOW:

ClearStatus();

MessageBox(0, "DATA BUFFER OVERFLOW", 0, MB_OK);

break;

case EV_DISCONNECTION_COMPLETE:

ClearStatus();

BT_net->LStatus1->Caption = "Connection Terminated";

slave[0].connection = false;

break;

case EV_MAX_SLOTS_CHANGE:

BT_net->LStatus3->Caption = "Max LMP Slots Change";

break;

default:

ClearStatus();

BT_net->LStatus1->Caption = "Unknown Event";

//Convert each nibble of the event code to an ASCII

//char representative of the hex digit contained in each nibble.

nibbles(evt, evtDisp[2], evtDisp[3]);

BT_net->LStatus2->Caption = evtDisp;

}//end switch

}//end function

95

//---

void ResetBuffer(char buff[], DWORD buffSize){

for (unsigned int n=0; n<buffSize; n++)

buff[n] = NULL;

}//end function

//---

bool NumDataPkts(char buff[], DWORD numBytesRead, DWORD &numPkts, char *pLastPkt, bool &dataError){

DWORD paramLength = 0, availBuff = 0;

bool moreData = true, pktSeg = false;

unsigned int temp1, temp2, mask = 0x000000FF;

unsigned int totalData = 0;

numPkts = 0;

pLastPkt = buff;

while(moreData){//while unaccounted for data exists do....

switch(*pLastPkt){//what type of data is this packet?

case UART_EVENT_PACKET:

//The third byte (2nd array element) in an event pkt gives

//the total length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//plus current amount of data to compute total data present.

paramLength = static_cast<unsigned int>(*(pLastPkt+2)) & mask;

totalData = totalData + 3 + paramLength;

numPkts++;

break;

case UART_ACL_DATA_PACKET:

//The 4th and 5th bytes (3rd and 4th array elemetnts) in an ACL pkt

//give the total length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//plus current amount of data to compute total data present.

temp1 = (static_cast<unsigned int>(*(pLastPkt+3))) & mask; //Convet 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pLastPkt+4)))& mask; //into an int variable.

temp2 = temp2 << 8;

paramLength = temp2 + temp1;

totalData = totalData + 5 + paramLength;

numPkts++;

break;

default: //Unrecognized pkt header...Error in received data

moreData = false;

dataError = true;

numPkts = numPkts+1;

BT_net->LStatus2->Caption = "Error in received data";

do{

//Clear the input buffer

//The data is useless since it contained an error

availBuff = inBuffSize - numBytesRead;

ReadFile(C1, pLastPkt, availBuff, &numBytesRead, &OVL);//read data from COMM 1

}while(numBytesRead > 0);

return false;

}//end switch

96
if (numBytesRead == totalData){

moreData = false;//All data accounted for

pktSeg = false;

}//end if

else{//1st else

if (numBytesRead < totalData){//Some expected data is missing

moreData = false; //must read buffer again.

pktSeg = true;

numPkts = numPkts - 1; //Last pkt was a pkt segment...do not count it

BT_net->LStatus2->Caption = "SEGMENTED PACKET";

}//end if numBytesRead<totalData

else {//2nd else

pLastPkt = buff;

pLastPkt = pLastPkt + totalData; //More data remaining to be counted.

}//end 2nd else

}//end 1st else

}//end while

return pktSeg;

}//end function

//---

void __fastcall TBT_net::BInquiryClick(TObject *Sender){

char inqDuration = 24; //= 24*1.28s = 30.72s

pktSize = Inquiry(inqDuration, 1, outBuff); //Returns after 1 inquiry is received.

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void __fastcall TBT_net::BBeginTestClick(TObject *Sender){

//TEST SETUP

AnsiString sDist;

short sDistSize;

char dist[15] = {NULL};

//Assign the value entered by the user into the Transmission Test class "cTest"

sDist = CBDist->Text;

sDistSize = sDist.Length();

for (short c=1; c<=sDistSize; c++)

dist[c-1] = sDist[c];

dist[sDistSize] = NULL;

LStatus2->Caption = dist;

cTest.setDistance(dist, sDistSize);

AnsiString sTop;

//Assign the value entered by the user into the Transmission Test class "cTest"

sTop = CBTopology->Text;

cTest.setTopology(sTop[1]);

LStatus2->Caption = sTop[1];

//BEGIN TEST

cTest.newTest();

cTest.setLinkState(localDevice.addrDisp, slave[0].addrDisp, localDevice.rssi);

97
readRssi = false;

//Begin by transmitting the small file

TransmitTestData(SMALL_FILE, 0);

}

//---

void __fastcall TBT_net::BSendClick(TObject *Sender){

DWORD dataLength;

AnsiString input;

unsigned int inputSize;

input = Message->Text;

Message->Text = ""; //Reset message block

inputSize = input.Length();

dataLength = inputSize + 4;

for (unsigned int c = 1; c <= inputSize; c++)

outBuff[c+3] = input[c];

//***** Adding L2CAP 4 byte header *****

//The first two bytes of the header are the L2CAP Packet length

//(i.e. The length of data to be transmitted may be greater than the HCI

//packet lenght)

//The second two bytes of the header is the Channel ID (CID) and can

//range from 0x0040 to 0xFFFF. For message traffic use 0x0300.

//***NOTE: Message is assumed to be <= 255 bytes long

outBuff[0] = static_cast<char>(inputSize); //L2CAP pkt length lsb

outBuff[1] = 0x00; //L2CAP pkt length msb

outBuff[2] = 0x00; //CID lsb

outBuff[3] = 0x03; //CID msb

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

pktSize = SendACLPkt(slave[0].connectHndl, dataLength, FIRST_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void __fastcall TBT_net::BResetClick(TObject *Sender){

//RESET BT MODULE

pktSize = Reset(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//RESET CONNECTION CONRTOL VAR

for (unsigned int n=0; n<7; n++)

slave[n].connection = false;

//RESET DISPLAY

ResetDisplay();

}

//---

98

void __fastcall TBT_net::BConnectClick(TObject *Sender){

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

pktSize = CreateConnection(&slave[0], localDevice.pktType, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void __fastcall TBT_net::CBControlCloseUp(TObject *Sender){

localDevice.master = CBControl->ItemIndex;

if(localDevice.master){//if the local device will be the master...

//buttons and comboboxes

BInquiry->Enabled = true;

BConnect->Enabled = true;

CBPktType->Enabled = true;

}//end if

else{

//buttons and comboboxes

BInquiry->Enabled = false;

BConnect->Enabled = false;

CBPktType->Enabled = false;

}//end else

}

//---

void __fastcall TBT_net::CBPktTypeCloseUp(TObject *Sender){

unsigned int pktRef;

pktRef = CBPktType->ItemIndex;

//Assign the value entered by the user into the Transmission Test class "cTest"

switch(pktRef){

case 0:

localDevice.pktType = DM1;

cTest.setPktType(DM1);

break;

case 1:

localDevice.pktType = DH1;

cTest.setPktType(DH1);

break;

case 2:

localDevice.pktType = DM3;

cTest.setPktType(DM3);

break;

case 3:

localDevice.pktType = DH3;

cTest.setPktType(DH3);

break;

case 4:

99
localDevice.pktType = DM5;

cTest.setPktType(DM5);

break;

case 5:

localDevice.pktType = DH5;

cTest.setPktType(DH5);

}//end switch

//Disconnect all current connections.

for (unsigned int c=0; c<7; c++){

if (slave[c].connection & localDevice.master){

slave[c].connection = false;

Disconnecting();

LStatus1->Caption = "Disconnecting";

pktSize = Disconnect(slave[c].connectHndl, 0x13, outBuff); //user ended connection

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else

c = 7; //If no connection exists end loop (connections are established in sequential order

//therefore if slave[0].connection does not exist there is no reason to complete the loop)

}//end for

}

//---

void __fastcall TBT_net::CBTestRoleCloseUp(TObject *Sender){

localDevice.conductingTest = CBTestRole->ItemIndex;

if(localDevice.conductingTest){//if the local device will be conducting the test...

//buttons and comboboxes

BBeginTest->Enabled = true;

CBPktType->Enabled = true;

CBDist->Enabled = true;

CBTopology->Enabled = true;

CBNumTrans->Enabled = true;

}//end if

else{

//buttons and comboboxes

BBeginTest->Enabled = false;

CBPktType->Enabled = false;

CBDist->Enabled = false;

CBTopology->Enabled = false;

CBNumTrans->Enabled = false;

}//end else

}

//---

void __fastcall TBT_net::CBNumTransCloseUp(TObject *Sender){

//Assign twice the number of requested test

//transmissions to "numTestTrans" because two

//tests are run for each round of tests

numTestTrans = 2*(CBNumTrans->ItemIndex);

100
}

//---

void TransmitTestData(int fileSize, unsigned int tDataSize){

//******* VARIABLES ******

static DWORD dataLength, dataLeft;

static char *pDataFile;

char pktLength[4], cidLsb;

bool firstACLpkt = false;

unsigned int numACLPktsSent = 0, n; //Loop control variable

unsigned int buffersAvailable = hostCtrl.numACLBuff;

const unsigned int maxPktSize = hostCtrl.sizeACLBuff; //max size of ACL pkt alowable so as not to

//overflow the ACL Buffer of the local BT module.

static unsigned int nextData2Send = 0; //contains the array index of the next data byte to send

//if nextData2Send == dataLength then all data has been sent

//************************

switch (fileSize){

case SMALL_FILE:

//SEND SMALL FILE

dataLength = cTest.sizeDataShort + 4;

pDataFile = cTest.dataShort;

cidLsb = LARGE_FILE;

transmitInProgress = true;

firstACLpkt = true;

BT_net->LTestStatus->Caption = "Transmitting Small File";

break;

case LARGE_FILE:

//SEND LARGE FILE

dataLength = cTest.sizeDataLong + 4;

pDataFile = cTest.dataLong;

cidLsb = SMALL_FILE;

transmitInProgress = true;

firstACLpkt = true;

BT_net->LTestStatus->Caption = "Transmitting Large File";

break;

case RETRANSMIT:

