

AFRL-IF-RS-TR-2003-108
Final Technical Report
May 2003

YALLCAST: A NEW PARADIGM FOR CONTENT
DISTRIBUTION

USC Information Sciences Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J956

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-108 has been reviewed and is approved for publication.

APPROVED:
 SIAMAK TABRIZI
 Project Engineer

 FOR THE DIRECTOR:
 WARREN H. DEBANY, Jr.
 Technical Advisor, Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 2003

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Dec 02

4. TITLE AND SUBTITLE

YALLCAST: A NEW PARADIGM FOR CONTENT DISTRIBUTION

6. AUTHOR(S)

Robert Lindell

5. FUNDING NUMBERS
C - F30602-00-2-0559
PE - 62301E
PR - J956
TA - 21
WU - C1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, CA 90292-6695

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGC
3701 North Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

 AFRL-IF-RS-TR-2003-108

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Siamak Tabrizi, IFGC, 315-330-4823, tabrizis@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
Disappointing delays in deploying network-layer multicast have triggered recent interest in application-level multicast.
Application-level multicast is an attractive and deployable alternative, because it requires no support from the underlying
network. Instead, application software automatically creates an overlay distribution tree spanning all the participants of
a multicast group. The efficacy of the overlay tree is essential for the usability and performance of an application-level
multicast architecture. The Yallcast project has designed and implemented algorithms for overlay tree construction and
maintenance. The algorithms are designed for rapid tree repair, and for continual refinement of the distribution tree over
time, based on observed loss or latency performance. These algorithms have been evaluated through simulations and
experiments within the framework of an application-level multicast architecture called Yoid.

15. NUMBER OF PAGES
20

14. SUBJECT TERMS
Application-level multicast, shared tree, topology adaptation

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1 INTRODUCTION... 2

2 THE YOID ARCHITECTURE... 2

3 THE YOID PROTOCOL STACK.. 4
3.1 YOID IDENTIFICATION PROTOCOL (YIDP)... 4
3.2 YOID TRANSPORT PROTOCOL .. 5
3.3 YOID DISTRIBUTION PROTOCOL .. 5
3.4 YOID TREE MANAGEMENT PROTOCOL .. 5

4 TREE MANAGEMENT ALGORITHMS ... 5

5 YOID SIMULATIONS... 7

6 WIDE AREA EXPERIMENTS... 8

7 MBONE APPLICATION INTEGRATION .. 9

8 H.323 CONFERENCING SUPPORT USING YOID.. 10

9 SYSTEM CALL INTERCEPTION .. 12
9.1 UNIX SYSTEM CALL INTERCEPTION BASED ON STRACE 12
9.2 MICROSOFT WINDOWS SYSTEM CALL INTERCEPTION 13

10 NETWORK MANAGEMENT.. 13

11 YUDP – THE UNIVERSAL YOID INTERFACE APPLICATION 14

12 MAJOR ACCOMPLISHMENTS ... 15

13 PUBLICATIONS AND PRESENTATIONS.. 15

14 STAFFING .. 15

15 CONCLUSION ... 16

1

Executive Summary

Disappointing delays in deploying network-layer multicast have triggered recent interest
in application-level multicast. Application-level multicast is an attractive and deployable
alternative, because it requires no support from the underlying network. Instead,
application software automatically creates an overlay distribution tree spanning all the
participants of a multicast group. The efficacy of the overlay tree is essential for the
usability and performance of an application-level multicast architecture.

The Yallcast project has designed and implemented algorithms for overlay tree
construction and maintenance. The algorithms are designed for rapid tree repair, and for
continual refinement of the distribution tree over time, based on observed loss or latency
performance. These algorithms have been evaluated through simulations and experiments
within the framework of an application-level multicast architecture called Yoid.

Yoid decided to implement a novel tree-first approach. Experience over the course of the
project has shown that this technique is well suited for application layer multicast. Trees
are built quickly and new members can join in a minimal amount of time. To support this
approach, new techniques were developed to address fast loop detection and repair.
These algorithms have performed well in both simulations and real world experimentation
and usage using a variety of applications. To demonstrate the utility of Yoid, a number of
multiparty audio, video, and whiteboard conferencing tools were ported to use the Yoid
multicast substrate. Scripts to execute these applications over Yoid are provided with the
Yoid software distributions, which are available for Windows, FreeBSD, Linux, and
Solaris.

