

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

SNMP OVER WI-FI WIRELESS NETWORK

by

Jiradett Kerdsri

March 2003

 Thesis Advisor: Ted Lewis
 First Reader: Geoffrey Xie
 Second Reader: Gurminder Singh

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: SNMP Over Wi-Fi Wireless Networks

6. AUTHOR(S) Jiradett Kerdsri

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Simple Network Management Protocol (SNMP) allows users of network equipment (i.e. Network

Administrators) to remotely query the state of any device being tested for system load, utilization and configuration.

Windows NT, Windows 2000 and Windows XP Professional are all equipped with SNMP service so that

an SNMP manager can communicate with an SNMP agent running on a wireless 802.11b client. However the rest of

Windows operating systems, including Windows CE and a Pocket PC, have to run third party proxy SNMP agents in

order to be recognized by an SNMP management application.

This thesis describes an implementation of a Pocket PC SNMP agent for two Pocket PC mobile devices

accessing a wired network via an 802.11b wireless link. As a result of the implementation performed in this thesis, an

SNMP manager can wirelessly communicate with a Pocket PC client. However, other results found that only some of

the commercially available SNMP managers are able to access the mobile SNMP client and its management

information base, due to incompatible implementations of the server and client software.

15. NUMBER OF
PAGES 108

14. SUBJECT TERMS
Pocket PC, IEEE 802.11b, Wireless Network, SNMP, Windows CE 3.0, PDA, MIB, ActiveX,
IPWorks!

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

SNMP OVER WI-FI WIRELESS NETWORK

Jiradett Kerdsri
Lieutenant, Royal Thai Air Force

BE(Civil), Air Force Academy (Thailand), 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: Jiradett Kerdsri

Approved by: Ted Lewis

Thesis Advisor

Geoffrey Xie
First Reader

Gurminder Singh
Second Reader

Peter Denning, Chairman
Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Simple Network Management Protocol (SNMP) allows users of network

equipment (i.e. Network Administrators) to remotely query the state of any device

being tested for system load, utilization, and configuration.

Windows NT, Windows 2000 and Windows XP Professional are all

equipped with SNMP service so that an SNMP manager can communicate with an

SNMP agent running on a wireless 802.11b client. However the rest of Windows

operating systems, including Windows CE and a Pocket PC, have to run third

party proxy SNMP agents in order to be recognized by an SNMP management

application.

 This thesis describes an implementation of a Pocket PC SNMP agent for

two Pocket PC mobile devices accessing a wired network via an 802.11b wireless

link. As a result of the implementation performed in this thesis, an SNMP

manager can wirelessly communicate with a Pocket PC client. However, other

results found that only some of the commercially available SNMP managers are

able to access the mobile SNMP client and its management information base, due

to incompatible implementations of the server and client software.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. PROBLEM ...1
A. OVERVIEW...1
B. POCKET PC IN A WIRELESS ENVIRONMENT2

1. Roaming Between Access Points...2
2. Persistence of Mobile Units ...2
3. The SNMP Agent ...2

C. SUMMARY ..3

II. THE OPERATION OF SNMP...5
A. OVERVIEW...5
B. NETWORK MANAGEMENT ARCHITECTURE7

1. Network Management Station..9
a. Loriot ...9
b. SNMPView ..10
c. The 3 COM Network Supervisor ..10

2. Management Agent..10
3. Management Information Base (MIB)...11
4. Network Management Protocol..12

C. NETWORK MANAGEMENT...13
1. Fault Management ...13
2. Configuration Management..14
3. Performance Management..14
4. Accounting Management...14
5. Security Management..14

D. NETWORK MANAGEMENT STANDARDS..15
E. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)..............15

1. SNMP Message Construct...17
2. SNMP Security ...20

III. SOFTWARE DEVELOPMENT TOOLS FOR PORTABLE DEVICES23
A. OVERVIEW...23
B. THE POCKET PC...23

1. Pocket PC Structure ..25
a. Memory Manager..25
b. Kernel ..26

2. Pocket PC and Wireless...26
3. Pocket PC Programming...27

a. Embedded Visual Tools ..27
b. Personal Java ..28
c. .NET Compact Framework...29

4. Pocket PC and SNMP..30
5. Pocket PC and ActiveX Control ...31

C. IMPLEMENTING SNMP AGENT ...32

IV. EXPERIMENTAL DESIGN...35

viii

A. OVERVIEW...35
B. HARDWARE ARCHITECTURE..35
C. SOFTWARE ARCHITECTURE...37

1. Architecture Overview ..37
2. The SNMP Agent ...38

a. SNMP Manageable Devices ...38
b. Non-SNMP Manageable Devices...38

D. EXPERIMENTAL STRUCTURE ...41
1. Experimental Procedure ...41
2. Hypothesis...41

E. IMPLEMENTATION ...42
F. EXPERIMENTAL TESTING ..46

a. SNMP Agent Prototype Testing..46
b. SNMP Agent Prototype Testing Result50
c. PocketAgent Testing ...51

G. SUMMARY ..55

V. CONCLUSION ..57
A. SUMMARY ..57
B. CASE STUDY ..57
C. FUTURE RESEARCH..57

APPENDIX A. SOURCE CODE..59

APPENDIX B. HARDWARE SPECIFICATION ..71

APPENDIX C. HOW TO ENABLE SNMP SERVICE ...75
A. ENABLE THE SNMP SERVICE ..75
B. SNMP CONFIGURATION ..77

APPENDIX D. APPLICATION SETUP ...81
A. POCKET AGENT PROTOTYPE SET UP...81

APPENDIX E. SNMP COMPONENT ..85

LIST OF REFERENCES..89

INITIAL DISTRIBUTION LIST ...91

ix

LIST OF FIGURES

Figure 1 – SNMP Hardware Architecture .. 7
Figure 2 – SNMP Software Architecture From Ref.[02].. 8
Figure 3 – Transport Mechanisms .. 8
Figure 4 – SNMP message From Ref.[03].. 17
Figure 5 – SNMPv1 Get, GetNext, Response, and Set PDUs Contain the Same Fields