//LOCAL DEVICE IS NOT CONDUCTING TEST

//RETRANSMIT THE RECEIVED DATA

dataLength = tDataSize + 4;

pDataFile = testDataBuff;

firstACLpkt = true;

if(tDataSize == 2){ //A timeout has occured

*(pDataFile) = 0x02; //L2CAP pkt length lsb

*(pDataFile+1) = 0x00; //L2CAP pkt length msb

} //end if

BT_net->LTestStatus->Caption = "Retransmitting Received Data";

break;

case CONTINUE_TRANSMISSION:

101
//The new number of buffers available is equal

//to the number of packets completed. This number

//is passed to TransmitTestData() as tDataSize

buffersAvailable = tDataSize;

break;

default:

BT_net->LTestStatus->Caption = "Unknown File type to Transmit";

}//end switch

if (dataLength <= maxPktSize){//If test data is smaller that the local device’s

for (n=0; n<dataLength; n++) //ACL Buffer Size send it

outBuff[n] = *(pDataFile+n);

//***** Adding L2CAP 4 byte header *****

//The first two bytes of the header are the L2CAP Packet length

//(i.e. The length of data to be transmitted may be greater than the HCI

//packet lenght)

//The second two bytes of the header is the Channel ID (CID) and can

//range from 0x0040 to 0xFFFF. For test data use 0xEE00

if ((fileSize!=RETRANSMIT) && (fileSize!=CONTINUE_TRANSMISSION)){

Int2Char(dataLength-4, pktLength);

outBuff[0] = pktLength[0]; //L2CAP pkt length lsb

outBuff[1] = pktLength[1]; //L2CAP pkt length msb

outBuff[2] = cidLsb; //CID lsb

outBuff[3] = TEST_DATA_MSB; //CID msb

}

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Packet is < 400 bytes";

pktSize = SendACLPkt(slave[0].connectHndl, dataLength, FIRST_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

if (fileSize != -1)

cTest.beginTransmit();

nextData2Send = dataLength; //Used to inform Program that Transmission is complete

}//end if

else{ //The data is too large to send in one ACL Packet...it must be split up

while((nextData2Send != dataLength) && (numACLPktsSent != buffersAvailable)){

if (dataLength > (nextData2Send+maxPktSize)){ //enough data exists to send another "full" ACL pkt.

//Load up the output Buffer

for (n=0; n<maxPktSize; n++)

outBuff[n] = *(pDataFile+nextData2Send+n);

if (firstACLpkt){

//If this is the first ACL pkt an L2CAP header needs to be

//added and also the ACL PB flag must be set to first packet

firstACLpkt = false;

102
if ((fileSize!=RETRANSMIT) && (fileSize!=CONTINUE_TRANSMISSION)){

Int2Char(dataLength-4, pktLength);

outBuff[0] = pktLength[0]; //L2CAP pkt length lsb

outBuff[1] = pktLength[1]; //L2CAP pkt length msb

outBuff[2] = cidLsb; //CID lsb

outBuff[3] = TEST_DATA_MSB; //CID msb

}//end if

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "1st ACL pkt of large L2CAP pkt";

pktSize = SendACLPkt(slave[0].connectHndl, maxPktSize, FIRST_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

if (fileSize != -1)

cTest.beginTransmit();

}//end if

else{

//If this is not the fist ACL pkt no L2CAP header needs to be added

//but the ACL PB flag must be set to continuing packet

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Continuing ACL pkt of large L2CAP pkt";

pktSize = SendACLPkt(slave[0].connectHndl, maxPktSize, CONT_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end else

nextData2Send = nextData2Send + maxPktSize; //increment nextData2Send

}//end if

else{ //There is not enough data left to send a "full" ACL pkt.

dataLeft = dataLength - nextData2Send;

//Load up the output Buffer

for (n=0; n<dataLeft; n++)

outBuff[n] = *(pDataFile+nextData2Send+n);

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Partially full ACL pkt for large L2CAP pkt";

pktSize = SendACLPkt(slave[0].connectHndl, dataLeft, CONT_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

nextData2Send = dataLength; //end the while loop

103
}//end else

numACLPktsSent++; //Increment the number of ACL pkts sent

}//end while

}//end else

if(nextData2Send == dataLength){ //Transmission is complete

BT_net->LStatus2->Caption = "Finished Transmitting File";

transmitInProgress = false; //Transmission is finished

//Reset Static variables

nextData2Send = 0;

dataLength = 0;

dataLeft = 0;

}//end if

}

//---

void ResetDisplay(){

//Buttons

BT_net->BInquiry->Enabled = false;

BT_net->BConnect->Enabled = false;

BT_net->BBeginTest->Enabled = false;

//Combo Boxes

BT_net->CBPktType->Enabled = false;

BT_net->CBDist->Enabled = false;

BT_net->CBTopology->Enabled = false;

BT_net->CBNumTrans->Enabled = false;

//Display Labels

BT_net->LBD_ADDR_rd->Caption = " "; //BT_ADDR for remote device 1

BT_net->LBD_ADDR_ld->Caption = " "; //BT_ADDR for local device

BT_net->LConnectHndl->Caption = " ";

BT_net->LInqRes->Caption = " ";

BT_net->LRSSI->Caption = " ";

BT_net->LRx->Caption = " ";

BT_net->LTestStatus->Caption = " ";

BT_net->LStatus1->Caption = " ";

BT_net->LStatus2->Caption = " ";

BT_net->LStatus3->Caption = " ";

BT_net->LCurTrans->Caption = " ";

BT_net->LPktNum->Caption = " ";

}

//---

void ClearStatus(){

//Clear all of the status labels

BT_net->LStatus1->Caption = " ";

BT_net->LStatus2->Caption = " ";

BT_net->LStatus3->Caption = " ";

}

//---

104

void Disconnecting(){

ClearStatus();

BT_net->LConnectHndl->Caption = " ";

BT_net->LRSSI->Caption = " ";

BT_net->LTestStatus->Caption = " ";

BT_net->LCurTrans->Caption = " ";

BT_net->LPktNum->Caption = " ";

}

Appendix C

BTTest v. 3.1

C.1 BTTest3 1.h

//BTTest3_1.h

//Written on 19OCT02 by MIDN Kenneth J. Hoover

//Last updated 22MAR03

//

//This header file defines forms and variables and contains function

//prototyes for the BTTest program.

//---

#ifndef BTCommH

#define BTCommH

//---

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include "BT_functions.h"

#include "UART.h"

#include <ExtCtrls.hpp>

#include <Menus.hpp>

#include "transTest.h"

DWORD BaudRate[] = {CBR_9600, CBR_14400, CBR_57600, CBR_115200};

const DWORD testDataBuffSize = 100100, inBuffSize = 100100, outBuffSize = 600;//595 bytes usable (5 byte header for data pkts)

COMMTIMEOUTS CT1, CTinit;

BT_DEVICE slave[7], localDevice;

BUFFERS host, hostCtrl;

unsigned long pktSize;

bool connection[7] = {0};

bool readRssi = true, transmitInProgress = false;

DCB myDCB, initDCB;

//DATA VARIABLES

char inBuff[inBuffSize], outBuff[outBuffSize], testDataBuff[testDataBuffSize];

TransTest cTest;

unsigned int numTestTrans;

//---

105

106
class TBT_net : public TForm{

__published: // IDE-managed Components

TTimer *Timer1;

TGroupBox *GroupBox1;

TGroupBox *GroupBox2;

TGroupBox *GroupBox3;

//STATIC LABELS

TLabel *Label1;

TLabel *Label2;

TLabel *Label3;

TLabel *Label4;

TLabel *Label5;

TLabel *Label9;

TLabel *Label13;

TLabel *Label6;

TLabel *Label10;

TLabel *Label11;

TLabel *Label12;

TLabel *Label14;

TLabel *Label15;

//DISPLAY LABELS

TLabel *LBD_ADDR_rd1; //BT_ADDR for remote device 1

TLabel *LBD_ADDR_rd2; //BT_ADDR for remote device 2

TLabel *LBD_ADDR_ld; //BT_ADDR for local device

TLabel *LLinkType;

TLabel *LConnectHndl1;

TLabel *LInqRes;

TLabel *LRSSI1;

TLabel *LRx;

TLabel *LTestStatus;

TLabel *LStatus1;

TLabel *LStatus2;

TLabel *LStatus3;

TLabel *LCurTrans;

TLabel *LPktNum;

TLabel *LConnectHndl2;

TLabel *LRSSI2;

//INPUT BOX

TLabeledEdit *Message;

//BUTTONS

TButton *BBeginTest;

TButton *BSend;

TButton *BReset;

TButton *BConnect1;

TButton *BConnect2;

TButton *BInquiry;

//COMBOBOXES

TComboBox *CBDist;

TComboBox *CBTopology;

TComboBox *CBControl;

TComboBox *CBTestRole;

TComboBox *CBPktType;

107
TComboBox *CBNumTrans;

TComboBox *CBSlaveSelect;

void __fastcall FormCreate(TObject *Sender);

void __fastcall FormDestroy(TObject *Sender);

//TIMER INTERUPT

void __fastcall Timer1Timer(TObject *Sender);

//BUTTON CLICKS

void __fastcall BInquiryClick(TObject *Sender);

void __fastcall BBeginTestClick(TObject *Sender);

void __fastcall BSendClick(TObject *Sender);

void __fastcall BResetClick(TObject *Sender);

void __fastcall BConnect1Click(TObject *Sender);

//COMBOBOXES CLOSE

void __fastcall CBControlCloseUp(TObject *Sender);

void __fastcall CBPktTypeCloseUp(TObject *Sender);

void __fastcall CBTestRoleCloseUp(TObject *Sender);

void __fastcall CBNumTransCloseUp(TObject *Sender);

void __fastcall BConnect2Click(TObject *Sender);

private: // User declarations

public: // User declarations

__fastcall TBT_net(TComponent* Owner);

};

//---

//***** FUNCTIONS *****

//FindOpCode():

//This function looks up the OpCode returned in a Command Complete or

//Command Status event packet and processes the data contained within

//the event packet accordingly.

//

//Parameters *pBuff: Pointer to the first byte in the returned

// event packet

void FindOpCode(char *pBuff);

//---

//Find Event():

//This function looks up Event retruned in an event packet and processes the

//data contained within the event packet accordingly

//

//Parameters *pBuff: Pointer to the first byte in the returned

// event packet

void FindEvent(char *pBuff);

//---

108
//ResetBuffer():

//This function resets an array of characters to NULL

//

//Parameters buff[]: Buffer to reset.