2

YALLCAST
A New Paradigm for Content Distribution

Robert Lindell, Project Leader

Ramesh Govindan, Paul Francis, Cengiz Alaettinoglu, Yuri Pryadkin

Graduate Students: Pavlin Radoslavov

ISI Computer Networks Division

1 Introduction

Motivated by the difficulties encountered in deploying network-layer multicast on a large
operational Internet, several research groups have proposed application-level multicast.
Application-level multicast requires no support from the underlying network. Rather,
application software automatically creates an overlay distribution tree spanning all the
participants of a multicast group and forwards application data over this topology. The
application software also adapts the distribution tree to participant dynamics (joins and
leaves) and network failures. Clearly, such a system can alleviate the deployment woes
of network-layer multicast, and bring interesting collaborative applications to widespread
use in the Internet.

More generally, this kind of distribution applies not just to traditional multicast
applications (like shared whiteboards, and audio and video conferencing), but also to
most forms of content distribution. For example, one can imagine a content distribution
network’s replication infrastructure to be built upon such an overlay. It might also be
feasible to implement peer-to-peer file sharing systems on top of such overlays.

The Yallcast project has researched, developed, and released an implementation of
application-level multicast that includes novel techniques for tree construction and
adaptation. This system has been named Your Own Internet Distribution (YOID).

2 The Yoid Architecture

The Yoid application-level multicast architecture allows a collection of Internet hosts to
self-organize and maintains a distribution tree topology for content dissemination. This
functionality is implemented at the application layer and requires no network layer
multicast support to operate, although it can take advantage of network multicast to
improve the efficiency and performance of data delivery. The Yoid architecture can, in
principle, be implemented either as an application shared service on each host or as a
reusable library of common functionality included directly into the code base of
particular applications.

3

Similar to IP multicast, a rendezvous mechanism is central to Yoid. Participants in a
Yoid group rendezvous through a shared logical label for the group. In IP multicast, the
logical label is a globally unique IP address. In Yoid, however, the logical label for a
group syntactically resembles a URL and encodes the name of a rendezvous host, a port
number that the rendezvous host is listening on, and the name of the group that is unique
to the rendezvous host. Thus, a Yoid label of the form yoid://foo.bar.org/partners:5555
denotes a Yoid group named partners, whose rendezvous host name is foo.bar.org and
that host is listening on port 5555. Because group names need not be globally unique,
Yoid does not require global coordination of group label assignment.

When a participating host (henceforth, a member) wishes to join a Yoid group, it contacts
the rendezvous host (or simply, rendezvous). From the rendezvous, it obtains its own
node ID that is unique within that group, as well as a list of some (not necessarily all)
current members. We call this list the candidate-parents list. The host then uses this list
to graft itself, in a manner described later, to the tree topology that is used to distribute
application content. The rendezvous does not participate in application content
forwarding but it is responsible for keeping it’s list of members current, by explicitly
checking for their liveliness. It can also plays a key role in other functions, such as
partition healing and group security.

Using information provided by the rendezvous, Yoid hosts conspire to construct a shared-
tree overlay. Each node on this shared tree is an end host on which a group member
resides, and each link is a tunnel between two members. Such a shared-tree overlay
construction is not the only way to achieve application-layer multicast. Another approach,
which may be called mesh-first, has new members establish mesh links to several current
members. Over this mesh, all members run a link-state or distance-vector routing protocol.
Using this, members can conspire to construct distribution trees rooted at each source of
data (i.e. source-specific trees).

The design of a centralized rendezvous host is an obvious impediment to scaling and
robustness. The scaling drawbacks can be alleviated by carefully minimizing interactions
between hosts and the rendezvous. A host normally communicates with the rendezvous
only when joining or leaving the tree. When a host joins the tree, the rendezvous point
provides a known identity that can be queried to learn the identity of other participants in
the group. This is the bootstrapping operation that is needed to allow new members to
discover the other members of the group. During the lifetime of the tree, the rendezvous
is additionally responsible for electing and maintaining the identity of the root of the
distribution tree. An election algorithm, combined with a keep-alive protocol, serves to
maintain the identity of a root node. Additionally, a keep-alive protocol is used to
maintain a fresh list of potential parent nodes of the tree for newly joining members to
contact. For scaling reasons, this list of candidate parents is only a subset of the members
of the group.