From Ref.[03]. .. 18
Figure 6 – SNMPv1 Trap PDU From Ref.[03]... 19
Figure 7 – SNMPv2 Get, GetNext, Inform, Response, Set, and Trap PDUs Contain the

same fields From Ref.[03]. ... 19
Figure 8 – The SNMPv2 GetBulk PDU From Ref.[03]. .. 20
Figure 9 – Experimental network architecture.. 36
Figure 10 - The Software Architecture ... 37
Figure 11 – SNMP Proxy Application Architecture [From: Ref.02.].............................. 42
Figure 12 – The Pocket Agent Prototype for desktop... 44
Figure 13 – The Pocket Agent for Pocket PC... 45
Figure 14 – 3COM Network Supervisor... 46
Figure 15 – Loriot. .. 47
Figure 16 – MIBS query in Loriot. ... 48
Figure 17 – SNMP Ping for Proxy Agent... 48
Figure 18 – SNMPView.. 49
Figure 19 – 3COM Network Supervisor Pocket PC... 52
Figure 20 – SNMP Ping response from Loriot ... 53
Figure 21 – Added device in Loriot.. 53
Figure 22 – SNMP Manger from IP*Works! ... 54

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1 – ActiveX Compatibility.. 40
Table 2 – Testing result for PCs Clients ... 50
Table 3 – Testing result for Proxy Agent.. 51
Table 4 – An SNMP proxy agent Pocket PC test result ... 55

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

ANSI American National Standards Institute
ASN.1 Abstract Syntax Notation One
EVB Embedded Visual Basic
FTP File Transfer Protocol
ICMP Internet Central Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IEFT Internet Engineering Task Force
IP Internet Protocol
ISO International Organization for Standardization
LAN Local Area Network
MIB Management Information Base
NMS Network Management Station
PDU Protocol Data Unit
RFC Request for Comment
RMON Remote Network Monitoring
SMI Structure of Management Information
SMP Simple Management Protocol
SNMP Simple Network Management Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
WAN Wide Area Network
Wi-Fi IEEE 802.11b Wireless Network

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. PROBLEM

A. OVERVIEW

The purpose of this thesis is to make a Pocket PC that is running on a wireless

network visible on a Simple Network Management Protocol (SNMP) manager

application. Because a Pocket PC or any Windows CE platform does not have SNMP

service built in, the SNMP Proxy agent has to be implemented in software. The goal of

this research is to implement SNMP services on handheld devices with 802.11 network

capabilities and to test the performance on several commercially available devices.

One such device is the Personal Digital Assistant (PDA) that is increasingly

becoming standard in many organizations. This handheld computing device, once used

for simple tasks such as keeping addresses and appointments, can be used in the same

way as a small notebook.1 With the growth of new Wireless technology, more and more

PDAs are equipped with a wireless interface and are used in the network environment.

Therefore a PDA can now be considered as one of the networking devices. Since it fits in

the wireless network due to the device’s portability.

To manage the network environment, a SNMP is used. However the SNMP

manage station can only discover and monitor the SNMP manageable device which is

integrated with SNMP service; consequently all non-SNMP manageable devices are blind

to the SNMP manager. Most wireless devices cannot be managed beyond the access point

as well because they do not implement SNMP services. As the result a proxy agent for a

PDA must be implemented to address this problem.

A proxy agent is the program used to support devices that do not have an SNMP

implementation available. The proxy is an SNMP management agent that services

requests from the management console, on behalf of one or a number of non-SNMP

devices. The management station contacts the proxy agent and indicates the identity of

the foreign device. The proxy agent then translates the protocol interactions it receives

1 Tivoli Device Manager for Palm Computing Platform – Tivoli System Inc, and IBM company

2

from the management station into whatever interactions are supported by the foreign

device.

B. POCKET PC IN A WIRELESS ENVIRONMENT

More and more Pocket PC devices are connected to the wireless network since the

widespread use of 802.11b standard; nevertheless some limitations exist for

implementing a wireless application for Pocket PC. Although they share standard

elements and mechanisms, wired and wireless networks have significant differences. In

addition to the conventional wired network, wireless networks have the following unique

properties:

1. Roaming Between Access Points

The wireless network environment supports a dynamic cell connection or

roaming, which is the process of changing the network connection of a mobile device

from one access point to another. This is a unique component within the wireless

environment. Furthermore specifying an IP address for a roaming mobile device is

difficult because SNMP relies on an UDP and a TCP/IP connection. Changing the IP

address can corrupt communication between the Pocket PC agent and the network

station.

2. Persistence of Mobile Units

Unlike desktop systems or other network components that operate continuously or

are powered on/off daily, handheld terminals are turned on and off frequently throughout

the day, making it difficult to monitor these devices. The intricacy of wireless

communication is one of the big problems due to the persistence issue. The wireless

communication for a Pocket PC takes a much longer time than the desktop PC to receive

the wireless signal because of the hardware and software limitation. As a result, the

SNMP management experiences difficulties since the SNMP manager can detect the

negative fault due to the SNMP communication lags.

3. The SNMP Agent

Desktop or laptop systems have adequate amounts of memory and processor

power to support an SNMP agent operating as a background task handling requests from

3

the Network Management station. However, on handheld terminals, typically running

Windows CE, memory space and processor speed are highly limited resources, creating

more effort in providing agents for these devices.

C. SUMMARY

An SNMP Manager cannot see a Windows CE or Pocket PC device that is

connected beyond the wireless access point because it lacks SNMP capability. To address

this problem, an SNMP proxy agent has to be implemented in software, so the Network

Management Station (NMS) can discover the device connected to the network.

Additionally a developer faces many factors when implementing the wireless system on

the limited device such as a Pocket PC.

Therefore in order to address the invisibility problem of a Pocket PC in wireless

network management, this thesis is focused on implementing an SNMP proxy agent on

Pocket PC, which can run on any Windows CE platform. The overview of the SNMP and

the operation of a portable device are described in the following chapter. In addition, the

architecture of the experiment and design plan are explained in the later chapter,

including testing result.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. THE OPERATION OF SNMP

A. OVERVIEW

Since being developed in 1988, Simple Network Management Protocol has

become the de facto standard for internetwork management. Because the protocol is a

simple solution, requiring little code to implement, vendors can easily build SNMP

agents for their products by various tools on the market. The protocol is extensible,

allowing developers to easily add network management functions to their existing

projects. In addition SNMP separates the management architecture from the architecture

of the hardware devices, which broaden the base of multivendor support. Unlike other so-

called standards, SNMP is not a mere paper specification, but an implementation that is

widely available today.2

This chapter describes the basic elements on the SNMP framework as well as the

transport operation for SNMP with TCP/IP. In addition this section also presented the

overview and background of the network management.

Since SNMP is implemented on the User Datagram Protocol (UDP), it is a

connectionless communication with no guarantees about the reliability of the

transportation. The operation of SNMP communications requires Data Link Layer

protocols, which is the layer 2 in the OSI model so it can use Ethernet or Token Ring to

implement the communication channel from the management to the managed agent.