// buffSize: Size of the buffer to reset.

void ResetBuffer(char buff[], DWORD buffSize);

//---

//NumDataPkts():

//This function is used to determine the number of Bluetooth HCI pakcets

//contained in a string of characters. It also determines if all of the

//packets are complete or if a packet was segmented during the read.

//

//Parameters buff[]: Buffer in which the data is contained.

// numBytesRead: Number of bytes contained in the buffer

// &numPkts: Address of an integer which contains the

// number of data packets contained in the

// buffer.

// *pLastPkt: Pointer to the first byte of the last packet

// contained in the buffer.

// &dataError: Returns true if data is incomplete

//

//Return: (bool) True if a the buffer contains a segmented packet.

bool NumDataPkts(char buff[], DWORD numBytesRead, DWORD &numPkts, char *pLastPkt, bool &dataError);

//---

//TransmitTestData():

//This function prepares and transmits or retransmits the test data.

//

//Parameters connHndl[]: Two Byte connection handle of the destination

// device.

// fileSize: SMALL_FILE - Send small file

// LARGE_FILE - Send large file

// RETRANSMIT - Retransmit received data

// CONTINUE_TRANSMISSION - Continue with a

// transmission that is currently in progress.

// tDataSize: Size of test data received. (only used when

// retransmitting data)

void TransmitTestData(char connHndl[], int fileSize, unsigned int tDataSize);

//---

//ResetDisplay():

//This function resets the labels and controls on the Graphical User Interface.

void ResetDisplay();

//---

//ClearStatus():

//This function resets the Status labels on the Graphical User Interface.

void ClearStatus();

109
//---

//Disconnecting():

//This function resets the Status labels and other labels related to an ACL

//connection on the Graphical User Interface.

void Disconnecting();

//---

#define ZERO_OPCODE 0x0000

extern PACKAGE TBT_net *BT_net;

//---

#endif

C.2 BTTest3 1.cpp

//BTTest3_1.cpp

//Written on 24OCT02 by MIDN Kenneth J. Hoover

//Last updated 31MAR03

//

//This program sets up and creates a Bluetooth wireless link through which

//data is sent via a virtual serial link between two computers, each running

//this program. It then runs a test program used to test data transmision times

//between a single master and slave using two differnt size text files. This

//program is written for use with the Ericsson ROK 101 008 Bluetooth baseband

//controller and tranciever.

//---

#include <vcl.h>

#pragma hdrstop

#include "BTTest3_1.h"

//---

#pragma package(smart_init)

#pragma resource "*.dfm"

TBT_net *BT_net;

//---

__fastcall TBT_net::TBT_net(TComponent* Owner)

: TForm(Owner)

{

}

//---

void __fastcall TBT_net::FormCreate(TObject *Sender){

//INITIALIZATION OF THE SERIAL PORT (COMM 1)

C1 = CreateFile(Port[0], GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING,

110
FILE_FLAG_OVERLAPPED, NULL);

GetCommState(C1, &initDCB); //Save inital DCB in order to reset Comm 1 on exit of program

myDCB = initDCB; //Initailize myDCB to current Comm Port settings

myDCB.BaudRate = BaudRate[3];

myDCB.fBinary = TRUE;

myDCB.fParity = FALSE; //No parity check

myDCB.fOutxCtsFlow = TRUE; //should be true ********

myDCB.fOutxDsrFlow = FALSE;

myDCB.fDtrControl = DTR_CONTROL_DISABLE;

myDCB.fDsrSensitivity = FALSE;

myDCB.fOutX = FALSE;

myDCB.fInX = FALSE;

myDCB.fNull = FALSE;

myDCB.fRtsControl = RTS_CONTROL_TOGGLE; //should be toggle *****

myDCB.ByteSize = 8;

myDCB.Parity = NOPARITY;

myDCB.StopBits = ONESTOPBIT;

SetCommState(C1, &myDCB);

//COMM TIMEOUTS

GetCommTimeouts(C1, &CT1);

GetCommTimeouts(C1, &CTinit);

CT1 = CTinit; //Initialize CT1 to current comm timeout settings.

CT1.ReadIntervalTimeout = 10; //Timeout on read if delay is greater than 100ms

//between chars.

CT1.ReadTotalTimeoutMultiplier = 0; //Timeout on read if total read time is greater

CT1.ReadTotalTimeoutConstant = 50; //than 200ms

SetCommTimeouts(C1,&CT1);

//INITIALIZE BT MODULE

pktSize = Reset(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//INITIALIZE DATA VARIABLES

ResetBuffer(inBuff, inBuffSize);

host.sizeACLBuff = 400;

host.sizeSCOBuff = 400;

host.numACLBuff = 1;

host.numSCOBuff = 1;

//GUI SETUP

ResetDisplay();

}

//---

void __fastcall TBT_net::FormDestroy(TObject *Sender){

//RESET COMM STATES BEFORE CLOSING PROGRAM

SetCommState(C1, &initDCB);

SetCommTimeouts(C1, &CTinit);

CloseHandle(&C1);

}

//---

void __fastcall TBT_net::Timer1Timer(TObject *Sender){

111
//****** VARIABLES ******

//-----Buffer Variables -----

DWORD numBytesRead, numPkts = 0;

char *pPkt = inBuff, *pLastPkt = inBuff;

static char *pReadPt = inBuff;

static unsigned int buffAvail = inBuffSize;

//----- Packet and Data Control Variables

bool segmentedPkt = false;

unsigned int pktSize, mask = 0x000000FF, amtProcData = 0;

static unsigned int segSize = 0;

//----- RSSI Variables

static unsigned int cycle = 0;

const unsigned int rssiFreq = 12;

//----- Display Variables -----

char dataDisp[255] = {NULL};

//----- Temporary Variables -----

char tempAry[450] = {0};

unsigned int temp1, temp2;

//******** TRANSMISSION TEST VARIABLES *********

static unsigned int testDataReceived = 0, numTestsRan = 0;

static unsigned int l2capPktSize, storedL2capData = 0;

short fileType;

unsigned int slaveIndex = 0, n; //loop control variable

char aclFlags, flagMask = 0xF0;

Timer cTimer;

char bytesOfInt[4];

unsigned int processedPkts = 0, curProcPkts = 0, t_proc = 0, errors = 0;

DWORD newBytesRead = 0, loopLimit = 200, loopCount = 0;

bool timeOut = false, slaveFound = false;

static char tempConnHndl;

// DETERMINE IF DATA HAS ARRIVED AND PROCESS IT

//**

Timer1->Enabled = false;//Disable timer while processing data

ReadFile(C1, pReadPt, buffAvail, &numBytesRead, &OVL);//read data from COMM 1

if(numBytesRead != 0){ //If data is present ... If not end.

numBytesRead = numBytesRead + segSize;

segmentedPkt = NumDataPkts(inBuff, numBytesRead, numPkts, pLastPkt, timeOut); //Does a partial packet exist in the buffer

for(unsigned int p=0; p<numPkts; p++){ //Process data from all available data packets

switch(*pPkt){ //switch UART header

case UART_EVENT_PACKET:

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

FindEvent(pPkt);

break;

112

case UART_ACL_DATA_PACKET:

ClearStatus();

LStatus1->Caption = "Data Received";

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

LStatus2->Caption = pktSize;

// CHECK THE MOST SIGNIFICANT BYTE OF THE L2CAP CHANNEL ID

// THIS BYTE TELLS WHAT TYPE OF DATA IS BEING RECIEVED:

// TEST DATA OR MESSAGE DATA. TEST DATA MUST BE PROCESSED

// AND RETRANSMITTED, BUT MESSAGE DATA IS DISPLAYED TO THE

// USER AND THEN DISCARDED.

//**

// IF THE ACL FLAGS INDICATE A CONTINUING PACKET THE PAKCET MUST

// TRANSMISSION TEST DATA. SINCE CONTINUING PACKETS DO NOT

// CONTAIN L2CAP HEADER INFORMATION THE l2capCIDmsb VARIABLE

// MUST BE MANUALLY SET TO TEST_DATA_MSB.

//**

switch (*(pPkt+8)){ //Switch L2CAP CID msb

case MESSAGE_MSB:

//########### ACL Data Display for ONLY one BT Slave ############

for(unsigned int n=9; n<pktSize; n++)

dataDisp[n-9] = *(pPkt+n); //Move data from data pkt to a string for display

dataDisp[pktSize-9] = NULL; //Add a null char to end for string output

LRx->Caption = dataDisp;

break;

case TEST_DATA_MSB:

//IF EXECUTION REACHES THIS POINT AT LEAST ONE COMPLETE PKT EXISTS

/**

IF TEST DATA IS BEING RECIEVED EXECUTION WILL REMAIN IN THIS LOOP UNTIL THE WHOLE

TEST DATA FILE HAS BEEN READ INTO THE INPUT BUFFER. DURING EACH ITERATION THE DATA

READ WILL BE COUNTED AND COMPARED TO THE TOTAL SIZE OF THE PAKCET. IT WILL ALSO BE

FOR OTHER TYPES OF DATA WHICH MAY BE MIXED IN AND STORE THAT DATA SEPARATELY. ONCE

THE COMPLETE FILE IS READ THE DATA WILL BE PROCESSED. THIS WHOLE PROCESS WILL BE

TIMED AND RETURNED TO THE TESTING DEVICE AS Tproc (PROCESSING TIME).

***/

tempConnHndl = *(pPkt+1) & mask; //Store the connection handle so we know who sent the test data

do{ // continue loop until the complete test file has been read

for(curProcPkts=processedPkts; curProcPkts<numPkts; curProcPkts++){//loop through all counted data pkts

ClearStatus();

LStatus1->Caption = "Receiving Test Data";

113
//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask;//Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask;//into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//* IS THIS THE FIRST ACL PACKET OF A LARGE L2CAP PACKET? *

aclFlags = (*(pPkt+2) & flagMask);// Extract ACL flags

switch(aclFlags){

case FIRST_PKT_P2P:

//YES THIS IS THE FIRST OF MANY

//Subtract 9 bytes from the total pkt size

//5 bytes for the ACL pkt header and 4 bytes

//for the L2CAP pkt header.

testDataReceived = pktSize - 5 - 4;

//Find L2CAP Pkt Size

temp1 = (static_cast<unsigned int>(*(pPkt+5))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+6))) & mask; //into an int variable.

temp2 = temp2 << 8;

l2capPktSize = temp1 + temp2; //Size of exptected l2cap pkt

LStatus2->Caption = "L2CAP Packet Size:";

LStatus3->Caption = l2capPktSize;

break;

case CONT_PKT_P2P:

//NO THIS IS A CONTINUING PACKET TO ADD TO A PREVIOUSLY

//RECIEVED L2CAP FRAGMENT.