Since interaction with the rendezvous is limited, rendezvous crashes and restarts have a
minimal effect on the operation of an existing tree. Data distribution on a tree continues
undisturbed when a rendezvous crashes; however new nodes may not be able to join an
existing tree. Nevertheless, for truly robust tree operation, a solution that allows multiple
rendezvous nodes, with some transparent failover capability, is necessary.

4

3 The Yoid Protocol Stack

Paul Francis of ACIRI created an early prototype of Yoid. Yoid implements the protocol
design shown in Figure 1. Each of these protocol layers is described below.

3.1 Yoid
Identification Protocol (YIDP)

The Yoid Identification Protocol (YIDP) serves two primary purposes. First, it identifies
the yoid group of a given frame. Second, it identifies the immediate source and
destination group members of a given frame. By immediate we mean the member that
last transmitted the frame and the member that will next receive the frame (as opposed to
the original source and ultimate destination). These members are also referred to as the
hop-by-hop source and destination members.

YIDP makes some attempt at being able to identify members without the use of IP
addresses. The reason is that IP addresses may change over time (for instance a dial-up
host that loses a connection and redials), or may undergo translation. The ability to cope

Figure 1 - The Yoid Protocol Stack

IP
Multicast

IP
Unicast

UD
P

TCP

Yoid ID Protocol (YIDP)

yTCP yRTP yRMT
P

Etc..
.

Yoid Tree Protocol (YTP)
(framing, forwarding, sequencing)

Application

API

YTMP

5

with NAT boxes remains problematic because of the general inability to establish
arbitrary incoming connections through NAT boxes.

3.2 Yoid Transport Protocol
The Yoid Transport Protocols (YTP) are a number of protocols used between two
neighbors or within a cluster to do such things as flow control, congestion control,
sequencing, lost packet recovery (retransmissions) and the like. Examples include the
equivalents of TCP and RTP (yTCP and yRTP), and multicast equivalents of TCP and
RTP (yMTCP and yMRTP). Note that the multicast equivalents can be much simpler
than the reliable multicast protocols being developed for the wider Internet today,
because of the strict scoping.

It is reasonable to consider running Yoid over TCP rather than UDP, in which case there
would not need to be any protocol running at the Yoid transport layer. It is very
convenient, however, to be able to run all of Yoid over a single UDP port, primarily for
the purpose of dealing with firewalls and other boxes that may filter on port number. For
this reason, the preferred stack is yTCP (or other Yoid transport) over YIDP over UDP.

3.3 Yoid Distribution Protocol
The Yoid Distribution Protocol (YDP) handles everything needed to move an application
frame end to end over the tree-mesh with near-zero probability of loss. Reflecting the
broad functionality of Yoid, YDP is itself rich in functionality. It handles framing,
determines the type of forwarding (multicast, broadcast, etc.), has a hop-by-hop pushback
flow control mechanism, and has a hop count. YDP can also identify the final
destination(s) of the frame and the original source of a frame. In essence, YDP is to a
Yoid topology what IP is to a router/host topology.

In addition to all this, YDP has a sequence number space that can sequence and uniquely
identify every frame originated by any source. This sequence number is used not only to
insure end-to-end reliability and ordering of frame delivery, but also to prevent looping of
frames and duplicate delivery of frames to members acting as transits. This allows
frames to be transmitted over the tree, the mesh, or a combination of both (for instance, in
response to a temporary partition of the tree).

3.4 Yoid Tree Management Protocol
The Yoid Tree Management Protocol (YTMP) is the most complex and interesting
research topic of this project. The YTMP layer is responsible for the construction and
maintenance of a group distribution tree. The algorithms developed for YTMP will be
described in detail in the next section.

4 Tree Management Algorithms

How does the Yoid shared tree actually get built? The first member to join the group is
designated by the rendezvous to be the root of the tree. Each subsequent joining member
contacts the rendezvous and obtains a list of current members. The joining member then
selects one of the current members to be its parent. The choice of parent can be
influenced by a number of criteria, including closeness and performance.

6

For example, a member might choose the topologically closest current member as its
parent, if this can be determined (e.g. based on heuristics such as IP address prefix).
Clearly, the choice of parent crucially determines overall perceived performance; we will
return to this subject later. A member is not responsible for finding children, although it
may reject members that request to be its children. When a member loses connectivity to
its parent, it attempts to contact other members in order to select a new parent. When the
member switches parents, its relationship with its offspring is unaffected. While this tree
construction protocol is simple and requires little inter-member coordination, it presents
two challenges.