 The two most important instances in the SNMP communication are manager

station and managed agent:

A typical manager usually:

• Implemented as a Network Management Station (NMS)

• Implements full SNMP Protocol

2 SNMP,http://www2.rad.com/networks/1995/snmp/snmp.htm [02]

6

• Be able to

o Query agents

o Receive Get responses from agents

o Establish Set variables in agents

o Acknowledge asynchronous events from agents

A typical agent usually:

• Implements full SNMP protocol.

• Stores and retrieves management data as defined by the Management Information
Base

• Can asynchronously signal an event to the manager

• Can be a proxy for some non-SNMP manageable network node

A MIB is a collection of definitions, which define the properties of the managed
object within the device to be managed.

Criteria and Philosophy for standardized MIB are

• Objects have to be uniquely named

• Objects have to be essential

• Abstract structure of the MIB need to be universal

• Standard MIB maintain only a small number of objects

• Private extensions allowance.

• Objects must be general and not overly device dependent

• Objects can not be easily derivable from their objects

• If agent is to be SNMP manageable then it is mandatory to implement the
Internet MIB (MIB II in RFC 1157)3

3 SNMP, http://www2.rad.com/networks/1995/snmp/snmp.htm [02]

7

B. NETWORK MANAGEMENT ARCHITECTURE

The big picture of SNMP network management architecture is shown in Figure 1

and Figure 2. Figure 1 describes the hardware architecture in the SNMP network

management consisting of Network Management System (NMS), Wired and Wireless

clients. Figure 2 explains the SNMP communication software in the system.

Figure 1 – SNMP Hardware Architecture.

8

Figure 2 – SNMP Software Architecture From Ref.[02].

The models of network management that is used for the popular TCP/IP network

management are usually designed with the following key elements in Figure 3 –

Transport Mechanisms.

Figure 3 – Transport Mechanisms.

9

There are four major elements in SNMP network management:

1. Network Management Station

Network Management Station (NMS), typically a stand-alone device, provides the

interface for a human network manager to interact with the management system. The

management station has the capability to configure, monitor, analyze and control the

various components that comprise the network. Some prominent vendors offer network

management platforms which implement the role of the network management manager,

such as Hewlett-Packard OpenViewTM , IBM NetView, 3 Com Network Supervisor.

Both commercial and non-commercial SNMP Managers are available. Some of

the SNMP managers are proprietary and available with the purchased hardware. For this

experiment three SNMP Manager products were used to test the SNMP proxy agent;

Loriot, SNMPView, and 3COM Network Supervisor. The Loriot and 3COM Network

Supervisor are the full-package standard SNMP software for the enterprise while

SNMPView is an small open source software that is configurable.

a. Loriot

Loriot is a Free, GUI SNMP V1, V2c and V3 node Manager running over

MS-Windows 95/98/NT4/2000/XP small platform. Loriot is designed for managing the

SNMP for a small to large sized network. Loriot manages hosts, routers, links and all

SNMP equipment of LAN/MAN/WAN networks, and it is able to manage them through

a customizable graphic representation of the organization. Loriot supports many classic

management processes, such as customizable events polling, MIBs compiler, script query

language, network discovery, automatic report generation, etc. Events are customizable

and associated with actions through an advanced filter. Supported actions associated with

filters are Winrun, Dosrun, Wave, Syslog, reroute Trap, SMTP. Loriot supports plug ins,

like device GUIs, Cisco ISDN call management, and Cisco configuration management.

One SDK running on Visual Studio 6.00 with Wizard modules and sources is available to

create the plug in. Loriot does not use WinSnmp.dll. Instead, it uses its own SNMP API

based on a new SNMP C++ class called DSNMP. This is simple to use but very

powerful. Loriot includes a HTTP daemon module to support scalability through a

remote HTPP/JAVA console with the capacity to reroute the local events like SNMP

10

Trap through an advanced filter. In this way distributed events are displayed on the

master Loriot console.4

b. SNMPView

The SNMP View from a non-profit company in Holland

(http://www.snmpview.de/index.php) is open source SNMP manager software that is

simple to use and configure. This free software frequently queries network devices and

shows values that are readable over SNMP in a table. Thresholds can be watched and

colorized at violation. User can transform cryptic numbers in human readable text by

using a translation table. The software can write a log file with all values. All parameters

are freely configurable as a text file.

c. The 3 COM Network Supervisor

The 3Com® Network Supervisor is a powerful easy-to-use management

application that graphically discovers, maps, and displays network links and IP devices,

including 3Com NBX® telephones and some popular third-party products. It maps

devices and connections, so it can easily monitor stress levels, set thresholds and alerts,

view network events, generate reports in user-defined formats and launch device

configuration tools. Moreover when the network changes, the user can prompt the 3Com

Network Supervisor to regenerate the appropriate part of the map to ensure that the user

has current information.5

2. Management Agent

The management agent is the second active element in the management

architecture; it is the workhorse of the SNMP communication. The agent is a software

program in the network device that responds to requests for information or actions issued

by the management station. The agent may also send the station unsolicited information,

known as “Trap”. All devices in a network must have a management agent. Typically, an

agent may be embedded or "native" to the device, or alternatively be a "proxy" agent for

other protocols.

4 http://www.llecointe.com/index.html , accessed on 5 March 2003
5 http://www.3com.com/product/en_US/productlist.jsp? , access on 5 March 2003

11

A proxy agent is the program that supports devices without available SNMP

implementation (most mobile devices on the market do not have SNMP implementation)

.The proxy is an SNMP management that services requests from the management

console, on behalf of one or a number of non-SNMP devices.

3. Management Information Base (MIB)

The third part of the architecture is the information exchanged between the

manager and the agent; this is called the Management Information Base or MIB. This

information is a collection of objects or data values with each representing one aspect of

the managed device. For example, the location of the device and the number of erred

seconds in the last hour would be two different data values in the MIB. The structure and

content of the MIB are standardized across systems of a particular class, such as a bridge

MIB or DS-3 MIB. After a MIB is published as a standard, various vendors can build the

same kind of equipment that complies with the MIB being assured that they can be

managed in a TCP/IP network.

The MIB structure is standardized in SNMP as a hierarchical tree. Additions to

the tree can be easily accomplished, while traversing a tree to obtain specific information

can be done very quickly. These are important features because they encourage the use of

the MIB in the network management model and the creation of enterprise MIBs for

vendors looking to support SNMP with their own products.

The structure of Management Information (SMI) which is given in RFC 1155, is

based on the OSI SMI given in Draft proposal 2684. The latest Internet MIB ,given in

RFC 1213, is called “MIB II”. The SMI states that each managed object must have the

following elements: a name, a syntax and an encoding.

• The name, an object identifier (OID), uniquely identifies the object.

