Together with my PhD student Young Kim, I have explored how to deduce from spatially distributed moving point sets information relevant to situation awareness. A technology assessment of techniques from computational geometry has been augmented with new concepts responsive to customer requirements. The computed information has been presented in a pre-attentive manner to aid rapid comprehension.

In collaboration with Sami Kilic, visiting scientist, and Mete Sozen, Prof. of Civil Engr, I have completed a simulation study of the 9/11 Pentagon attack. Sozen is member of the Damage Assessment team organized by ASCE, and my work is included in the official report. See http://www.cs.purdue.edu/homes/cmh/simulation.

Additional findings in the more general setting of computational geometry include an investigation of the practical utility of kinetic data structures, a concept developed by Guibas and Basch at Stanford, and significant advances in geometric constraint solving, a key technology for positioning and moving geometric entities based on constraints. There has also been work on extracting geometric information from confocal microscopy images.
GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used for announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank)

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, and volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s) project number(s), task number(s), and work unit number(s). Use the following labels:

- C - Contract
- G - Grant
- PE - Program
- PR - Project
- TA - Task
- WU - Work Unit
- Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es) Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (if known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: prepared in cooperation with;... Trans. of;... To be published in;... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NORFORM, REL, ITAR).

- DOD - See DoDD 4230.25, “Distribution Statements on Technical Documents.”
- DOE - See authorities.
- NTIS - Leave blank.

Block 12b. Distribution Code.

- DOD - Leave Blank
- DOE - Enter DOE distribution categories from the Standard Distribution for unclassified Scientific and Technical Reports
- NASA - Leave Blank.
- NTIS - Leave Blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subject in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 18. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (Unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.
Summary of Important Results
Together with my PhD student Young Kim, I have explored how to deduce from spatially distributed moving point sets information relevant to situation awareness. A technology assessment of techniques from computational geometry has been augmented with new concepts responsive to customer requirements. The computed information has been presented in a pre-attentive manner to aid rapid comprehension. The results have been reported in Kim’s PhD dissertation on line at http://www.cs.purdue.edu/homes/cmh/distribution/Theses/KimThesis.pdf. Preliminary findings have been reported at the 21st Army Science Conference at the University of Maryland (Baltimore County).

In collaboration with Sami Kilic, visiting scientist, and Mete Sozen, Professor of Civil Engr, I have completed a simulation study of the Pentagon 9/11 attack. Sozen is member of the Pentagon damage assessment team, organized by ASCE, and the work is included in their official report. The simulation results can be found at http://www.cs.purdue.edu/homes/cmh/simulation.

Additional findings in the more general setting of computational geometry include an investigation of the practical utility of kinetic data structures, a concept developed by Guibas and Basch at Stanford, and significant advances in geometric constraint solving, a key technology for positioning and moving geometric entities based on constraints. There has also been work on extracting geometric information from confocal microscopy images.

Publications
(a) Papers published in peer-reviewed journals
- “A Framework for Object Modeling,” CAD 31, 1999, 541--556; (with V. Kumar, D. Burns, and D. Dutta).
- “Robustness in Geometric Computations,” JCISE 1, 2001, 143--155.
- “Towards valid parametric CAD models,” CAD 33, 2001, 81--90; (with K.-J. Kim).

(b) Papers published in non-peer-reviewed journals or in conference proceedings

• “Making complex, multidimensional battlefield information intuitive.” *Proc. 21st Army Science Conference*, Univ. of Maryland, Baltimore, 1998; (with P. Emmerman, J. Walrath, R. Winkler, and Y. Kim).

(c) Papers presented at meetings but not published in conference proceedings

• “There are 12 Common Tangents to four Spheres,”

(d) Manuscripts submitted, but not published

• “Making Constraint Solvers more Usable,” (with B. Yuan and M. Sitharam).
• “Enhanced Battlefield Visualization for Situation Awareness,” with Young Kim.

(e) Technical reports submitted to ARO

None.

Supported Personnel and Scientific Collaborations

Young Kim, PhD 2000, presently completing a post-doc at UNC under Prof. Dinesh Manocha.
Gahyun Park, working on her PhD presently.
Ching-Shoei Chiang, visiting professor, now at Soochow University, Taiwan.
Dr. Sami Kilic, visiting scientist, Civil Engr, Purdue University.
Dr. Bo Yuan, visiting scientist, now at Solidworks, Inc, Boston.
J. Paul Robinson, Basic Med Sci, Purdue University.
Mete Sozen, Civil Engr, Purdue University.
Meera Sitharam, CS, Univ. of Florida.

Inventions

None

Bibliography

No additional citations.

Technology Transfer