First, this distributed tree construction is susceptible to loop formation. To deal with the
possibility of loops caused by our simple, localized tree-grafting algorithm, we do not use
loop avoidance techniques. Intuitively, loop avoidance may require a priori knowledge
of the overlay topology, or dissemination of routing information. Yoid, however, starts
off with a very simple method to graft nodes onto the overlay tree that doesn't require
running a routing protocol. In keeping with this design, we use a novel loop detection
mechanism, together with a technique for fast loop termination. Yoid augments a path-
vector like approach with a novel switch-stamp mechanism to detect and rapidly
terminate loops.

Second, the tree construction algorithm described above largely ignores issues of
performance. In particular, because Yoid builds overlays using hosts, it can be
susceptible to performance pathologies that arise from poor choices of topology.

To take a concrete example, consider a host that is behind a limited capacity broadband
connection (such as a DSL line). If this host's fanout in a Yoid tree is N (one parent and
N-1 children), it requires a bandwidth of N*R where R is the application content data rate
(e.g. an audio stream). If this bandwidth exceeds the capacity of the host's connection to
the network, it adversely affects the perceived performance at all hosts whose on-tree
path to the source traverses this host.

One obvious way to avoid this problem is to have a static fanout limit at each Yoid host.
This approach is undesirable because it may require manually configuring the fanout
based on a host's network connection speed, and also because the available bandwidth
can vary dynamically. Accordingly, Yoid dynamically refines the tree based on observed
data losses. Each host compares its loss fingerprints (the specific Yoid frames lost within
a fixed window, called lossprints), with those of its neighbors and, if the lossprints differ
significantly, the host decides whether it should switch parents (for example, because its
current parent has a high fanout). This kind of topology adaptation is unique to
application-level infrastructures. It is also complementary to congestion control
mechanisms that adapt the sending rate of the audio streams to the capacity of the tree.

To take another concrete example, consider a host behind a high latency network
connection, such as a phone-line modem. If the tree construction algorithm results in this
host being near the root of the tree, all hosts downstream of this host with respect to a
given source will observe high latency data delivery. For real-time audio and video
conferencing applications, clearly, this is a problem. Yoid deals with this kind of
performance pathology by dynamic refinement as well. Specifically, Yoid hosts

7

occasionally test new parents to see if they can consistently deliver Yoid frames at
significantly lower latency, then switch to these parents.

Although we have described the latency and loss-rate refinement algorithms separately,
they are intended to work together to balance reasonable latency performance with loss-
rate. Simulation was used to understand how these algorithms work together and refine
the techniques.

5 Yoid Simulations

For analysis, the Yoid project developed a packet-level simulator. The inputs to the
simulator include the underlying network topology and the placement of the Yoid nodes.
Each of the selected Yoid nodes is running the Yoid protocol stack. The topology routing
engine distributes the packets throughout the tree. The engine forwards packets hop-by-
hop, and at each hop it considers the latency and the bandwidth of the topology link to
propagate or queue the packets. There is also a simple queue mechanism (FIFO) that tail-
drops the packets if the queue is full. In all simulations, the queue size is 1000 packets.

In these simulations, an attempt was made to use a real-world router-level topology. The
topology information was collected using a large number of traceroute requests sent over
the Internet. The resulting topology had 102639 nodes and 142303 links. Nodes were
recursively removed that had a fanout of one to obtain a topology resembling an Internet
core of size 27646 nodes and 67310 links. The motivation for truncating the original
topology was to remove the long, skinny branches that do not represent well the network
connectivity at the edges, but are an artifact from the particular methodology used to
obtain the topology information. Finally, after selecting the location of Yoid nodes in the
topology, an extra leaf node was added to each location, and was used to simulate the
Yoid members. This approach helped to simulate bottleneck edge links.

In all simulations a constant-rate 10kbps flow of packet size of 50 octets was chosen as
an approximate model of the audio traffic generated by conferencing application Rat with
low-end GSM encoding. In most cases the simulation used 200 receivers placed at
random.

These simulations considered two metrics. The average end-to-end latency was
computed as the sum of the pre-configured latency on each link from all sender nodes to
all receivers, and then averaged across all senders and receivers. The worst-case data
loss-rate represented the largest loss seen at a receiver in a window of 100 packets.

In most simulations, there were no observed loops throughout the entire run. In some
cases however, 1 or 2 loops formed per simulation run, and these were quickly resolved
within a few hundred milliseconds.