//Subtract only the 5 bytes for the ACL pkt header.

testDataReceived = testDataReceived + pktSize - 5;

break;

default:

LTestStatus->Caption = "Unknown ACL Data Packet Flags";

if(*pPkt == UART_EVENT_PACKET){//if an event packet was recieved store it for processing later

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

ClearStatus();

LStatus1->Caption = "Event Received During Test";

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

FindEvent(pPkt);

}//end if

}//end switch aclFlags

//Finished with present packet...move pointer to next data packet

pPkt = pPkt + pktSize;

amtProcData = amtProcData + pktSize;

pktSize = 0;

LPktNum->Caption = curProcPkts;

}//end for

114
processedPkts = numPkts; // update the number of processed packets

//WILL THERE BE MORE DATA COMING?

if(testDataReceived < l2capPktSize){//more data is coming

do{

//If there is a segmented packet compute the amount of data that does exist

if(segmentedPkt)

segSize = numBytesRead - amtProcData;

else{

segSize = 0;

LStatus2->Caption = " ";

}//end else

pReadPt = inBuff + amtProcData + segSize; //move the read point to the end of the data in the buffer

buffAvail = inBuffSize - amtProcData; //How much of the buffer is still free

ReadFile(C1, pReadPt, buffAvail, &newBytesRead, &OVL); //read data from COMM 1

//**** DEBUGING CODE ***

if(newBytesRead == 0){

loopCount++;

if(loopCount == loopLimit)

timeOut = true;

BT_net->LTestStatus->Caption = "Waiting for data. No Bytes Read";

}//end if

//**********************

else{

newBytesRead = newBytesRead + segSize; //Add segment size to newBytesRead so that a complete packet is sent to NumDataPkts()

segmentedPkt = NumDataPkts(pPkt, newBytesRead, numPkts, pLastPkt, timeOut);

//Does a partial packet exist in the buffer

numBytesRead = numBytesRead + newBytesRead - segSize; //add the new bytes read to the number of bytes already in the buffer

numPkts = numPkts + processedPkts; //add the new number of packets to the number of packets already in the buffer

}//end else

}while(segmentedPkt && !timeOut); //continue loop until a segmented pkt no longer exists

}//end if more data is coming

}while((testDataReceived<l2capPktSize) && !timeOut); //Continue loop until the whole Test file (L2CAP

//pkt) is recieved or a timeout occurs.

//**************************** PROCESS RECIEVED TEST DATA ***************************************

if ((testDataReceived==l2capPktSize) || timeOut){

//NO MORE DATA IS COMING OR A TIMEOUT HAS OCCURED

pPkt = inBuff;//reset the pkt pointer to point to the beginning of the data

while(*pPkt == UART_EVENT_PACKET){//make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

if(localDevice.conductingTest){

//LOCAL DEVICE IS CONDUCTING THE TEST

//Stop Timer. The LSB of the L2CAP CID contains a

//0 for a small file and a 1 for a large file.

fileType = static_cast<short>(*(pPkt+7));

115

//Read the processing time used by the other computer (1st and 2nd data bytes in the test data pkt)

temp1 = (static_cast<unsigned int>(*(pPkt+9))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+10))) & mask; //into an int variable.

temp2 = temp2 << 8;

t_proc = temp1 + temp2; //Processing time used on remote computer

if(t_proc == TIME_OUT_REMOTE_COMP){ //A timeout occured on remote computer

LTestStatus->Caption = "Timeout occured on remote computer";

cTest.endReceive(fileType, t_proc, errors); //end test

}//end if

else {

if(timeOut){ //A timeout occured on this computer

LTestStatus->Caption = "Timeout occured on this computer";

cTest.endReceive(fileType, TIME_OUT_LOCAL_COMP, errors); //end test

}//end if

else{

cTimer.startTimer();

//STORE RECIEVED DATA

storedL2capData = 0;

for(unsigned int b=0; b<numPkts; b++){ //loop through all packets and save them for retransmission

while(*pPkt == UART_EVENT_PACKET){ //make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//STORE THIS DATA

for (n=0; n<pktSize-5; n++)

testDataBuff[n+storedL2capData] = *(pPkt+n+5);

storedL2capData = storedL2capData + pktSize - 5; //Account for ACL pkt header

pPkt = pPkt + pktSize;

}//end for

//ALL DATA HAS BEEN SAVED..RESET pPkt and pktSize

pPkt = inBuff;

pktSize = 0;

//CHECK FOR ERRORS

for(unsigned int k=6; k<l2capPktSize+4; k++){

if(cTest.dataLong[k] != testDataBuff[k]) //If the saved test data does not

errors++; //equal the transmitted data then an

}//end for //error occured.

t_proc = t_proc + static_cast<unsigned int>(cTimer.stopTimer()*1000);

cTest.endReceive(fileType, static_cast<float>(t_proc)/1000, errors); //end this test

116
}//end else

}//end else

numTestsRan++;

LCurTrans->Caption = numTestsRan;

//IF MORE TESTS NEED TO BE RUN...

//TRANSMIT MORE DATA

if (numTestsRan < numTestTrans){

TransmitTestData(slave[0].connectHndl, fileType, 0);

LTestStatus->Caption = "Transmit next pkt";

}//end if

else{

readRssi = true;

numTestsRan = 0;

LTestStatus->Caption = "Finished!";

MessageBox(0, "Test Finished", 0, MB_OK);

}//end else

}//end if local device conducting test

else{

//LOCAL DEVICE IS NOT CONDUCTING THE TEST

cTimer.startTimer();

storedL2capData = 0;

for(unsigned int b=0; b<numPkts; b++){ //loop through all packets and save them for retransmission

while(*pPkt == UART_EVENT_PACKET){ //make sure that the pointer is pointing to the first ACL pkt

//The third byte in an event pkt gives the total

//length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//to compute total packet size.

pktSize = (static_cast<unsigned int>(*(pPkt+2)) & mask) + 3;

pPkt = pPkt + pktSize;

}//end while (pPkt == UART_EVENT_PACKET)

//The 4th and 5th bytes in an ACL pkt give the total

//length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//to compute total packet size.

temp1 = (static_cast<unsigned int>(*(pPkt+3))) & mask; //Convert 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pPkt+4))) & mask; //into an int variable.

temp2 = temp2 << 8;

pktSize = temp2 + temp1 + 5;

//STORE THIS DATA

for (n=0; n<pktSize-5; n++)

testDataBuff[n+storedL2capData] = *(pPkt+n+5);

storedL2capData = storedL2capData + pktSize - 5; //Account for ACL pkt header

pPkt = pPkt + pktSize;

if(timeOut) //If a timeout has occured only store 1st ACL pkt

b = numPkts;

}//end for

//ALL DATA HAS BEEN PROCESSED..RESET pPkt and pktSize

pPkt = inBuff;

pktSize = 0;

if(t_proc == TIME_OUT_REMOTE_COMP){ //A timeout occured on remote computer

117
LTestStatus->Caption = "Timeout occured on remote computer";

cTest.endReceive(fileType, t_proc, errors); //end test

}//end if

else{

if(timeOut) //If a timeout has occured set t_proc to 0xFFFF

t_proc = TIME_OUT_REMOTE_COMP;

else{

if(t_proc == 0x5442){ //t_proc still contains "BT" this is the first transmission

//convert the float (seconds) value to an unsigned int (milliseconds) value for transmission

t_proc = static_cast<unsigned int>(cTimer.stopTimer()*1000);

}//end if

else{ //This file has been transmitted before add to the past t_proc

//convert the float (seconds) value to an unsigned int (milliseconds) value for transmission

t_proc = t_proc + static_cast<unsigned int>(cTimer.stopTimer()*1000);

}//end else

}//end else

}//end else

Int2Char(t_proc, bytesOfInt);

testDataBuff[4] = bytesOfInt[0]; //The first 4 bytes of the test data are the L2CAP header

testDataBuff[5] = bytesOfInt[1]; //store the value of t_proc in bytes 5 and 6.

//Retransmii

if(localDevice.master){ //Is the local device the master?

//Yes, must transfer data from one slave to the other

do{ //From which slave was data just received.

if (tempConnHndl == slave[slaveIndex].connectHndl[0])

slaveFound = true; //Connection Hndl matchers

else //Slave not found yet

slaveIndex++; //keep looking

}while(!slaveFound && (slaveIndex<2));

switch(slaveIndex){

case 0: //Slave 1 sent the test data

slaveIndex = 1; //Transmit data to slave 2

//Retransmit data

if(timeOut) //Let the transmit test function know if a timeout occured

TransmitTestData(slave[slaveIndex].connectHndl, RETRANSMIT, 2);

else

TransmitTestData(slave[slaveIndex].connectHndl, RETRANSMIT, l2capPktSize);

break;

case 1: //Slave 2 sent the test data

slaveIndex = 0; //Transmit data to slave 1

//Retransmit data

if(timeOut) //Let the transmit test function know if a timeout occured

TransmitTestData(slave[slaveIndex].connectHndl, RETRANSMIT, 2);

else

TransmitTestData(slave[slaveIndex].connectHndl, RETRANSMIT, l2capPktSize);

break;

default: //Don’t know who sent the data

MessageBox(0, "Unknown Connection Handle", 0, MB_OK);

}//end switch

}//end if

else{ //Local device is another slave retransmit to master

if(timeOut) //Let the transmit test function know if a timeout occured

TransmitTestData(slave[0].connectHndl, RETRANSMIT, 2);

else

118
TransmitTestData(slave[0].connectHndl, RETRANSMIT, l2capPktSize);

}//end else

}//end else local device is not conducting the test

//RESET VARIABLES

testDataReceived = 0;

l2capPktSize = 0;

numPkts = 0;

timeOut = false;