• The syntax defines the data types, such as integer or string of octets. The

syntax used for SNMP is the Abstract Syntax Notation One (ASN.1).

12

• The encoding describes how the information is associated with the

managed objects. The encoding used for SNMP is the Basic Encoding

Rules (BER).6

The popularity of SNMP has resulted in the development of standards for

storing data critical to network operation, the Management Information Base (MIB).

MIB-II, the latest generation of network management MIBs, stores data on TCP/IP

traffic, routing, configuration and errors. MIB-II has improved support for multi-protocol

devices and allows the network management system to control SNMP operation.

A Pocket PC 2002 or Windows CE 3.0 includes SNMPv2c extensible agent

support, Management Information Base (MIB) II (TCP/IP stack), Host MIB, and a

sample MIB. Because SNMP is compatible with Windows NT source code, MIBs can be

ported from the Windows NT familty.

4. Network Management Protocol

The last element of the model, the network management protocol, links the station

and the agent by specifying the rules for communication. The protocol used for the

management of TCP/IP networks is the SNMP, which uses three simple commands to

communicate:

• Get enables the station to retrieve data from the agent

• Set enables the station to set a value at the agent

• Trap that enables the agent to notify the station of an important event.

Other protocols are available, such as Internet Control Message Protocol (ICMP)

and Simple Gateway Monitoring Protocol (SMGP), but they have limited functionality

and only support a generic MIB. As a result, these two protocols are not widely used.

6 SNMP, http://www2.rad.com/networks/1995/snmp/snmp.htm [02]

13

C. NETWORK MANAGEMENT

In the rapid pace of growing technology, networks tend to be large and complex,

filled with many types of equipment from different vendors. Managing such a network is

increasingly more difficult, involving multiple management tools and protocols to

support different proprietary devices on the network. Therefore, the network

administrator needs a network management tool that can monitor the network’s

availability, utility and performance with the most industry-acceptable standards as

possible to reduce the conflict of the network management system. Network management

is the collection of tasks performed to maximize availability, performance, security and

control of a network and its resources.

The purpose of network monitoring is to gather information about the status and

behavior of network elements. Information to be gathered includes static information,

related to the configuration; dynamic information, related to events in the network; and

statistical information, summarized from dynamic information.

Typically, each managed device in the network includes an agent module

responsible for collecting local management information and transmitting it to one or

more management stations. Each management station includes network management

application software plus software to communicate with agents. Information may be

collected actively, by means of polling by the management station, or passively, by

means of event reporting by the agents.

The International Organization for Standardization (ISO) Network Management

Forum has divided network management into five functional areas:

1. Fault Management

The objective of fault monitoring is to identify faults as quickly as possible after

they occur and to identify the cause of the fault so that remedial action may be taken.

Comprehensive fault management is the most important task in network management.

Fault management tools can help increase the reliability of the network by quickly

identifying the fault, isolating the cause of the fault, and then, if possible, correcting the

fault.

14

2. Configuration Management

Configuration management deals with the initialization, modification, and

shutdown of a network. Networks are continually adjusted when devices are added,

removed, reconfigured, or updated. The process of configuration management involves

identifying the network components and their connections, collecting each device’s

configuration information, and defining the relationship between network components. In

order to perform these tasks, the network manager needs topological information about

the network, device configuration information, and control of the network component.

3. Performance Management

Performance management involves measuring the performance of a network and

its resources in terms of utilization, throughput, error rates, and response times. With

performance management information, a network manager can reduce or prevent network

overcrowding and inaccessibility. This helps provide a more consistent level of service to

users on the network, without overtaxing the capacity of devices and links.

4. Accounting Management

In the area of accounting management, network monitoring is concerned with

gathering usage information to the level of detail required for proper accounting. This

type of information helps a network manager allocate the right kind of resources to users,

as well as plan for network growth. This type of management also involves monitoring

access privileges and usage quotas of the users.

5. Security Management

Security management deals with ensuring overall security of the network,

including protecting sensitive information through the control of access points to that

information. Sensitive information is any data that an organization wants to secure, so

protecting this sensitive data from unauthorized access is a common requirement.

Security concerns can be assuaged with a well-designed and implemented security

management system.7

7 SNMP,SNMPv2,SNMPv3, and RMON1 and 2 – William Stalling, Addison-Wesley, 1999 [04]

15

All these types of functional areas are instrumental to network management.

However, the research in this thesis focuses on only two types of the functional areas :

Fault Management and Configuration Management which are the basic utility of most

SNMP application.

D. NETWORK MANAGEMENT STANDARDS

The Internet Architecture Board (IAB), which is responsible for networking

technology and protocols for the TCP/IP internetworking community, has created a

Standard Network Management Protocol (SNMP). This protocol is documented as

Request For Comments (RFCs) and is widely published.

The IAB recommends SNMP for use as a common network management protocol

with TCP/IP-based networks. Networking with TCP/IP is the most popular type of

network and internetwork. As described by RFC 1157, SNMP was initially specified in

the late 1980s with three later enhancements that solidified the role of SNMP as the

indispensable network management tool

An enhanced version of SNMP, called SNMPv2 was released in 1993 and revised

in 1995. The latest standard called SNMP3, issued in 1998, defines an overall framework

for present and future versions by adding security features to SNMP

E. SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)

Simple Network Management Protocol (SNMP) is a distributed-management

protocol. A system can operate exclusively as either an NMS or an agent, or the protocol

can perform the functions of both. When a system operates as both an NMS and an agent,

another NMS might require that the system query manage devices and provide a

summary of the information learned, or that it report locally stored management

information.8

Since SNMP is the only protocol for the management of TCP/IP networks, three

other specifications are necessary to form the foundation of the management system.

Together, these are

8 SNMP, http://www.cisco.com/unvercd/cc/td/doc/cisintwk/ito_doc/snmp.htm [6]

16

• RFC 1157: A Simple Network Management Protocol that defines the

protocol and architecture used to manage the MIB and its contents;

• RFC 1155: Structure and Identification of Management Information for

TCP/IP-based networks that describe how the MIB is defined;

• RFC 1213: Management Information Base for Network Management of

TCP/IP-based Internets: MIB-II that describe the contents of the MIB.

This application layer protocol, SNMP, is part of the Transmission Control

Protocol/ Internet Protocol (TCP/IP) protocols’ suite. It is intended to operate over the

User Datagram Protocol (UDP). The management station communicates management

information using SNMP, which is implemented on top of the UDP and IP protocols, and

a data link protocol, such as Ethernet, Token Ring, or X.25. Likewise, the agent must also

implement SNMP, UDP, IP protocols.