To stress the loss-rate refinement algorithm, the setup was similar to the first simulation,
except that the selected bottleneck links have capacity of only 15kbps, but their latency
was reduced to 10ms. To stress the latency refinement algorithm, the latency of the same
edge links was increased, as in the previous simulation to 80ms, but at the same time the
link bandwidth was increased to a default of 1Mbps. In both setups, the results are

8

similar to those in the first simulation, though overall the losses for the loss-rate
refinement algorithm simulation are slightly higher during the transient period due to the
more restricted bottleneck links.

To test the sensitivity of the latency refinement algorithm to the latency improvement
threshold, the same setup as in the first simulation was used, except that the latency
improvement threshold was 5ms instead of 50ms. Because 5ms is smaller than the
latency of any single link, the expectation is that the average latency will become much
closer to the unicast average latency. Surprisingly, the initial drop of the latency soon
after the sender was activated was not as sharp as in the other simulations. The reason for
this was that with a smaller threshold a node would switch to parents that offer little
improvement, therefore overall it took a larger number of iterations to achieve the
improvement of the algorithm with a larger threshold. Indeed, the latency gradually
continued to improve, but even after 3600 seconds of simulation time, it was similar to
the results with 50ms threshold.

On smaller groups, the difference in latency between the Yoid tree and the unicast
latency was only 10% and there were significantly fewer losses due to the much smaller
number of parent switches.

6 Wide Area Experiments

To perform more extensive tests, the project needed access to a larger number of hosts
spread across the Internet. The CAIRN testbed was the choice for our experiments,
because it has tens of hosts spread across the United States, and included hosts in Europe
as well. However, using GUI based applications such as Wb and Rat for debugging
purpose was not very practical for execution on more than 2-3 hosts, and especially if a
single person must control them.

To simplify debugging, the project developed from scratch a command-line traffic
generator program named msend that can be used to send and receive rate-controlled data
packets (either by unicast or multicast), and at the same time it can be used to collect and
report statistics for the received data. In combination with a simple shell script, msend
can be used to collect and process long-term statistics for all receivers, and email a
periodic summary of the results to the person performing the experiment.

In the first set of tests using msend with Yoid over CAIRN, the project investigated how
Yoid would perform over a long period of time across a wide area network. Yoid was
started on 8 CAIRN hosts spread across US and Europe. On each of those hosts the
msend application was started in a dual sender/receiver mode and with fixed transmission
rate. After running the experiment for more than 24 hours, all hosts were still operating
normally, and the loss rate was negligible.

In the second set of tests, the project evaluated how membership dynamics may have an
impact on robustness. In particular, msend was started on the same 8 hosts as in the first
experiment. Instances of the Yoid daemon were gracefully exited and restarted on some
of the members, or in some cases, forcefully killed on particular Yoid hosts. Only the
Yoid daemon was started or stopped, while msend was running all of the time. Early

9

experiments encountered some implementation problems that resulted in crashes. After
those problems were fixed, the rest of the experiment went much smoother. In most
cases, after a member rejoins the group, it would start quickly receiving again the traffic
from all other members. Even if the Rendezvous Point (RP) were killed, the rest of the
members would continue to receive the data traffic, although no new members could join.
However, unlike other members, if the RP rejoined, it had to wait of the order of one
minute before receiving again the traffic. The reason for this longer interval was that now
the RP would have to wait until some of the members already on the tree try to establish
connection again with the RP.

7 Mbone Application Integration

Having the Yoid substrate was not sufficient for the purposes of this project. It was
important to have applications built on top of the Yoid substrate that the project members
and others could use. Integration of these applications helped to drive the research
contributions of the Yoid project.

The first step was to integrate a very popular multicast shared white board application,
Wb. This application uses IP multicast to distribute updates to the white board to all
participants. The key challenge was to port this to Yoid without any application level
changes. If possible, this would make it easier to distribute the application and let the
application software evolve independently without requiring maintenance from the Yoid
team. Furthermore, in the case of Wb, this was essential since sources for the application
are no longer available. To accomplish this task, the Yoid project was required to
develop a system call interception mechanism. This mechanism is described in a
subsequent section of this report.