}//end if (testDataReceived == l2capPktSize)

else{

//SOMETHING SCREWED UP

LTestStatus->Caption = "SOMETHING SCREWED UP: Too much data received";

}//end else someting screwed up

break;

//**

default:

LTestStatus->Caption = "Unknown L2CAP CID";

}//end switch L2CAP CID msb

}//end switch UART header

//Finished with present packet...move pointer to next data packet

pPkt = pPkt + pktSize;

amtProcData = amtProcData + pktSize;

pktSize = 0;

}//end for

// IF A SEGMENTED DATA PACKET EXISTS MOVE EXISTING DATA

// TO THE BEGINING OF THE BUFFER AND SET THE READ POINT

// AT THE END OF THE PARTIAL DATA

//***

if(segmentedPkt){ //The last packet read was not complete

segSize = numBytesRead - amtProcData;

for(unsigned int c=0; c<segSize; c++) //Temporarily store incomplete pkt

tempAry[c] = *(pLastPkt+c);

ResetBuffer(inBuff, inBuffSize); //Reset inBuff

for(unsigned int c=0; c<segSize; c++) //Place incomplete pkt in the front

inBuff[c] = tempAry[c]; //of inBuff

pReadPt = inBuff + segSize; //Set the Read Point pointer to the end of the incomplete pkt

buffAvail = inBuffSize - segSize; //Adjust the buffer size to reflect the portion used

//by the incomplete pkt. (Needed for reading from COM 1)

}//end if segmentedPkt

else{ //Last packet was complete

ResetBuffer(inBuff, inBuffSize); //Reset inBuff

pReadPt = inBuff; //Reset Read Point pointer

buffAvail = inBuffSize; //Reset available buffer size.

segSize = 0;

}//end else

}//end if data is present

// IF A CONNECTION EXISTS READ AND RECEIVE SIGNAL

// STRENGTH (RSSI) FOR THE EXISTING LINKS.

119
//**

//############### THIS CODE MUST BE EDITED FOR USE WITH MORE THAN 2 DEVICES

//RSSI

if(readRssi&&(!segmentedPkt)){

if(slave[0].connection && localDevice.conductingTest){

if(cycle%rssiFreq == 0){

pktSize = ReadRSSI(slave[0].connectHndl, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

} //end if

cycle++;

}//end if

}//end if readRssi

Timer1->Enabled = true;//Data processing complete...re-enable timer

}

//---

void FindOpCode(char *pBuff){

//******* VARIABLES *******

//----- Control Variables

unsigned int opCode, mask = 0x000000FF;

static bool inquiryFilter; //Used to determine which filter needs to be set

//(connection or inquiry) for each call to setEventFilter

//----- Display Variables -----

char opCodeDisp[7] = {’0’,’x’}, tempOpCode[4];

unsigned int x;

//----- Temporary Varialbes -----

unsigned int temp1, temp2;

//*************************

// FIND THE OPCODE AND STORE IT IN AN INTEGER VARIABLE

// FOR USE IN A SWITCH STATEMENT. THE OPCODE IS CONTAINED

// IN A DIFFERENT PART OF THE EVENT PACKET FOR A COMMAND COMPLETE

// EVENT AND A COMMAND STATUS EVENT.

//**

if (*(pBuff+1) == EV_COMMAND_COMPLETE){

temp1 = static_cast<unsigned int>(*(pBuff+4)) & mask; //mask out all unwanted

temp2 = static_cast<unsigned int>(*(pBuff+5)) & mask; //bytes.

temp2 = temp2<<8; //shift the msbyte to its position

opCode = temp1 + temp2; //combine the two bytes into one integer variable

}//end if

if (*(pBuff+1) == EV_COMMAND_STATUS){

temp1 = static_cast<unsigned int>(*(pBuff+5)) & mask; //mask out all unwanted

temp2 = static_cast<unsigned int>(*(pBuff+6)) & mask; //bytes.

temp2 = temp2<<8; //shift the msbyte to its position

opCode = temp1 + temp2; //combine the two bytes unsigned into one integer variable

}//end if

// FIND THE RETURNED OPCODE AND EXEUTE ACCORDINGLY

//***

switch (opCode){

120

//####### NOTE: 1st Parameter in command complete event pkt is array index #6

//####### Status parameter for command status event is array index #3

// THE RESET COMMAND TRIGGERS A CHAIN OF SETUP COMMANDS

// TO PREPARE THE BT MODULE FOR USE. EACH RESPECTIVE

// COMMAND COMPLETE EVENT LEADS TO THE EXECUTION OF THE

// NEXT COMMAND IN THE CHAIN ENDING WITH "WRITE PAGE

// TIMEOUT" THE COMMAND COMPLETE EVENTS FOR ALL OF THE

// SETUP COMMMANDS ARE LISTED HERE IN THIER ORDER OF EXECUTION

// BEGINING WITH THE RESET COMMAND.

//***

//----------- RESET -----------

case HCI_RESET:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If reset sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Device Reset";

//ISSUE NEXT SETUP COMMAND

pktSize = ReadBD_ADDR(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called

inquiryFilter = false;

}//end if

else { //If host buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Reset FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- READ BLUETOOTH DEVICE ADDRESS ----------

case HCI_READ_BD_ADDR:

//Extract the BD ADDR parameter and convert it to a string of

//ASCII characters for display to the user.

for (unsigned int n=0; n<6; n++) //Extract 6 byte address from

localDevice.bd_addr[n] = *(pBuff+7+n);//the event packet

//Convert each nibble of the address to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int n=0; n<12; n=n+2){

x=n/2;

nibbles(localDevice.bd_addr[5-x], localDevice.addrDisp[n+2], localDevice.addrDisp[n+3]);

}//end for

localDevice.addrDisp[14] = NULL; //Append a null for string display.

BT_net->LBD_ADDR_ld->Caption = localDevice.addrDisp;

//ISSUE NEXT SETUP COMMAND

pktSize = ReadBufferSize(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

121
break;

//---------- READ BUFFER SIZE ----------

case HCI_READ_BUFFER_SIZE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If read buffer size sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Read Buffer Size Complete";

//EXTRACT DATA FROM PACKET

//ACL buff size

temp1 = static_cast<unsigned int>(*(pBuff+7)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+8)) & mask;

temp2 = temp2<<8;

hostCtrl.sizeACLBuff = temp1 + temp2;

//SCO buff size

hostCtrl.sizeSCOBuff = *(pBuff+9);

//number of ACL data buffers

temp1 = static_cast<unsigned int>(*(pBuff+10)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+11)) & mask;

temp2 = temp2<<8;

hostCtrl.numACLBuff = temp1 + temp2;

//number of ACL data buffers

temp1 = static_cast<unsigned int>(*(pBuff+12)) & mask;

temp2 = static_cast<unsigned int>(*(pBuff+13)) & mask;

temp2 = temp2<<8;

hostCtrl.numSCOBuff = temp1 + temp2;

//ISSUE NEXT SETUP COMMAND

pktSize = HostBufferSize(&host, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

/*//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(INQUIRY_RESULT, 0, outBuff);//set inquiry result filter

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = true;*/

}//end if

else { //If read buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Read Buffer Size FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- HOST BUFFER SIZE ----------

case HCI_HOST_BUFFER_SIZE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If host buffer size sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Host Buffer Size Sent";

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(INQUIRY_RESULT, 0, outBuff); //set inquiry result filter

122
WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = true;

}//end if

else { //If host buffer size failed

ClearStatus();

BT_net->LStatus1->Caption = "Host Buffer Size FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- SET EVENT FILTER ----------

case HCI_SET_EVENT_FILTER:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If set event filter sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Event Filter Set";

//ISSUE NEXT SETUP COMMAND (depends on which filter was last set)

if (inquiryFilter){ //was the inquiry filter the last one set?

pktSize = WriteScanEnable(3, outBuff); //Setting WSE to 3 enables all scans

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if inquiry filter

else{ //the connection filter was the last filter set

pktSize = WriteConnAcceptTimeout(0x2000, outBuff); //0x2000*625us = 5.12s

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end else inquiry filter

}//end if

else { //If set event filter failed

ClearStatus();

BT_net->LStatus1->Caption = "Set Event Filter FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- WRITE SCAN ENABLE ----------

case HCI_WRITE_SCAN_ENABLE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write scan sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Write Scan Enable Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = WriteVoiceSetting(0x0060, outBuff); //0x0060 sets 16bit 2’s complement input type

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write scan failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Scan Enable FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

123
break;

//---------- WRITE VOICE SETTING ----------

case HCI_WRITE_VOICE_SETTING:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write voice setting sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Write Voice Setting Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = WriteAuthEnable(0x00, outBuff); //0x00 Disables authentication

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write voice setting failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Voice Setting FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- WRITE AUTHENTICATIO ENABLE ----------

case HCI_WRITE_AUTHENTICATION_ENABLE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write authentication enable sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Write Authentication Enable Complete";

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(CONNECTION_SETUP, AA_ON_RS_DISABLED, outBuff);

//set connection setup filter and auto accept off

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = false;

}//end if

else { //If write authentication enable failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Authentication Enable FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- SET UART BAUD RATE ----------

case HCI_SET_UART_BAUD_RATE:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If set uart baud rate sucessful

ClearStatus();

BT_net->LStatus1->Caption = "UART Baud Rate Set to 460.8kbps";

//Set Baud Rate on Comm 1 to 460.8kbps

myDCB.BaudRate = CBR_115200;

124
SetCommState(C1, &myDCB);

//ISSUE NEXT SETUP COMMAND

pktSize = SetEventFilter(CONNECTION_SETUP, AA_ON_RS_DISABLED, outBuff);

//set connection setup filter and auto accept off

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//Because the SetEventFilter command will be called twice durring

//setup it is necessary to keep track of which filter is being set

//each time this command is called.

inquiryFilter = false;

}//end if

else { //If set uart baud rate failed

ClearStatus();

BT_net->LStatus1->Caption = "Set UART Baud Rate FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));

}//end else

break;

//---------- WRITE CONNECTION ACCEPT TIMOUT ----------

case HCI_WRITE_CONNECTION_ACCEPT_TIMEOUT:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write connection accept timeout sucessful

ClearStatus();

BT_net->LStatus1->Caption = "Connection Accept Timeout Written";

//ISSUE NEXT SETUP COMMAND

pktSize = WritePageTimeout(0x3000, outBuff); //0x3000*625us = 7.68s

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Connection Accept Timeout FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- WRITE PAGE TIMEOUT (END OF SETUP COMMANDS) ----------

case HCI_WRITE_PAGE_TIMEOUT:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If write page timeout sucessfull

ClearStatus();

BT_net->LStatus1->Caption = "Page Timeout Written";

//If execution makes it to this point the setup is successful.

