Award Number:  DAMD17-02-1-0261

TITLE:  Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy

PRINCIPAL INVESTIGATOR:  Dongfeng Pan, Ph.D.

CONTRACTING ORGANIZATION:  University of Virginia
Charlottesville, Virginia  22904

REPORT DATE:  April 2003

TYPE OF REPORT:  Annual

PREPARED FOR:  U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland  21702-5012

DISTRIBUTION STATEMENT:  Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
**REPORT DOCUMENTATION PAGE**

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)  
2. REPORT DATE  
   April 2003  
3. REPORT TYPE AND DATES COVERED  
   Annual (12 Mar 02 - 11 Mar 03)  

4. TITLE AND SUBTITLE  
   Nuclear Imaging for Assessment of Prostate Cancer Gene Therapy  

5. FUNDING NUMBERS  
   DAMD17-02-1-0261  

6. AUTHOR(S)  
   Dongfeng Pan, Ph.D.  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
   University of Virginia  
   Charlottesville, Virginia 22904  
   E-Mail: dp3r@virginia.edu  

8. PERFORMING ORGANIZATION REPORT NUMBER  

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
   U.S. Army Medical Research and Materiel Command  
   Fort Detrick, Maryland 21702-5012  

10. SPONSORING / MONITORING AGENCY REPORT NUMBER  

11. SUPPLEMENTARY NOTES  

12a. DISTRIBUTION / AVAILABILITY STATEMENT  
   Approved for Public Release; Distribution Unlimited  

12b. DISTRIBUTION CODE  

13. ABSTRACT (Maximum 200 Words)  
   Background: Combination of the cytotoxic viral thymidine kinase (tk) and the prodrug, acyclovir (ACV) has been reported to inhibit the growth of the C4-2 tumor, a subtype of LNCaP. However, it remains unsolved to non-invasively detect the in vivo distribution, expression and persistence of the toxic gene as well as to evaluate the therapeutic effect. In this project, we will develop a novel gene imaging approach to assist the cytotoxic gene therapy study for prostate cancer.  
   Objective/Hypothesis: The distribution, expression, and persistence of the prostate specific Ad-PSA-tk in the C4-2 tumor xenograft model will be non-invasively and repeatedly determined in vivo by tracing the I-123 labeled TK substrates with a SPECT imaging modality.  
   Specific Aim of the first year: To synthesize a radiolabeled TK substrate for TK detection using a small animal gamma detector. In the original plan, we proposed to develop a novel synthetic method of I-123]VFRRU with high specificity. However, after careful literature study, we decide to modify our target molecule labeled with Tc-99m because of its superior physical characteristics (T1/2 = 6h, 140 keV), high specific activity (5 x 105 Ci/mmol), and straightforward production from a Mo-99/Tc-99m generator.  
   Progress and outcome: Although the grant was awarded on March of 2002, due to the hiring process of a postdoctoral fellow the research was started on 10 Sep 2002. Currently, we are in the process of synthesizing 2'-Deoxy-2'-fluoro-5-(3-oxo[N,N-bis(2-mercaptoethyl)ethylenediaminato][Tc-99m] technetium(V)-(1-E)-propeny]juridine, a proposed TK substrate.  

14. SUBJECT TERMS  
   Prostate Cancer, Gene Therapy, Imaging  

15. NUMBER OF PAGES  
   6  

16. PRICE CODE  

17. SECURITY CLASSIFICATION OF REPORT  
   Unclassified  

18. SECURITY CLASSIFICATION OF THIS PAGE  
   Unclassified  

19. SECURITY CLASSIFICATION OF ABSTRACT  
   Unclassified  

20. LIMITATION OF ABSTRACT  
   Unlimited  

NSN 7540-01-280-5500  

Standard Form 298 (Rev. 2-89)  
Prescribed by ANSI Std. Z39-18  
298-102
Table of Contents

Cover.........................................................................................................................1
SF 298.........................................................................................................................2
Introduction..................................................................................................................4
Body.............................................................................................................................4
Key Research Accomplishments.................................................................................5
Reportable Outcomes.................................................................................................5
Conclusions..................................................................................................................6
References....................................................................................................................None
Appendices..................................................................................................................None
**Introduction**

The objective of this project is to develop a noninvasive imaging assay using single photon emission computed tomography (SPECT) for assessment of gene therapeutic efficacy and diagnosis of metastasis of prostate cancer. Currently, nuclear imaging technology has demonstrated the greatest potential to non-invasively image gene activity in animals and humans due to its high sensitivity. By replacing the acyclovir (ACV) with a radioactive analogue, it is possible to non-invasively and repeatedly monitor the in vivo distribution of the transduced tk construct. It may assist in determining the optimal timing for ACV administration, confirming the cytotoxic sites, and assessing the therapeutic efficacy. Further refinement of this technology could also provide a non-invasive approach to identify any metastasis sites in a clinical setting.

![Chemical structures](image1)

In the first year of the plan, we proposed to synthesize a novel thymidine kinase (TK) substrate, Tc-99m labeled 1-(2-deoxy-2-fluoro-β-D-ribofuranosyl)-5(E)-(2-iodovinyl)uracil (IVFRU). With the recent progress of Tc-99m chemistry, Tc-99m labeled radiopharmaceuticals, such as TRODAT, have demonstrated to be membrane permeable. This raises our interest to synthesize a Tc-99m labeled TK substrate for gene imaging, because of the nearly optimal nuclear properties of Tc-99m, as well as its convenient and low cost production by means of commercial generator columns. As a result, we modified our plan by switching the target molecule, [I-123]IVFRU with 2'-Deoxy-2'fluoro-5'-3-oxo[N,N-bis(2-mercaptoethyl)ethylenediaminato][Tc-99m] technetium(V)-1(E)-propenyl]uridine.

**Body**

The target molecule will be convergently synthesized from compounds A and B.

![Chemical structures](image2)

Scheme 1

\[ X = -\text{CH}_2\text{C}_6\text{H}_4\text{OCH}_3 \]
Synthetic progress

Due to the hiring process of a postdoctoral fellow the research was started on 10 Sep 2002. The progress of the project in the first 6 months is listed below.

Compound A. Two synthetic routes to chelator A have been explored (Scheme 2). Currently, we are carrying out the last reduction reactions from 5 and 8 to A.

Compound B. The compound B was synthesized as described in Scheme 3.

Key Research Accomplishments:

The project was started on Sept. 10 of 2002 and we are in the process to synthesize the Tc-99m labeled TK substrate.

Reportable Outcomes:

Please see the section of synthetic progress in above section.
**Conclusions:**

We will obtain the Tc-99m labeled TK substrate by Sept. of 2003, the end of the first year of the project.