The next set of tools that was integrated was the Mbone audio teleconferencing
applications Vat and Rat. These applications operated over Yoid without any changes or
system call interception. After getting shared whiteboard and audio to work, the project
added support to run the Mbone video conferencing tool Vic. The Yoid project released
an initial version of Yoid with this complete complement of applications for
conferencing. The release supported most popular platforms including Windows, Linux,
FreeBSD, and Solaris. A substantial effort was made in the project to address portability
and offer the Yoid functionality on the most popular platforms. It is the belief of this
project that multi-platform support is essential for wide scale adoption of these types of
technologies.

To simplify usage, the Yoid project created a number of helper scripts for both the Unix
and Windows environment so that the Yoidized applications could be invoked with a
single command with the group Yoid URL supplied as a command line argument.

To test the Yoid substrate, and integration with applications, the Yoid group regularly
used the multicast conferencing tools to hold group meetings. The group tested both
distribution trees constructed on a single LAN and other configurations that include
members on cable modem connections or at other institutions connected over the WAN.

10

8 H.323 Conferencing Support using Yoid

H.323 is the ITU architecture for IP based audiovisual services and is supported by
popular applications such as Microsoft's NetMeeting. The H.323 specification provides
for multiparty conferencing through two mechanisms: IP multicast and server based
solutions using a multipoint control unit (MCU). The use of an MCU is the predominant
deployment model of multi-party conferencing using ITU H.323 based products, since
most H.323 applications, such as NetMeeting, do not support IP multicast. The typical
configuration is a hub and spoke client-server topology with many H.323 clients
connected to a single Multipoint Control Unit (MCU). Multimedia network traffic is
unicasted betweens clients and the MCU. The MCU provides all audio and video mixing
capabilities for the conference.

The Yallcast project decided it would be useful and interesting to offer the ability to
perform multi-party H.323 without using servers and without requiring native multicast
support from either the network or the client application. This would allow individuals to
conference over the Internet using applications such as NetMeeting, but with the ability
to conference with more than two individuals at a time.

To incorporate Yoid technology into the H.323 architecture, a Yoidized MCU
implementation was designed and developed to run locally at each H.323 client host. This
MCU would interface directly with existing, unmodified, H.323 clients and distribute the
multimedia data traffic over a Yoid tree rather than centrally from a single MCU server.
For this implementation, the local Yoid daemon that runs on client hosts would appear to
be an H.323 compliant MCU, but internally, operates quite differently. Each of the Yoid
based MCUs join a Yoid group and multicast their audio and video data to all participants
of the group. Each MCU then mixing the resulting audio signals and transmits this data
locally to the H.323 client. This integration between H.323 clients and Yoid is shown in
Figure 2.

11

Rather than starting from scratch, the project modified an existing open source
implementation of the H.323 protocol stack using OpenH323 (http://www.openh323.org).
This modified MCU was tested with existing applications such as NetMeeting and the
open source applications GnomeMeeting and Ohphone. It is possible to hold multiparty
conferences using these H.323 clients on both Microsoft Windows and Linux with no
interoperability issues.

Normally, an H.323 client and MCU cannot run on the same host, at the same time. This
is because both applications expect to accept incoming call requests on a well known
TCP port number and both applications cannot be bound to the same port simultaneously.
We enhanced our system call interception functionality to address this issue so that we
would not need to modify existing H.323 client applications. Such modification would be
impossible with NetMeeting since this project does not have access to the source code of
the application. Details of the Windows system call interception are presented separately
below.

The Yoidized H.323 multipoint control unit (MCU) currently supports both audio and
video traffic. In the future, it would be useful to incorporate support for the ITU shared
whiteboard protocol.

Figure 2 - Yoid and H.323 Host Integration

End Host

Yoidized
H.323
MCU

H.323
Client

Application

Yoid
Daemon

Yoid
Multicast

Group

12

9 System Call Interception

Certain applications require simple system call interception support to use them
unmodified under Yoid. The basic problem is that some applications expect to only
communicate with remote applications and are unable to communicate locally on the
same host with the Yoid daemon. An example is the shared whiteboard "wb" under Unix
in which only an execution binary is available. The Yallcast project did not have access
to the source code to make any modifications. In order for "wb" to communicate locally
with the Yoid daemon, it is necessary to intercept certain system calls related to UDP
socket initialization.