BT_net->LStatus2->Caption = "Setup Completed Successfully";

}//end if

else { //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Write Page Timeout FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- INQUIRY STATUS ----------

case HCI_INQUIRY:

125
//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Conducting Inquiry";

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Inquiry Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

//---------- CREATE CONNECTION STATUS ---------

case HCI_CREATE_CONNECTION:

//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Creating Connection";

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Create Connection Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

//---- ACCEPT CONNECTIO REQUEST STATUS (NOT NECCESSARY BECAUSE THE AUTO ACCEPT ----

// ---- FLAG IS CURRENTLY SET ON THE CONNECTION FILTER ----

case HCI_ACCEPT_CONNECTION_REQUEST:

//Only a Command Status event will reach this block of code

//so check status at array index #3

if (*(pBuff+3) == 0){

ClearStatus();

BT_net->LStatus1->Caption = "Accepting Connection Request";

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Accept Connection Request Command Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

//---------- WRITE LINK SUPERVISION TIMOUT ----------

case HCI_WRITE_LINK_SUPERVISION_TIMEOUT:

/******INSERT CODE HERE*****/

break;

//---------- READ TRANSMIT POWER LEVEL ----------

case HCI_READ_TRANSMIT_POWER_LEVEL:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If read transmit power level sucessful

//Display Tx Power Level

//BT_net->LTxPower->Caption = (static_cast<unsigned int>(*(pBuff+9))) & mask;

126
//########### THIS CODE MUST BE EDITED FOR USE WTIH MORE THAN 2 DEVICES

//ISSUE READ RECIEVE SIGNAL STRENGTH INDICATOR (RSSI) COMMAND

pktSize = ReadRSSI(slave[0].connectHndl, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end if

else { //If write connection accept timeout failed

ClearStatus();

BT_net->LStatus1->Caption = "Read Transmit Power Level FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//---------- READ RECIEVE SIGNAL STRENGTH INDICATOR ----------

case HCI_READ_RSSI:

//WHAT IS THE STATUS OF THE COMMAND

if (*(pBuff+6) == 0){ //If read RSSI sucessful

//Display Receive signal strength

localDevice.rssi = static_cast<short>(*(pBuff+9));

BT_net->LRSSI1->Caption = localDevice.rssi;

}//end if

else { //If read RSSI failed

ClearStatus();

BT_net->LStatus1->Caption = "Read RSSI FAILED";

BT_net->LStatus2->Caption = Error(*(pBuff+6));;

}//end else

break;

//--

case ZERO_OPCODE:

//Do nothing

break;

default:

ClearStatus();

BT_net->LStatus1->Caption = "Unknown OpCode";

//Convert each nibble of the opcode to an ASCII

//char representative of the hex digit contained in each nibble.

Int2Char(opCode, tempOpCode);

nibbles(tempOpCode[1], opCodeDisp[2], opCodeDisp[3]);

nibbles(tempOpCode[0], opCodeDisp[4], opCodeDisp[5]);

BT_net->LStatus2->Caption = opCodeDisp;

}//end switch

}//end function

//---

void FindEvent(char *pBuff){

//******** VARIABLES ********

//------ Control Variables ------

char evt, tempConnHndl, curConnHndl[2];

unsigned char tempBD_ADDR[6];

unsigned int x = 0, numHndls = 0, numResp = 0;

unsigned int mask = 0x000000FF, matchingBytes = 0, slaveIndex = 0;

127
bool slaveFound = false;

static unsigned int existingSlaves = 0;

//------ Display Variables ------

//char addrDisp[15] = {’0’,’x’};

char connectHndlDisp[7] = {’0’,’x’}, evtDisp[5]={’0’,’x’};

unsigned int numCompPkts, errorCode;

//***************************

evt=*(pBuff+1);

// FIND THE RECEIVED EVENT AND EXECUTE ACCORDINGLY

//***

switch (evt){

//###### NOTE: 1st Parameter in event pkt is array index #3

case EV_COMMAND_COMPLETE:

FindOpCode(pBuff);

break;

case EV_COMMAND_STATUS:

FindOpCode(pBuff);

break;

case EV_INQUIRY_COMPLETE:

ClearStatus();

BT_net->LStatus1->Caption = "Inquiry Complete";

if (*(pBuff+3) == 0)

BT_net->LStatus2->Caption = "Completed Sucessfully";

else

BT_net->LStatus2->Caption = Error(*(pBuff+3));

break;

case EV_INQUIRY_RESULT:

//###### NOTE: MUST ADD COUNTER TO COUNT RESPONSES. ALL RESPONDING DEVICES MAY NOT BE

//###### CONTAINED IN ONE EVENT BUT MAY CREATE SEVERAL EVENTS THEREFORE YOU NEED

//###### TO KNOW HOW MANY DEVICES HAVE PREVIOUSLY RESPONED AND ARE ALREADY ACCOUNTED FOR.

numResp = (static_cast<unsigned int>(*(pBuff+3))) & mask;

BT_net->LInqRes->Caption = numResp;

//Read data for each of the slaves that responded

for (unsigned int n=0; n<numResp; n++){

//Read the BD_ADDR of the device with which

//a connection was just created.

for (unsigned int c=0; c<6; c++)

tempBD_ADDR[c] = *(pBuff+4+(6*n)+c);

do{ //With which slave was a connection just created.

for (unsigned int c=0; c<6; c++){

if (tempBD_ADDR[c] == slave[slaveIndex].bd_addr[c])

matchingBytes++;

}//end for

128
if (matchingBytes == 6) //All address bytes match

slaveFound = true;

else{ //Slave not found yet

slaveIndex++; //keep looking

matchingBytes = 0;

}//end else

}while (!slaveFound && (slaveIndex<7));

if (!slaveFound){ //A new slave responded

slaveIndex = existingSlaves; //Set the slave index to the number of existing slaves

//in order to add the new slave that responeded to the

//end of the array of slaves.

//Load the Bluetooth device address for each device that responded

//into the bd_addr array for each of the slave structures (up to 7

//slaves possible) and other device specific data using nested for loops

for (unsigned int c=0; c<6; c++)

slave[slaveIndex].bd_addr[c] = *(pBuff+4+(6*n)+c);

slave[slaveIndex].pgScnRepMode = *(pBuff+4+(6*numResp)+n);

slave[slaveIndex].pgScnPerMode = *(pBuff+4+(7*numResp)+n);

slave[slaveIndex].pgScnMode = *(pBuff+4+(8*numResp)+n);

for (unsigned int c=0; c<3; c++)

slave[slaveIndex].deviceClass[c] = *(pBuff+4+(9*numResp)+(3*n)+c);

for (unsigned int c=0; c<3; c++)

slave[slaveIndex].clkOffset[c] = *(pBuff+4+(12*numResp)+(2*n)+c);

//Convert each nibble of the address to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int c=0; c<12; c=c+2){

x=c/2;

nibbles(slave[slaveIndex].bd_addr[5-x], slave[slaveIndex].addrDisp[c+2], slave[slaveIndex].addrDisp[c+3]);

}//end for

slave[slaveIndex].addrDisp[14] = NULL; //Append a null for string display.

existingSlaves++; //increment the number of existing slaves

}//end if slave not found

}//end for

//**** These following lines of code are for only a three device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than three devices

BT_net->LBD_ADDR_rd1->Caption = slave[0].addrDisp;

BT_net->LBD_ADDR_rd2->Caption = slave[1].addrDisp;

break;

case EV_CONNECTION_COMPLETE:

//**** This Code is for connecting only two computers

//**** This must be modified before attempting to use with

//**** more than two computers in a piconet

if (*(pBuff+3) == 0){

129
ClearStatus();

BT_net->LStatus1->Caption = "Connection Completed";

BT_net->LStatus2->Caption = "Successfully";

if(localDevice.master){ //if the local device is the master there may be more than one

//remote slave

//Read the BD_ADDR of the device with which

//a connection was just created.

for (unsigned int n=0; n<6; n++)

tempBD_ADDR[n] = *(pBuff+6+n);

do{ //With which slave was a connection just created.

for (unsigned int n=0; n<6; n++){

if (tempBD_ADDR[n] == slave[slaveIndex].bd_addr[n])

matchingBytes++;

}//end for

if (matchingBytes == 6) //All address bytes match

slaveFound = true;

else{ //Slave not found yet

slaveIndex++; //keep looking

matchingBytes = 0;

}//end else

}while (!slaveFound && (slaveIndex<7));

}//end if

else

slaveIndex = 0;

//Load the information recieved about the

//remote device into a BT_DEVICE structure

slave[slaveIndex].connection = true; //Yes a connection exists

slave[slaveIndex].connectHndl[0] = *(pBuff+4);

slave[slaveIndex].connectHndl[1] = *(pBuff+5);

slave[slaveIndex].linkType = *(pBuff+12);

slave[slaveIndex].encryptMode = *(pBuff+13);

//Inform user of the type of link established

if (slave[slaveIndex].linkType == ACL_LINK)

BT_net->LLinkType->Caption = "ACL";

if (slave[slaveIndex].linkType == SCO_LINK)

BT_net->LLinkType->Caption = "SCO";

//Convert each nibble of the Connection Handle to an ASCII

//char representative of the hex digit contained in each nibble.

for (unsigned int n=0; n<4; n=n+2){

x=n/2;

nibbles(slave[slaveIndex].connectHndl[1-x], connectHndlDisp[n+2], connectHndlDisp[n+3]);

}//end for

connectHndlDisp[6] = NULL; //Append a null for string display.

switch (slaveIndex){ //Display data in the correct box.

case 0:

BT_net->LConnectHndl1->Caption = connectHndlDisp;

break;

case 1:

BT_net->LConnectHndl2->Caption = connectHndlDisp;

break;

default:

ClearStatus();

130
BT_net->LStatus1->Caption = "Unknown Slave";

}//end switch

}//end if

else{

ClearStatus();

BT_net->LStatus1->Caption = "Connection Failed";

BT_net->LStatus2->Caption = Error(*(pBuff+3));

}//end else

break;

case EV_NUM_COMPLETED_PACKETS:

//#### NOTE: THIS CODE IS WRITTEN FOR A SINGLE POINT TO POINT CONNECTION WHEN EDITING

//#### CODE TO HANDLE SEVERAL DEVICES THE CONNECTION HANDLES RETURNED MAY NEED

//#### TO BE CHECKED AND COMPARED.

