1. REPORT DATE (DD-MM-YYYY) 15 April 2003
2. REPORT TYPE Viewgraphs

4. TITLE AND SUBTITLE
Matchmaking in Polynitrogen Chemistry: Search for Prospective Anions for Combinations with N₅⁺

5a. CONTRACT NUMBER F04611-99-C-0025
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Vij Ashwani

5d. PROJECT NUMBER DARP
5e. TASK NUMBER A205
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRSP
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S NUMBER(S)
AFRL-PR-ED-VG-2003-091

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
 A

19a. NAME OF RESPONSIBLE PERSON
 Sheila Benner

19b. TELEPHONE NUMBER
 (661) 275-5963

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO)

Vij, Ashwani, "Matchmaking in Polynitrogen Chemistry: Search for Prospective Anions for Combinations with N₃⁺"

ACS National Meeting
(New Orleans, LA, 23-27 March 2003) (Deadline: RUSH, per RCC) (Statement A)
Matchmaking in Polynitrogen Chemistry: Search for prospective anions for combination with N$_5^+$

Ashwani Vij
Air Force Research Laboratory
PRSP
ashwani.vij@edwards.af.mil
(661) 275-6278

Award Symposium for Karl Christe, March 25-26, 2003
225th National ACS Meeting, New Orleans

Approved for public release; distribution unlimited.
Coauthors & Project Sponsors

Dr. Karl O. Christe,¹,² James G. Pavlovich,³ Vandana Vij,¹ Dr. Robert Corley,¹ Dr. William W. Wilson,¹ Dr. Fook S. Tham⁴

1. Air Force Research Laboratory, PRSP, Bldg 8451, 10 E. Saturn Blvd. Edwards Air Force Base, CA 93524
2. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, CA 90089
3. Department of Chemistry, University of California, Riverside, CA 92521
4. Department of Chemistry, University of California, Santa Barbara CA 93106

Dr. Michael Berman (AFOSR),
Dr. Arthur Morrish & Dr. Don Woodbury (DARPA),
Dr. Suresh Suri & Gregory Drake (AFRL)

Why Polynitrogen Compounds?

- Polynitrogen compounds contain only nitrogen atoms and are expected to have unusual properties. Most important among these are:
 - *High endothermicity*
 - "Green" propellant
 "combustion" product is only gaseous N_2
 - *High density*
 - *High I_{sp} values when compared to other monopropropellants or bipropellants*
 - *High detonation velocity*
Predicted Specific Impulse (s) Values for Neutral Polynitrogen Compounds

Synthesis and Properties of N_5^+

- First compound made was $N_5^+\text{AsF}_6^-$
 - $-78\,^\circ\text{C}$, 5 days, 60% purity, 50 mg scale
 - Unstable at room temperature
 - Exploded in low-temperature Raman spectrometer

- Second compound made was $N_5^+\text{SbF}_6^-$

\[\text{N}_2\text{F}^+\text{SbF}_6^- + \text{HN}_3 \rightarrow N_5^+\text{SbF}_6^- \]

 - First run: $-64\,^\circ\text{C}$, 5 days, 80% purity, 300 mg scale
 - Present method: Room temp., $\frac{1}{2}$ day, 100% purity, 4 g scale

- Properties of $N_5^+\text{SbF}_6^-$:
 - White solid
 - Thermally stable to $70\,^\circ\text{C}$
 - Survives impact sensitivity test (drop weight) at 150 kg/cm

Geometry of the N_5^+ Cation
Predicted versus Experimental

Resonance Structure

Calculated Structure

Experimental Structure

Structure of the N_5^+ Cation

The Structure of $N_5^+\text{Sb}_2\text{F}_{11}^-$

- The crystals grown from a mixture of SO_2 and SO_2ClF
- Crystal belong to the Monoclinic space group $C2/c$.
- Cell constants: $a = 10.913 \text{ Å}$, $b = 12.654 \text{ Å}$, $c = 16.675 \text{ Å}$; $\beta = 104.72^\circ$
- $Z = 8$
- $R = 0.0678$

Inter-ionic Clipping!!

The N_5^+ cation fits into the $\text{Sb}_2\text{F}_{11}^-$ bend thus locking it, thereby precluding any possibilities of twisting

Crystal Packing Effects

The N...F Contacts support the resonace structure, where the N2 and N4 nitrogen atoms have a positive charge.

N2 makes contacts at 2.723 and 2.768 Å; N4 contacts are at 2.887 and 2.814 Å

(In)Compatibility of N_5^+

Attempts to couple N_5^+ with energetic anions can result in explosive reactions !!!