Several key features of SNMP important to understand are transaction-based and

datagram-oriented protocol. The protocol dictates that an action gets a response that ends

the transaction. The response is a datagram or packet of bytes of prescribed size and

format. Action by the management station, such as a GET command, will result in a

datagram response from the agent. If the transmission fails to reach its destination

address, the management station will retransmit again.

A strong focus for SNMP is Configuration and Fault Management. Since protocol

has fewer features for Security management, most SNMP management systems

concentrate on alarm and status reporting and use other methods for security. In addition,

Trap commands sent by the agent to the management station are less reliable than Get

responses because the UDP protocol is used. Nevertheless UDP does not guarantee

delivery of the message. An alarm notification or Trap from a faulty device may be lost

because the datagram failed to reach the management station. 9 However SNMP, actually

transported independently, can be implemented on other transports as well such as TCP,

direct mapping on to Ethernet MAC level, X25 protocol or ATM cell encapsulation.

9 Network Management , http://www.airlinx.com/index.cfm/id/1-11.htm [3]

17

1. SNMP Message Construct

Each SNMP package has the filed that creates a message construct. The format

includes

Version Number

Community String

One or more SNMP PDUs (data which is a sequence of PDUs associated with the

request).

The detail of a SNMP message as in Figure 4 is implemented in a UDP package

communicating on Ethernet. Each SNMP data consists of fields that depend on the type

of command and version of SNMP. See Figure 5 through Figure 8 that describe the

format for SNMP message.

Figure 4 – SNMP message From Ref.[03].

Each SNMP PDU, except Trap, has the following format:

PDU type – Specifies the type of PDU transmitted.

18

Request ID – Associates SNMP requests with response.

Error Status - Indicates error and error types.

Error Index - Associates an error with a particular object instance.

List of OIDs and their values – Associates with each variable binding a particular

object instance with its current value (with the exception of Get and GetNext requests, for

which the value is ignored)

Figure 5 – SNMPv1 Get, GetNext, Response, and Set PDUs Contain the
Same Fields From Ref.[03].

Trap PDUs have the following format

Enterprise – The types of object causing the Trap

Agent address – IP address of agent which sent the Trap

Generic Trap ID – The common standard Trap commands

Specific Trap ID – Proprietary or enterprise Trap

Time Stamp – Trap occurs in time ticks

List of OIDs and values – OIDs that may be relevant to sent to the NMS

19

Figure 6 – SNMPv1 Trap PDU From Ref.[03].

For SNMPv2, however, Trap PDU has the same field as the other commands, but

it has an additional GetBulk PDU with the a field.

Figure 7 – SNMPv2 Get, GetNext, Inform, Response, Set, and Trap PDUs
Contain the same fields From Ref.[03].

The GetBulk PDU format consists of these following elements:

PDU type – Identifies the PDU as a GetBulk operation.

Request ID – Associates SNMP requests with response.

Non repeaters – Specifies the number of object instances in the variable bindings

field that should be retrieved no more than once from the beginning of the request. This

field is used when some of the instances are scalar objects with only one variable.

Max repetitions – Defines the maximum number of times that other variables

beyond those specified by the Non repeaters field should be retrieved.

20

Variable bindings – Serves as the data field of the SNMPv2 PDU. Each variable

binding associates a particular object instance with its current value (with the exception

of Get and GetNext requests, for which the value is ignored).

Figure 8 – The SNMPv2 GetBulk PDU From Ref.[03].

2. SNMP Security

Since SNMP lacks any authentication capabilities, this results in its vulnerability

to a variety of security threats. These include masqueraded occurrences, modification of

information, message sequence and timing modifications, and disclosure.

Masqueraded occurrences consist of an unauthorized entity attempting to perform

management operations by assuming the identity of an authorized management entity.

Modification of information involves an unauthorized entity attempting to alter a

message generated by an authorized entity so that the message results in unauthorized

accounting management or configuration management operations.

Message sequence and timing modifications occur when an unauthorized entity

reorders, delays, or copies and later replays a message generated by an authorized entity.

Disclosure results when an unauthorized entity extracts values stored in managed

object, or learns of events by monitoring exchanges between managers and agents.

21

Therefore many vendors do not implement the “SET” operation because SNMP

does not have enough authentication security, thereby reducing SNMP to a monitoring

facility. However some features added to SNMPv3 including security functionality and

access control even though does not widely use yet.10

10 SNMP, http://www.cisco.com/unvercd/cc/td/doc/cisintwk/ito_doc/snmp.htm [6]

22

THIS PAGE INTENTIONALLY LEFT BLANK

23

III. SOFTWARE DEVELOPMENT TOOLS FOR PORTABLE DEVICES

A. OVERVIEW

There are many kinds of Personal Digital Assistant (PDA) devices on the market

but only two mostly dominate the market, Palm PDA and its competitor, Pocket PC.

Palm handhelds have made a big impact in the world of portable organizer and

have become extremely popular over the past few years because they are easy to use and

easy to carry. All Palm OS® devices usually come with four major standard software

applications, the address book, date book, memo pad, and To-Do list. These applications

provide enough functionality for Palm to organize people. Palm is not intended to replace

a desktop or laptop, with their full environment, but is designed to be a satellite-

computing device supporting people while they are away from their desk.

The Pocket PCs are handheld computers that go far beyond the capabilities of

traditional PDAs. Pocket PC is superior to the Palm in performance because the Pocket

PC usually has the faster processor, more memory and higher screen resolution than Palm

devices. Furthermore the Pocket PC includes the Pocket versions of familiar Microsoft

applications such as Word, Outlook and Excel so a Pocket PC user can synchronize their

work between Microsoft applications without worrying about importing to another

format.

In addition, the rest of the portable embedded operating systems have also made a

big impact on the small devices, such as Symbian, an advanced open standard operating

system for data enable mobile phones or embedded Linux, the open source operating

system that can integrated with many kinds of devices, such as networking devices, smart

phone or PDA.

B. THE POCKET PC

The Pocket PC operating system, created by Microsoft, is an evolved version of

Microsoft’s Windows CE operating system that has been around since 1996. Even though

a wide range of mobile devices could technically be considered Pocket PCs, the phrase

“Pocket PC” refers to a very specific class of devices that adheres to the hardware

24

standards set forth by Microsoft. Microsoft defines these standards because it makes the

operating system for the devices. The Pocket PC operating system should be familiar to

anyone who has experience with the Windows operating system family. In fact, the idea

behind Pocket PC is to translate the success of Windows to the handheld computer

market. The result of this translation is the Pocket PC 2002, which is now the standard

operating system for Pocket PC PDA (as of writing February 2003) 11

The Pocket PC Operating System was born under the name Windows CE in 1994

when Microsoft began developing a PDA known as WinPad. The WinPad initially was

conceived to compete with Apple Newton, a PDA that eventually failed to be a

commercial success due to numerous problems. This led Microsoft to realize that

affordable technology was not quite there to make WinPad a success. As a result,

Microsoft cancelled the WinPad project and abandoned the thought of a mobile operating

system, at the time.