//BEGIN EXTRACTING DATA FROM PACKET

numHndls = *(pBuff+3); //number of connection handles returned

if(numHndls > 1){

//Because of the nature of this test program (transmit...wait for remote

//computer to process data then re-transmit...there should be no more than

//one connection handle returned from a Number of Completed Packets event.

MessageBox(0, "ERROR: More than 1 connection handle\nreturned in NUM_COMP_PKTS event",0 , MB_OK);

}//end if

else{

curConnHndl[0] = *(pBuff+4); //Save the Connection handle of the recently completed pkts

curConnHndl[1] = *(pBuff+5); //and pass it to the TransmitTestData() function.

numCompPkts = *(pBuff+6); //Only need to read LSB of comp ACL pkts because the device buffer

//only holds 10 pkts

if(transmitInProgress){ //If there is a transmit in progress continue with it

TransmitTestData(curConnHndl, CONTINUE_TRANSMISSION, numCompPkts);

}//end if

}//end else

break;

case EV_DATA_BUFFER_OVERFLOW:

ClearStatus();

BT_net->LStatus1->Caption = "DATA BUFFER OVERFLOW";

break;

case EV_DISCONNECTION_COMPLETE:

tempConnHndl = *(pBuff+4);

do{ //From which slave was data just received.

if (tempConnHndl == slave[slaveIndex].connectHndl[0])

slaveFound = true; //Connection Hndl matchers

else //Slave not found yet

slaveIndex++; //keep looking

}while(!slaveFound && (slaveIndex<2));

ClearStatus();

BT_net->LStatus1->Caption = "Connection Terminated";

switch(slaveIndex){

case 0: //Slave 1 was disconnected

BT_net->LStatus2->Caption = "Slave 1";

BT_net->LConnectHndl1->Caption = " ";

break;

131
case 1: //Slave 2 was disconnected

BT_net->LStatus2->Caption = "Slave 2";

BT_net->LConnectHndl2->Caption = " ";

break;

default:

BT_net->LStatus2->Caption = "Unknown Connection Handle";

}//end switch

slave[slaveIndex].connection = false;

break;

case EV_MAX_SLOTS_CHANGE:

BT_net->LStatus3->Caption = "Max LMP Slots Change";

break;

default:

ClearStatus();

BT_net->LStatus1->Caption = "Unknown Event";

//Convert each nibble of the event code to an ASCII

//char representative of the hex digit contained in each nibble.

nibbles(evt, evtDisp[2], evtDisp[3]);

BT_net->LStatus2->Caption = evtDisp;

}//end switch

}//end function

//---

void ResetBuffer(char buff[], DWORD buffSize){

for (unsigned int n=0; n<buffSize; n++)

buff[n] = NULL;

}//end function

//---

bool NumDataPkts(char buff[], DWORD numBytesRead, DWORD &numPkts, char *pLastPkt, bool &dataError){

DWORD paramLength = 0, availBuff = 0;

bool moreData = true, pktSeg = false;

unsigned int temp1, temp2, mask = 0x000000FF;

unsigned int totalData = 0;

numPkts = 0;

pLastPkt = buff;

while(moreData){//while unaccounted for data exists do....

switch(*pLastPkt){//what type of data is this packet?

case UART_EVENT_PACKET:

//The third byte (2nd array element) in an event pkt gives

//the total length (in bytes of the parameters). Add this

//number plus 3 (to account for the first 3 bytes)

//plus current amount of data to compute total data present.

paramLength = static_cast<unsigned int>(*(pLastPkt+2)) & mask;

totalData = totalData + 3 + paramLength;

numPkts++;

break;

case UART_ACL_DATA_PACKET:

//The 4th and 5th bytes (3rd and 4th array elemetnts) in an ACL pkt

132
//give the total length of the data (in bytes) contained in the pkt.

//Add this number plus 5 (to account for the first 5 bytes)

//plus current amount of data to compute total data present.

temp1 = (static_cast<unsigned int>(*(pLastPkt+3))) & mask; //Convet 2 separate bytes

temp2 = (static_cast<unsigned int>(*(pLastPkt+4)))& mask; //into an int variable.

temp2 = temp2 << 8;

paramLength = temp2 + temp1;

totalData = totalData + 5 + paramLength;

numPkts++;

break;

default: //Unrecognized pkt header...Error in received data

moreData = false;

dataError = true;

numPkts = numPkts+1;

BT_net->LStatus2->Caption = "Error in received data";

do{

//Clear the input buffer

//The data is useless since it contained an error

availBuff = inBuffSize - numBytesRead;

ReadFile(C1, pLastPkt, availBuff, &numBytesRead, &OVL);//read data from COMM 1

}while(numBytesRead > 0);

return false;

}//end switch

if (numBytesRead == totalData){

moreData = false;//All data accounted for

pktSeg = false;

}//end if

else{//1st else

if (numBytesRead < totalData){//Some expected data is missing

moreData = false; //must read buffer again.

pktSeg = true;

numPkts = numPkts - 1; //Last pkt was a pkt segment...do not count it

BT_net->LStatus2->Caption = "SEGMENTED PACKET";

}//end if numBytesRead<totalData

else {//2nd else

pLastPkt = buff;

pLastPkt = pLastPkt + totalData; //More data remaining to be counted.

}//end 2nd else

}//end 1st else

}//end while

return pktSeg;

}//end function

//---

void __fastcall TBT_net::BInquiryClick(TObject *Sender){

char inqDuration = 48; //= 48*1.28s = 61.44s

pktSize = Inquiry(inqDuration, 2, outBuff); //Returns after 2 inquiries are received.

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void __fastcall TBT_net::BBeginTestClick(TObject *Sender){

133
//TEST SETUP

AnsiString sDist;

short sDistSize;

char dist[15] = {NULL};

//Assign the value entered by the user into the Transmission Test class "cTest"

sDist = CBDist->Text;

sDistSize = sDist.Length();

for (short c=1; c<=sDistSize; c++)

dist[c-1] = sDist[c];

dist[sDistSize] = NULL;

LStatus2->Caption = dist;

cTest.setDistance(dist, sDistSize);

AnsiString sTop;

//Assign the value entered by the user into the Transmission Test class "cTest"

sTop = CBTopology->Text;

cTest.setTopology(sTop[1]);

LStatus2->Caption = sTop[1];

//BEGIN TEST

cTest.newTest();

cTest.setLinkState(localDevice.addrDisp, slave[0].addrDisp, localDevice.rssi);

readRssi = false;

//Begin by transmitting the small file

TransmitTestData(slave[0].connectHndl, SMALL_FILE, 0);

}

//---

void __fastcall TBT_net::BSendClick(TObject *Sender){

DWORD dataLength;

AnsiString input;

unsigned int inputSize, messageRecipient;

if (!localDevice.master)

messageRecipient = 0;

else

messageRecipient = CBSlaveSelect->ItemIndex; //Who do you want to sent this message to?

if (messageRecipient == -1){

//No slave was selected to recieve the message

MessageBox(0, "Please select a slave to receive this message.", 0, MB_OK);

}//end if

else{

//Send the message to the selected slave

input = Message->Text;

Message->Text = ""; //Reset message block

inputSize = input.Length();

dataLength = inputSize + 4;

for (unsigned int c = 1; c <= inputSize; c++)

outBuff[c+3] = input[c];

//***** Adding L2CAP 4 byte header *****

//The first two bytes of the header are the L2CAP Packet length

134
//(i.e. The length of data to be transmitted may be greater than the HCI

//packet lenght)

//The second two bytes of the header is the Channel ID (CID) and can

//range from 0x0040 to 0xFFFF. For message traffic use 0x0300.

//***NOTE: Message is assumed to be <= 255 bytes long

outBuff[0] = static_cast<char>(inputSize); //L2CAP pkt length lsb

outBuff[1] = 0x00; //L2CAP pkt length msb

outBuff[2] = 0x00; //CID lsb

outBuff[3] = 0x03; //CID msb

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

pktSize = SendACLPkt(slave[messageRecipient].connectHndl, dataLength, FIRST_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end else

}

//---

void __fastcall TBT_net::BResetClick(TObject *Sender){

//RESET BT MODULE

pktSize = Reset(outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

//RESET CONNECTION CONRTOL VAR

for (unsigned int n=0; n<7; n++)

connection[n] = 0;

//RESET DISPLAY

ResetDisplay();

}

//---

void __fastcall TBT_net::BConnect1Click(TObject *Sender){

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

pktSize = CreateConnection(&slave[0], localDevice.pktType, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void __fastcall TBT_net::CBControlCloseUp(TObject *Sender){

localDevice.master = CBControl->ItemIndex;

if(localDevice.master){//if the local device will be the master...