$N_5^+N_3^-$

$N_5^+\text{ClO}_4^-$

$N_5^+\text{NO}_3^-$

$N_5^+\text{N(NO}_2)_2^-$

Recipe for Synthesizing Neutral Polynitrogen Compounds

- Combine a polynitrogen cation with a polynitrogen anion to form a neutral polynitrogen compound.

\[N_x^+ + N_y^- \rightarrow N_{x+y} \]

ONLY TWO STABLE POLYNITROGEN IONS KNOWN TO EXIST IN BULK

Cation \(N_5^+ \) cation

(Discovered in 1999, AFRL, Christe)

Anion \(N_3^- \) anion

(Discovered in 1890, Curtius)

What Determines the Stability of a Polynitrogen Species?

Stability of a Polynitrogen Salt is Determined by Thermodynamic and Kinetic Factors

Thermodynamic Factors

1. Electron Affinity of the Cation
 - A fixed value, if we aim for a N_5^+ salt, i.e., 10.5-11.5 eV

2. First Ionization Potential of the Anion
 - The azide ion has a very low value of about 2.1 eV, which is the main reason for the instability of $N_5^+N_3^-$
 - New polynitrogen anions are needed with higher first IP values. N_5^- and N_7^- anions are most promising candidates

What Determines the Stability of a Neutral Polynitrogen Species?

3. Lattice Energy of the Crystal

- U_L fixed by the molar volumes of cation and anion. Born-Haber cycle calculations for the lattice energy estimated for $N_5^+N_3^-$ are 50 kcal/mole lower than the requirement for the stabilization of an ionic salt

Kinetic Factor

- Activation Energy Barriers of the Ions Towards Decomposition

- These energy values determine the stability of the individual ions
Polynitrogen for *Dummies I*

What has Thermodynamics and Kinetics got to do with it??

Kinetics
Low Barrier towards catastrophic downfall

Thermodynamics
It is an uphill battle!!

Polynitrogen for Dummies II

- Metastability requires a delicate balancing act!!
Polynitrogen for *Dummies III*

Avoid a domino effect !!!

Assembling a polynitrogen chain is like assembling metastable dominos with perfect spacing, without prematurely triggering an unwanted collapse

New Polynitrogen Anions as Counterparts for N_5^+

Pentazole anion (N_5^-)

- Theoretical calculations show that this anion has a 28 kcal/mole activation energy barrier for decomposition and its decomposition to N_3^- and N_2 is only 11 kcal/mol exothermic.

- Aryl substituted pentazoles can be isolated as stable compounds only if stored at low temperatures. In methanol, these compounds rapidly decompose at room temperature to form aryl azides and N_2 gas.

Synthetic Challenge – How do we make These New Anions??

Synthesis of Substituted Pentazoles

Sources for the Pentazole Anion (N$_5^-$)

- Silyl Diazonium Salts
- Aryl Diazonium Salts

R = electron releasing group

Unknown

Known

Formation and Stability of Silyl Diazonium Salts

- Failed attempts to synthesize silyl diazonium salts

\[
N_2F^+\text{SbF}_6^- + \text{Me}_3\text{SiSiMe}_3 \rightarrow \text{Me}_3\text{SiN}_2^+\text{SbF}_6^-
\]

- \(R_3\text{SiN}_2^+ \) salts are unstable and spontaneously lose \(N_2 \)

\[
R_3\text{SiN}_2^+ X^- \rightarrow \text{N}_2 \rightarrow \left[R_3\text{Si}^+ X^- \right]
\]

Theoretical calculations support this experimental observation

Use of Aryl Diazonium Salts – A Better Bet!

- R must be an electron releasing group, i.e., -NMe₂, -OH, -OCH₃.
- Some of these substituted aryldiazonium salts have been known for about four decades but no success had been achieved to cleave the N₅ ring from the ary group.

Aryl Pentazoles can rapidly lose N₂ at room temperature

I. Ugi, Angew Chem., 1961, 73, 172 and references therein
Synthesis of Aryldiazonium Salts

Aqueous Media

\[
\begin{align*}
R & \rightarrow \text{NH}_2 \quad \text{NaNO}_2/\text{HCl} \\ & \quad \text{(0 °C)} \\
R & \rightarrow \text{N}_2^+\text{Cl}^- \\
 & \rightarrow \text{N}_2^+\text{BF}_4^-
\end{align*}
\]

\[R = \text{H, OH, OCH}_3, \text{OC}_6\text{H}_5, \text{OC}_6\text{H}_4\text{N}_2^+, \text{N(CH}_3)_2\]

Non-aqueous Media

\[
\begin{align*}
R & \rightarrow \text{NH}_2 \\
 & \rightarrow \text{isoamyl nitrate} \\
 & \rightarrow \text{CF}_3\text{COOH} \\
 & \rightarrow \text{CH}_2\text{Cl}_2 \\
 & \rightarrow \text{N}_2^+\text{CF}_3\text{COO}^-
\end{align*}
\]