 Microsoft’s latest attempt at a compact operating system, under the code name

Pegasus, was publicly unveiled as Windows CE 1.0 at Fall Comdex 1996. By trying to

use a Graphic User Interface (GUI) from the big success of Windows 95 on the Windows

CE 1.0. Pegasus was not considered a real PDA because it did not have the handwriting-

recognition software while most of the other PDAs in the market used some form of

handwriting- recognition.

Soon after Microsoft released Windows CE 2.0, Microsoft released a much

improved version, Windows CE 2.1. However both versions of the Operating System still

suffered because the users did not want to use the Windows 95 interface on anything but

their desktop or notebook computers.

The third attempt at getting Windows CE to work correctly and to be accepted by

users resulted in Windows CE 3.0 or “Pocket PC”, which was a big hit on the PDA road

of Microsoft. By changing the name and cleaning the interface, Microsoft gained the

recognizable brand with no negative history to drag it down. The Pocket PC has two

versions, Pocket PC 2000 and the latest Pocket PC 2002.

11 Using Pocket PC 2002 – Michael Morrison, Que Publishing, June 2002 [01]

25

Pocket PC 2002 represents the incremental improvement in the world of PDA

with all new clean features that fit in to the mobile devices. Microsoft has gained market

share because of the following improvements.

1. Pocket PC Structure

The Pocket PC (or Windows CE) is an object-based operating system. Every

resource, such as a process, thread, or file, that a program creates or accesses appears as a

translucent object to the application. The Object Manager performs the crucial task of

relating the data structures in the operating system memory to a translucent object handle

or identifier. In this way, a client application can only access the resource through a set of

controlled methods that require the object handle and validate the input. Additionally, the

client application cannot directly modify the operating system data structure. The

ultimate result of all these object-based protections is to impart a greater reliability to the

client application and to the operating system itself.

When a user initiates the execution of a client application, the Process Manager

comes into play. The component of the operating system creates an initial thread for the

application, called the “primary thread”, and establishes a number of important data

structures for the application, such as the initial memory heap. In fact, the process

Manager creates these resources through interactions with other components: the

Memory Manager and the Kernel.

a. Memory Manager

The allocation, deallocation and tracking of all available physical memory

are the functions that the Memory Manager performs. When the Process Manager or a

client application requests memory, the memory Manager finds the available memory,

marks the memory as being allocated, and assigns the memory to the application. Upon

release of the memory, this component simply reverses the processes, releasing the

memory for use by other client application.

For the Pocket PC, the file space comes from the available memory inside

the Pocket PC rather than an external device. Therefore, the File Manager interacts with

26

the Memory Manager to allocate the memory and then creates the data structures to

manage the file, such as the pointer to the current location being accessed in the file.

b. Kernel

The most important member of the Windows CE operating system is the

Kernel. The primary job of the Kernel is to manage and schedule the set of existing

executing threads. When the Process Manager requests the creation of an application’s

primary thread, the Kernel actually establishes the thread and creates the necessary data

structures. Of course, the allocation of the data structures occurs by interaction with the

Memory Manager. Two sets of data structures are necessary for each thread. One data

structure enables the Kernel to maintain the state of the executing thread during CPU

sharing by maintaining values such as the program counter of the thread code. The other

primary data structure is the stack that the thread uses to allocate and manage local

variables. 12

2. Pocket PC and Wireless

In the past, Pocket PC could only connect to the network and internet wirelessly

through a mobile phone, which has a built in modem, via infrared. However the new

technology of the wireless communication has changed in the past few years because of

IEEE 802.11 standard.

The popularity of the wireless networking especially the IEEE 802.11b protocol

has brought new excitement to Pocket PC handheld devices because Pocket PC can now

take the full advantage of wireless communication. Because Pocket PCs are in fact

mobile computers, Pocket PCs can connect to the network in many ways by using many

kinds of network interfaces. With the compact flash wireless card for the Pocket PC with

compact flash slot or wireless PCMCIA card for the Pocket PC with PCMCIA slot,

Pocket PCs can connect to wireless as easily as desktop or notebook computers.

Moreover most of the new versions of Pocket PCs, such as Toshiba E740 or IPAQ 5450

are integrated with 802.11b wireless.Instead of taking notebook to the Wi-Fi hotspot to

check email or use the Internet, Pocket PC can do everything that a notebook can do plus

12 Pocket PC Developer’s Guide, Bruce E. Krell Ph.D., McGraw-Hill 2002 [08]

27

it is easier to carry and to turn power on and off. In the very near future, people will use

Pocket PC as a convenience device to send wireless email or instant messaging.

3. Pocket PC Programming

The Pocket PC programming has a lot of criteria to be considered. The types of

CPU and Operating Systems are the most significant parts to analyze. In the past few

years, Pocket PCs from different venders came with different kinds of CPUs such as

NEC MIPS, which is usually used in Casio Pocket PC or Hitachi SH3 for HP Jornada.

Consequently the developers must implement an application that supports all the CPU

platforms. Moreover the users must download and install the right application for their

CPU types. However nowadays most Pocket PCs come with Intel ARM Processor or

Intel Xscale Processor which is effortless for the developer because most of the

applications written for ARM CPU are compatible with Xscale CPU.

The type of Operating System is not an immense issue for Pocket PC because

most of applications designed for Pocket PC 2000 are compatible with Pocket PC 2002

although the applications for Windows CE are not compatible.

 Numerous approaches exist to write the application on Pocket PC or Windows

CE operating system, but the most popular tool is the Embedded Visual Tool from

Microsoft. Java, a competitor from Sun Microsystems, is also popular among the Java

users and Web application developers. The latest tool that Microsoft hopes to compete

with Java, Microsoft .NET framework, also is a good tool combining all the good things

aspects in Embedded Visual Tools and Java.

a. Embedded Visual Tools

An Embedded Visual Tool consists of Embedded Visual Basic (EVB) and

Embedded Visual C++ (EVC); therefore, it is straightforward for the developer who is

familiar with Visual Studio application on the desktop PC. Embedded Visual Studio

version 3.0 consists of Embedded Visual Basic 3.0 and Embedded Visual C++ 3.0;

furthermore, the latest version of Embedded Visual C++, released since the middle of

2002, is version 4.0. Embedded Visual C++ 4.0 is backward compatible with Embedded

Visual C++ 3.0 and compatible with Windows CE.Net, the newest Operating System for

28

portable device from Microsoft. On the other hand, the Mobile Operating System

supported by Embedded Visual Studio 3.0 is Pocket PC 2000. In order to implement

application on Pocket PC 2002, a Pocket PC 2002 SDK is required.