//buttons and comboboxes

BInquiry->Enabled = true;

BConnect1->Enabled = true;

BConnect2->Enabled = true;

135
CBPktType->Enabled = true;

CBSlaveSelect->Enabled = true;

}//end if

else{

//buttons and comboboxes

BInquiry->Enabled = false;

BConnect1->Enabled = false;

BConnect2->Enabled = false;

CBPktType->Enabled = false;

CBSlaveSelect->Enabled = false;

}//end else

}

//---

void __fastcall TBT_net::CBPktTypeCloseUp(TObject *Sender){

unsigned int pktRef;

pktRef = CBPktType->ItemIndex;

//Assign the value entered by the user into the Transmission Test class "cTest"

switch(pktRef){

case 0:

localDevice.pktType = DM1;

cTest.setPktType(DM1);

break;

case 1:

localDevice.pktType = DH1;

cTest.setPktType(DH1);

break;

case 2:

localDevice.pktType = DM3;

cTest.setPktType(DM3);

break;

case 3:

localDevice.pktType = DH3;

cTest.setPktType(DH3);

break;

case 4:

localDevice.pktType = DM5;

cTest.setPktType(DM5);

break;

case 5:

localDevice.pktType = DH5;

cTest.setPktType(DH5);

}//end switch

//Disconnect all current connections.

for (unsigned int c=0; c<7; c++){

if (slave[c].connection && localDevice.master){

slave[c].connection = false;

Disconnecting();

LStatus1->Caption = "Disconnecting";

pktSize = Disconnect(slave[c].connectHndl, 0x13, outBuff); //user ended connection

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

136
}//end if

else

c = 7; //If no connection exists end loop (connections are established in sequential order

//therefore if slave[0].connection does not exist there is no reason to complete the loop)

}//end for

}

//---

void __fastcall TBT_net::CBTestRoleCloseUp(TObject *Sender){

localDevice.conductingTest = CBTestRole->ItemIndex;

if(localDevice.conductingTest){//if the local device will be conducting the test...

//buttons and comboboxes

BBeginTest->Enabled = true;

CBPktType->Enabled = true;

CBDist->Enabled = true;

CBTopology->Enabled = true;

CBNumTrans->Enabled = true;

}//end if

else{

if(!localDevice.master) //If the local device is the master the pkt type selection

//box is still needed.

CBPktType->Enabled = false;

//buttons and comboboxes

BBeginTest->Enabled = false;

CBDist->Enabled = false;

CBTopology->Enabled = false;

CBNumTrans->Enabled = false;

}//end else

}

//---

void __fastcall TBT_net::CBNumTransCloseUp(TObject *Sender){

//Assign twice the number of requested test

//transmissions to "numTestTrans" because two

//tests are run for each round of tests

numTestTrans = 2*(CBNumTrans->ItemIndex);

}

//---

void TransmitTestData(char connHndl[], int fileSize, unsigned int tDataSize){

//******* VARIABLES ******

static DWORD dataLength, dataLeft;

static char *pDataFile;

char pktLength[4], cidLsb;

bool firstACLpkt = false;

unsigned int numACLPktsSent = 0, n; //Loop control variable

unsigned int buffersAvailable = hostCtrl.numACLBuff;

const unsigned int maxPktSize = hostCtrl.sizeACLBuff; //max size of ACL pkt alowable so as not to

//overflow the ACL Buffer of the local BT module.

unsigned int nextData2Send = 0; //contains the array index of the next data byte to send

137
//if nextData2Send == dataLength then all data has been sent

//************************

switch (fileSize){

case SMALL_FILE:

//SEND SMALL FILE

dataLength = cTest.sizeDataShort + 4;

pDataFile = cTest.dataShort;

cidLsb = LARGE_FILE;

transmitInProgress = true;

firstACLpkt = true;

BT_net->LTestStatus->Caption = "Transmitting Small File";

break;

case LARGE_FILE:

//SEND LARGE FILE

dataLength = cTest.sizeDataLong + 4;

pDataFile = cTest.dataLong;

cidLsb = SMALL_FILE;

transmitInProgress = true;

firstACLpkt = true;

BT_net->LTestStatus->Caption = "Transmitting Large File";

break;

case RETRANSMIT:

//LOCAL DEVICE IS NOT CONDUCTING TEST

//RETRANSMIT THE RECEIVED DATA

dataLength = tDataSize + 4;

pDataFile = testDataBuff;

firstACLpkt = true;

if(tDataSize == 2){ //A timeout has occured

*(pDataFile) = 0x02; //L2CAP pkt length lsb

*(pDataFile+1) = 0x00; //L2CAP pkt length msb

} //end if

BT_net->LTestStatus->Caption = "Retransmitting Received Data";

break;

case CONTINUE_TRANSMISSION:

//The new number of buffers available is equal

//to the number of packets completed. This number

//is passed to TransmitTestData() as tDataSize

buffersAvailable = tDataSize;

break;

default:

BT_net->LTestStatus->Caption = "Unknown File type to Transmit";

}//end switch

if (dataLength <= maxPktSize){//If test data is smaller that the local device’s

for (n=0; n<dataLength; n++) //ACL Buffer Size send it

outBuff[n] = *(pDataFile+n);

//***** Adding L2CAP 4 byte header *****

138
//The first two bytes of the header are the L2CAP Packet length

//(i.e. The length of data to be transmitted may be greater than the HCI

//packet lenght)

//The second two bytes of the header is the Channel ID (CID) and can

//range from 0x0040 to 0xFFFF. For test data use 0xEE00

if ((fileSize!=RETRANSMIT) && (fileSize!=CONTINUE_TRANSMISSION)){

Int2Char(dataLength-4, pktLength);

outBuff[0] = pktLength[0]; //L2CAP pkt length lsb

outBuff[1] = pktLength[1]; //L2CAP pkt length msb

outBuff[2] = cidLsb; //CID lsb

outBuff[3] = TEST_DATA_MSB; //CID msb

}

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Packet is < 400 bytes";

pktSize = SendACLPkt(connHndl, dataLength, FIRST_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

if (fileSize != -1)

cTest.beginTransmit();

}//end if

else{ //The data is too large to send in one ACL Packet...it must be split up

while((nextData2Send != dataLength) && (numACLPktsSent != buffersAvailable)){

if (dataLength > (nextData2Send+maxPktSize)){ //enough data exists to send another "full" ACL pkt.

//Load up the output Buffer

for (n=0; n<maxPktSize; n++)

outBuff[n] = *(pDataFile+nextData2Send+n);

if (firstACLpkt){

//If this is the first ACL pkt an L2CAP header needs to be

//added and also the ACL PB flag must be set to first packet

firstACLpkt = false;

if ((fileSize!=RETRANSMIT) && (fileSize!=CONTINUE_TRANSMISSION)){

Int2Char(dataLength-4, pktLength);

outBuff[0] = pktLength[0]; //L2CAP pkt length lsb

outBuff[1] = pktLength[1]; //L2CAP pkt length msb

outBuff[2] = cidLsb; //CID lsb

outBuff[3] = TEST_DATA_MSB; //CID msb

}

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "1st ACL pkt of large L2CAP pkt";

pktSize = SendACLPkt(connHndl, maxPktSize, FIRST_PKT_P2P, outBuff);

139
WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

if (fileSize != -1)

cTest.beginTransmit();

}//end if

else{

//If this is not the fist ACL pkt no L2CAP header needs to be added

//but the ACL PB flag must be set to continuing packet

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Continuing ACL pkt of large L2CAP pkt";

pktSize = SendACLPkt(connHndl, maxPktSize, CONT_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}//end else

nextData2Send = nextData2Send + maxPktSize; //increment nextData2Send

}//end if

else{ //There is not enough data left to send a "full" ACL pkt.

dataLeft = dataLength - nextData2Send;

//Load up the output Buffer

for (n=0; n<dataLeft; n++)

outBuff[n] = *(pDataFile+nextData2Send+n);

//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

ClearStatus();

BT_net->LStatus1->Caption = "Transmitting Test Data";

BT_net->LStatus2->Caption = "Partially full ACL pkt for large L2CAP pkt";

pktSize = SendACLPkt(connHndl, dataLeft, CONT_PKT_P2P, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

nextData2Send = dataLength; //end the while loop

}//end else

numACLPktsSent++; //Increment the number of ACL pkts sent

}//end while

}//end else

if(nextData2Send == dataLength){ //Transmission is complete

BT_net->LStatus2->Caption = "Finished Transmitting File";

transmitInProgress = false; //Transmission is finished

//Reset Static variables

nextData2Send = 0;

dataLength = 0;

dataLeft = 0;

}//end if

}

//---

void __fastcall TBT_net::BConnect2Click(TObject *Sender){

140
//**** These following lines of code for only a two device connection

//**** it must be deleted or edited for to be used in a piconet

//**** consisting of more than two devices

pktSize = CreateConnection(&slave[1], localDevice.pktType, outBuff);

WriteFile(C1, &outBuff, pktSize, &VAL, &OVL);

}

//---

void ResetDisplay(){

//Buttons

BT_net->BInquiry->Enabled = false;

BT_net->BConnect1->Enabled = false;

BT_net->BConnect2->Enabled = false;

BT_net->BBeginTest->Enabled = false;

//Combo Boxes

BT_net->CBPktType->Enabled = false;

BT_net->CBDist->Enabled = false;

BT_net->CBTopology->Enabled = false;

BT_net->CBNumTrans->Enabled = false;

BT_net->CBSlaveSelect->Enabled = false;

//Display Labels

BT_net->LBD_ADDR_rd1->Caption = " "; //BT_ADDR for remote device 1

BT_net->LBD_ADDR_rd2->Caption = " "; //BT_ADDR for remote device 2

BT_net->LBD_ADDR_ld->Caption = " "; //BT_ADDR for local device

BT_net->LConnectHndl1->Caption = " ";

BT_net->LConnectHndl2->Caption = " ";

BT_net->LInqRes->Caption = " ";

BT_net->LRSSI1->Caption = " ";

BT_net->LRSSI2->Caption = " ";

BT_net->LRx->Caption = " ";

BT_net->LTestStatus->Caption = " ";

BT_net->LStatus1->Caption = " ";

BT_net->LStatus2->Caption = " ";

BT_net->LStatus3->Caption = " ";

BT_net->LCurTrans->Caption = " ";

BT_net->LPktNum->Caption = " ";

}

//---

void ClearStatus(){

//Clear all of the status labels

BT_net->LStatus1->Caption = " ";

BT_net->LStatus2->Caption = " ";

BT_net->LStatus3->Caption = " ";

}

//---

void Disconnecting(){

ClearStatus();

141

BT_net->LConnectHndl1->Caption = " ";

BT_net->LConnectHndl2->Caption = " ";

BT_net->LRSSI1->Caption = " ";

BT_net->LRSSI2->Caption = " ";

BT_net->LTestStatus->Caption = " ";

BT_net->LCurTrans->Caption = " ";

BT_net->LPktNum->Caption = " ";

}