One possibility for integrating Wb into Yoid would have been to use a pre-loaded YOID
dynamic library, but unfortunately this technique was applicable for Wb given that Wb is
statically compiled. The projected decided to use system call interception (a standard
technique employed by many debuggers) for intercepting certain system calls made by
Wb and re-directing packets to a Yoid daemon running on the same machine. For each
intercepted system call, the Yoid library modifies some of its parameters such as network
address or port. By carefully modifying the local and the destination addresses of the sent
or received packets, the library can redirect (on the fly) all packets through the Yoid
process. Then, the Yoid infrastructure delivers them to the other participants using the
multicast tree overlay. All of this translation is completely transparent to the application,
and therefore it allows the integration of any traditional multicast application without
application modification. The project has prototyped such a library, and using it, was able
to integrate YWb - a shared white board application. Wb can now be used without
requiring any network multicast infrastructure. Initially, integration of YWb
encompassed 3 processes: (1) a normal Wb process, (2) a process monitoring and
intercepting system calls made by Wb, and (3) a Yoid daemon that does
encapsulation/decapsulation as well as tree management and rendezvous. Eventually, the
project was able to combine (2) and (3) into a single universal helper program, called
Yudp, that is described later in this report.

9.1 Unix System Call Interception based on Strace
The Yoid library initially had a simple form of system call interception code that was
developed in-house and worked properly on our development platforms. After more
experience with Yoid on other platforms and especially older versions of operating
systems, some users found that our system call intercept mechanisms would generate
intermittent errors.

Instead of attempting to repair this simple system call interception code, it was decided to
replace it with a code from a very popular and portable application known as strace.
Strace is a system call interception diagnostic application that is widely used on
numerous operating systems. The Yallcast project took the code base to strace and made
simple changes to repackage it in the form of a library. This library, which is named
stracelib, is now used to perform all system call interception support in Yoid for our Unix
ports. A separate mechanism, not based on strace, is still required for the Microsoft
Windows platform and is described below.

13

9.2 Microsoft Windows System Call Interception
System call interception was necessary to enable inter-operation of Microsoft NetMeeting
and a Yoidized version of OpenMCU, running on the same machine. In accordance with
the H323 specifications, both applications at startup begin listening on the same port
(H.323 HostCall) and therefore cannot run on the same machine without modifications,
unless system call interception is used.

There are a number of system call interception techniques (also known as API spying)
under Windows-based operating systems. They include:

• Proxy DLL: a custom DLL that provides the same API as the standard
DLL with the same name and forwards calls to the standard DLL after
appropriate modifications of arguments are made. This technique is
applicable only if the system calls that must be intercepted are exported
by a standard system DLL, as is the case with WINSOCK.DLL that
exports socket calls that Yoid needs to intercept.

• IAT patching: patching the Import Address Table for the executable.

This method is more involved, as it requires modifications of the binary
image of the loaded executable in memory. Its advantages are speed
and ability to intercept only particular system calls without imposing
performance penalty on system calls that are not intercepted.

• Winsock hooking using Layered Service Provider: a winsock-specific

method of system call interception that is capable of intercepting all
socket calls system-wide. This technique is often used by anti-virus
software.

Yoid did not require system-wide socket call interception, so it narrowed the options to
the first two techniques, and while IAT patching is a good way to intercept system calls
selectively, it is too complex in implementation detail. Thus, it was decided to implement
a WINSOCK.DLL proxy library. To make use of it, NetMeeting must be started from the
same working directory where our proxy library is located. Then, it intercepts all bind
system calls, for example when NetMeeting tries to bind locally to the HostCall port. It
then modifies the port number so there will not be a conflict between NetMeeting and the
OpenMCU process. This mechanism allows the unmodified NetMeeting application to
locally call the OpenMCU over the loopback interface of the host.

10 Network Management

When users are running Yoid, it is important that tools exist to view what is happening in
the constructed overlay when things go wrong. The Yoid project has developed
capabilities within the Yoid implementation to aid in the diagnosis and monitoring of the
health of the overlay network.

Yoid contains a network management interface adapted from the Zebra project. This
interface supports access lists that selectively allow other hosts to log in and monitor the

14

internal state of the Yoid daemon. This information can provide a wealth of information
about the state of the overlay and the observed losses between neighbors.

The project has also developed Perl scripts that can walk the nodes of a Yoid tree and use
the network management interface to collect statistics from each host. This can be used
to construct a pictorial representation of the current topology of the overlay and provide
information about packets losses and other relevant information.

Recently, support has been added to Yoid to multicast parent-child relationship
information at a low rate to all group members. This information allows each host to
reconstruct a view of the entire topology by correlating the information collected by
observing the reports over a period of time.