However Microsoft released the new version of Embedded Visual Tool that

integrated Pocket PC 2002 SDK and Smartphone 2002 SDK on December 2002. Hence

Embedded Visual Tool is the perfect environment software to implement an application

on Pocket PC 2002 platform. (All the tools available to downloaded from

www.pocketpc.com)

b. Personal Java

Java, the other alternative for programming on Pocket PC ,which was

developed by Sun Microsystems, is a simple, object-oriented, distributed, interpreted,

robust, secure, architecture-neutral, portable, high-performance, multithreaded, dynamic,

general-purpose programming language. In order to execute Java application, Java

Runtime Environment (JRE) is required; therefore, every machine on any operating

system that has JRE could run Java Application including Pocket PC and Palm. The

“Write once run anywhere” is the advantage of Java over the other languages. There are

two Java platforms in the portable device deployed environment: Java 2 Micro Edition

(J2ME) and Personal Java.

Java 2 Platform, Micro Edition is based on the mobile platforms, such as pagers,

cell phones, and other small-scale devices. Basic J2ME is a minimalist set of Java APIs,

while profiles add additional API capabilities. The basic J2ME runtime is the Connected

Device Configuration (CDC), which contains the virtual machine and necessary pieces to

run the system.

In reality Sun Microsystems announced Personal Java prior to J2ME. Personal

Java defines a different subset of the core Java APIs for use within reduced memory

footprint devices, like tabletop screen phones, high-end PDAs, and set-top boxes. This is

used in devices typically larger than those used for J2ME but not quite up to par as

current desktop standards go.

29

 Personal Java includes most of the necessary Abstract Windowing Toolkit

(AWT) components set with support for applets as well as network connectivity. There is

even optional support for Java Database Connectivity (JDBC), Remote Method

Invocation (RMI), and compression (java.util.zip) to meet distributed programming

needs. Although Personal Java does not support the Swing component, all the provided

features are good enough for Pocket PC application development.

Sun Microsystems has discontinued supporting Personal Java since 1999;

however, Insignia, a lead company in Java-enabled mobile devices area

(http://www.insignia.com/content/products/pda.shtml) continues to develop Personal Java

and to release a product called Jeode, which helps the developer continue to employ Java

programming on embedded device.

The Jeode application environment is designed to run with a wide range of

operating systems and target processors. It currently supports operating systems, such as

Pocket PC 2002, Pocket PC 2000, Windows CE, Windows NT4, VxWorks, Linux,

ITRON, Nucleus, BSDI Unix and pSOS; and processors, such as MIPS, ARM, Intel x86,

PowerPC and Hitachi SH-3 and SH-4. As a result, Jeode is an excellent alternative to

deploy the application written in Java to the Windows CE or Pocket PC environment

because of the compact and versatile Java open source Platform.

c. .NET Compact Framework

The latest option for Pocket PC application development is the Visual Studio

.NET and .NET Compact Framework platform. By using the same idea of JRE for a

multi-platform operating system, Microsoft released the Microsoft .NET framework in

mid of 2002.

Microsoft has been successful in the desktop operating system and application

market for many years but has yet to achieve similar success in the areas of large-scale

enterprise and Internet systems, highly distributed systems, and devices. As the result, the

.NET initiative is Microsoft’s attempt to make greater inroads into this market.

Microsoft .NET is ambitious inventiveness with the goal of providing an

integrated platform for the creation, distribution and execution of applications.

30

Comparisons of Java and .NET are common. Although it is undeniable that the Java

platform provides the foundation for the primary competition that .NET will face, the

scope of the .NET scheme is much greater because of the limitation of Java in Windows

base programming. While both Java and .NET have the same slogan “write once, run

anywhere,” .NET provides a faster and more compatible application for Windows

Operating System.13

Microsoft released .NET framework for Windows Operating System in 2002 and

.NET compact framework for Windows CE and Pocket PC in 2003. The .NET

framework for other operating systems has not been released yet, even though there are a

lot of companies volunteering to develop .NET framework for other operating system.

The .NET Compact Framework is the smart device development platform, and it is the

subset of the desktop .NET framework, thus developers can easily reuse existing

programming skills and existing code throughout the device, desktop, and server

environment. Microsoft released the add on for Visual Studio .NET called Smart Device

Extensions (SDE), which let the developers implement the application for Pocket PC and

Windows CE on Visual Studio .NET. Moreover Microsoft has a plan to launch Visual

Studio .NET 2003 which will be integrated .NET Compact Framework tools in mid 2003.

4. Pocket PC and SNMP

There is little information available about the SNMP development on both Pocket

PC and Palm platforms, but Pocket PC seems more compatible with SNMP. Because

Palm OS has been targeting the enterprise environment for many years, most of the

SNMP implementation has been focused on Palm OS for the last few years. Even the big

companies in the SNMP area such as Tivoli IBM has released “Tivoi Device Manager for

Palm Computing Platform” to manage Palm devices in the enterprise, which contain both

an NMS and an extensible agent.

Most SNMP developers implement SNMP NMS for Pocket PC. For example

Netaphor, PDAlerts, SNMP manager applications run on an ARM processor. It can

discover the network managed devices’ condition and notify the manager of the situation.

So the manager can monitor the status of the network from anywhere wirelessly.

13 C# for Java Developers, Allen Jones, Microsoft press 2003 [07]

31

Windows CE does support the SNMP-agent application and the SNMP-agent

application residing in the Windows CE-based device. The SNMP-agent support that is

provided by Windows CE consists of a master agent or SNMP device, and one or more

extension agents. The master agent receivers requests from the manager, decodes them,

and delivers them to an extension agent by invoking the appropriate extension-agent

dynamic-link library (DLL). To retrieve the information that is requested, the extension

agent implements the appropriate MIB that contains the definitions of a set of managed

objects supported by the extension agent.

Windows CE supports SNMP extension-agent and utility application

programming interfaces (APIs). The SNMP extension-agent API functions define the

interface between the SNMP service and SNMP extension-agent DLLs. The SNMP

utility API functions facilitate memory management and simplify manipulation of SNMP

data structures. Windows CE 3.0 supports two versions of SNMP: SNMPv1 and

SNMPv2C. The first version of the protocol, SNMPv1, is defined by RFC 1157, RFC

115, and RFC 1212 whereas, SNMPv2C is the version of the protocol that is known as

community string-based SNMPv2. It is defined by RFC 1901, RFC 1905, and RFC 1906.