Colas and Goeldner, *Eur. J. Org. Chem.* 1999, 1357-1366 reported the p-phenoxy diazonium salt to be a double salt. However, X-ray crystallography reveals no such stoichiometry.
Role of the Lone Pair at Para Position

\[
\text{Me}_2\text{N} - \text{NH}_2 \xrightarrow{\text{i. xs NaNO}_2/\text{HCl}} \xrightarrow{< 0 \degree \text{C}, \text{ii. NaN}_3} \begin{array}{c}
\text{Me}_2\text{N} \\
\text{N} \\
\text{NO}_3 \\
\text{N} \\
\text{N}
\end{array} \xrightarrow{- \text{N}_2} \begin{array}{c}
\text{Me}_2\text{N} \\
\text{N} \\
\text{NO}_3 \\
\text{N}_3
\end{array}
\]

\[
\text{NaNO}_2 + \text{HCl} \xrightarrow{< 0 \degree \text{C}} \text{NaCl} + \text{HONO}
\]

\[
3 \text{HONO (aq)} \leftrightarrow \text{H}_3\text{O}^+ + \text{NO}_3^- + 2\text{NO}
\]

Reaction with Trimethylsilyl Azide

\[
\begin{align*}
\text{N}_2^+\text{BF}_4^- + (\text{CH}_3)_3\text{SiN}_3 & \rightarrow (\text{CH}_3)_3\text{SiF} - \text{BF}_3 - \text{N}_2 \\
\text{X} & \rightarrow \text{X} \\
\text{R} & \rightarrow \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{X} &= \text{N, O} \\
\text{No pentazole were isolated}!!! \\
\text{Reactions carried out in acetonitrile at -30 °C}
\end{align*}
\]

Identification of Arylpentazoles

Pentazoles can be characterized by low temperature NMR spectral studies using 15N labeled samples.

- 1H NMR: AB-type spectrum with H_a and H_b at 8.0 and 7.0 ppm
- 14N NMR: N_1 at ~ -80 ppm
- 15N NMR: N_2/N_5 at ~ -27 ppm and N_3/N_4 at ~ 4 ppm

Note: Qualitative evidence for the presence of a pentazole ring: N_2 gas evolution in solution

Cleavage of the Aryl-Pentazole Bond with Retention of the Pentazole Ring

- **Chemical Methods**
 - Ozonolysis does not work! (Ugi, Radziszewski)

 - Nucleophilic substitution using strong nucleophiles such as the OH^-, OR^-, F^- etc.

- **Collisional Fragmentation** (*Electrospray Ion Mass Spectroscopy – ESIMS*)
 - Electrospray is very gentle and produces high concentration of the parent anion which can be mass selected
 - Collisional fragmentation of the mass selected anions with variable collisional energies allow tailoring of fragmentation
 - Negative ion detection eliminates interference from neutral or positively charged species

ESIMS of para-Phenoxypentazole

Observed peaks in the MSMS of 162

Low Collision Voltage

ES

MSMS

m/z = 162

NNN

NNN

m/z = 134

-N₂

m/z = 106

-N₂

m/z = 78

CO

m/z = 42

15N Labeling of the Pentazole Ring

$R-N_a \equiv N_b^+$ + $^*N\equiv N\equiv N^-^-$

Net Structure

$R-N_a N N_b$ + $N \equiv N N_a N_b$

Is the Peak at m/e 70 indeed due to the Pentazole Anion??

15N Labeled Pentazole

- Observed peaks in the MSMS of 163
 - m/z = 135/134
 - m/z = 106
 - m/z = 78
 - Labeling experiment shows that CO is lost in the last step

Definitive proof for the pentazole anion

- m/z = 71

15N statistically distributed over N₂, N₃, N₄ & N₅

Chemical Cleavage of the C-N Bond

Formation of azide from decomposition of N_5^-

Crystal Structure of Residue

1.172(1) Å

1.172(1) Å
Pentazoles with Heterocyclic Substituents

- These systems are unstable above -70 °C and the pentazole ring rapidly decomposes to liberate N₂ gas.

- Pentazole derived from 2-amino-4,5-dicyanoimidazole shows higher thermal stability

15N NMR of 2-amino-4,5-dicyanoimidazolyl pentazole

15N NMR recorded in a mixture of methanol and acetonitrile at -30 °C, nitromethane used as an external reference (0 ppm)

Summary

• Synthesized aryl pentazoles: hydroxy group at the para-position on the aryl ring gives the best results.

• Demonstrated selective cleavage of C-N bond by ESIMS with retention of pentazole ring. Results confirmed studying 15N labeled pentazoles.

• First experimental detection of pentazole anion

• Synthesis of pentazoles with a heterocyclic substitutents

• Offers potential pathway for bulk synthesis of N$_5^-$ salts