11 YUDP – The Universal Yoid Interface Application

The project analyzed the interfaces between various applications and the Yoid daemon
and attempted to design a single universal application that could be used to host the entire
range of needs. Before the creation of yudp, the project had a collection of applications
that were similar but had custom functionality to interface with each particular
application.

yudp now serves as the universal application to interface with the full range of ported
Yoid applications. It supports all audio, video, shared whiteboard, and an IP multicast
gateway. It is also used as a daemon to support the DARPA FTN Cossack project.

yudp has range of options to control it's customization. It can communicate with the
applications using unicast or multicast. It will allocate a block of unused ports on even or
odd boundaries. It can perform system call interception, and gateway traffic to an IP
multicast group.

In the process of creating this universal application, a number of rough edges in the
underlying Yoid API were uncovered. An attempt has been made to improve this API
based on the continuing experience of porting new applications. For example, the API
has simplified how an application can associate UDP sockets with individual Yoid group
demultiplexing channels. A single Yoid group now supports a large set of independent
demultiplexing channels. This feature simplifies carrying multiple separate data flows for
a given application.

As mentioned above, this project has developed and tested a gateway which can connect
a Yoid multicast group with a native IP multicast group. This is extremely useful for
allowing users who have native IP multicast support to interoperate their conferencing
applications with users who must use application layer multicast. We tested this
functionality during our group meetings by having part of our group conferencing over
Yoid directly and others using IP multicast with a gateway connecting the two groups.

The gateway was originally developed as a separate application but was eventually folded
into our universal application, yudp. It can now be activated using a command line option

15

to yudp. This incorporation in yudp allows a single Yoid daemon to serve local
applications and gateway to an IP multicast group at the same time.

12 Major Accomplishments

The following list summaries the major accomplishment of the Yallcast Project

• Development of novel tree management algorithms for application-level multicast
that emphasize a tree-first approach

• Extensive simulation and testing of the correctness of the Yoid tree management
algorithms

• Porting the full suite of Mbone teleconferencing applications to Yoid
• Developing support for multi-party H.323 conferencing over Yoid
• Implementation and public release of the Yoid II protocol
• Porting of Yoid to Windows, FreeBSD, Linux, Mac OS X, and Solaris

13 Publications and Presentations

Lindell, R., Your Own Distribution Protocol (YOID), CENIC 2001, San Diego, CA

Lindell, R., Your Own Distribution Protocol (YOID), Internet 2 Peer-to-Peer Workshop,
Tempe AZ, January 2002

All publications are listed on the project website at:

http://www.isi.edu/div7/yoid/docs/index.html

14 Staffing

• Year 1
o Co-PI: Ramesh Govindan and Paul Francis – Paul Francis left the project

shortly after inception to join the startup Fast Forward Networks.
o Computer Scientist: Cengiz Alaettinoglu – Cengiz Alaettinoglu left the

project later in the year to join the startup Packet Design.
o Programmer: Yuri Pryadkin
o Graduate Student: Pavlin Radoslavov

• Year 2
o PI: Ramesh Govindan – Ramesh Govindan left at the end of Year 2 to

join ICSI.
o Computer Scientist: Robert Lindell
o Programmer: Yuri Pryadkin
o Graduate Student: Pavlin Radoslavov

• Year 3
o PI: Robert Lindell
o Programmer: Yuri Pryadkin
o Graduate Student: Pavlin Radoslavov – Pavlin Radoslavov graduated with

his Ph.D.

16

15 Conclusion

The Yallcast project has successfully designed and implemented a tree-first approach to
application layer multicast. Novel algorithms have been developed address the particular
needs of this tree-first approach. These include fast loop detection, repair, and quality of
service adaptation. These algorithms were extensively tested using simulation,
experimentation in the wide area, and real world usage by hosting a variety of
applications.

In addition to developing Yoid, a significant effort was made to port a variety of existing
conferencing tools to run over Yoid. A mixture of multiparty audio, video, and whiteboard
conferencing tools were ported to use the Yoid multicast substrate. These conferencing
tools, hosted over Yoid, where used regularly to conduct weekly Yallcast meetings.
Using the Yoid implementation on a regular basis helped to debug and improve the
quality of the resultant Yoid software distributions that we have made publicly available.
Scripts to execute these applications over Yoid are provided with the Yoid software
distributions, which are available for Windows, FreeBSD, Linux, and Solaris.