SNMP can be implemented in a Windows CE-based platform only if the Point-to-Point

Protocol (PPP) module is included in the same platform.14 However the difficulty of

implementing such an SNMP agent on Windows CE 3.0 is the developer must understand

the Windows CE operating system and C++ in depth. Moreover for this research, an

agent that can run on any Pocket PC platform needs to be implemented. Hence the agent

that is written on the third party standard framework is more practical for this research.

5. Pocket PC and ActiveX Control

The software framework for this research is implemented using the IP*Works!

ActiveX edition from nsoftware. An ActiveX Control is optimized for the Internet

application with out dependencies on external libraries. In fact an ActiveX Control is just

another term for “OLE Object” or, more specifically, “Component Object Model (COM)

Object.” In other words, a control, at the very least, is some COM object that supports the

14 Writing your own SNMP Management Information Base Microsoft Windows CE 3.0, Microsoft

Corporation, July 2000 [09]

32

IUnkown interface and is also self-registering. It usually supports many more interfaces

in order to offer functionality, but all additional interfaces can be viewed as optional and,

as such, a container should not rely on any additional interfaces being supported. By not

specifying additional interfaces that a control must support, a control can efficiently

target a particular area of functionality without having to support particular interfaces to

qualify as a control. As always with OLE, whether in a control or a container, it should

never be assumed that an interface is available, and standard return-checking conventions

should always be followed. It is important for a control or container to degrade gracefully

and offer alternative if a required interface is not available. For a control to operate well

in a variety of containers, the control must be able to assume some minimum level or

functionality in all containers. An ActiveX control object can register on a Pocket PC by

adding to the Pocket PC 2002 control manager in Embedded Visual Tool. However

Pocket PC 2002 emulator on Embedded Visual Studio has a conflict with ActiveX

component from IP*Works!, therefore the experiment has to be tested on a Pocket PC

device.15

C. IMPLEMENTING SNMP AGENT

At least three approaches are available to implement SNMP agent for Microsoft

Pocket PC. For C++ developers, Windows CE 3.0 already supports the SNMP agent-

application; therefore, the developers can follow the white paper from Microsoft “Writing

your own SNMP MIB for Microsoft Windows CE 3.0.” To implement MIB and the

SNMP agent on Pocket PC, however this subject requires high level of C++

programming skill.

The Java Dynamic Management Kit (JDMK), a product from Sun Microsystems,

can assist Java developers to create an agent application that is both an SNMP agent and

a JMX agent. This is the easiest way to implement the agent on a Windows CE based

device.

Microsoft .NET compact framework is the best choice to implement the network

application for Pocket PC because of its compact, speed and compatibility with the

15 http://msdn.microsoft.com/library/default.asp?url=/workshop/components/activex/intro.asp , access
on March 2003

33

Windows CE structure. In addition .NET compact framework is integrated with most of

the packages that developers needed. Additionally Visual Studio .NET is an excellent

tool for developers to implement the application for multiplatform operating system

because it is easy to use and consist of a large number of features. However as of

implementing such an application, the Microsoft Visual Studio .NET 2003 is a beta

version and still has some problem with communication between connected devices.

Hence Microsoft Visual Tool seems to be the most excellent software to

implementing SNMP agent on Pocket PC 2002 so far. The ActiveX control can be

registered to the Pocket PC device by adding a controller to the control manager for

Pocket PC 2002 device. The agent is written with Embedded Visual Basic (EVB) and

uses the ActiveX component from IP*Works!

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. EXPERIMENTAL DESIGN

A. OVERVIEW

The goal of this research is to implement the SNMP services on handheld devices

with 802.11 network capabilities and test the performance on several commercially

available devices. The initial objective for the experiment is to make the SNMP proxy

agent inside Pocket PC detectable on the SNMP manger. In the next step, the SNMP

manager can pull out the requested data from the MIB inside the application. In addition,

the experiment includes the performance testing of SNMP manager to communicate with

the SNMP agent over the wireless network. In the realistic working environment Pocket

PC is turn on and off occasionally, therefore it is a significant factor to test the duration of

the time that SNMP managers can discover the mobile devices on the wireless

environment. The SNMP Proxy agent application is written with Embedded Visual Basic

using an ActiveX Control from IP*Works! . This experiment used the two wireless

Pocket PCs equipped with the Intel X-Scale Processor: Toshiba E740, and HP IPAQ

5450.

B. HARDWARE ARCHITECTURE

An experimental network was created on Ethernet topology with three desktop

PCs consisting of one server and two clients (see Figure 8). The server runs Microsoft

Windows 2000 Server; both clients run Microsoft Windows 2000 Professional and

Microsoft Windows XP Professional. All devices are connected by a NETGEAR dual

10/100 speed 6 port hub. One port of the internal hub is assigned to a Linksys WAP11

Access Point (AP), connected to a wireless client using the same subnet as the wired

network. The wireless mobile devices consist of HP IPAQ 5450 and Toshiba E740. Both

communicate with the network by an 802.11b wireless access point.

36

Figure 9 – Experimental network architecture

37

C. SOFTWARE ARCHITECTURE

1. Architecture Overview

The Server, running Windows 2000 Server, is installed with three different SNMP

managers. One Windows XP professional and One Windows 2000 Professional client is

running a native SNMP agent. The portable wireless clients are tested with the proxy

SNMP agent installed as shown in Figure 10.

Figure 10 - The Software Architecture

38

2. The SNMP Agent

a. SNMP Manageable Devices

In order to use SNMP communication on a Windows CE client, both PC

clients must enable the SNMP service. Microsoft has an SNMP agent in Windows XP,

2000 (Professional) and 98. The system can be tested by using the local loop back

address of 127.0.0.1 to access the agent even if the systems are not connected to a

physical network. The step-by-step process to enable the SNMP service is described in

Appendix C.

b. Non-SNMP Manageable Devices

For non-SNMP manageable devices such as Windows 95 and Windows

CE including Pocket PC, an SNMP Proxy agent must be implemented. A proxy agent in

this experiment is written in EVB by using Microsoft Visual Tool. The frameworks for

the application are .NET framework 1.1 for desktop and ActiveX control for Pocket PC

2002: both frameworks are from IP*Works!

There are many approaches available to implement the SNMP proxy agent

for the system. A lot of supported tools and packages exist for almost every programming

language. However the majority of SNMP agent developments are focused on C++ and

Java. Typically C++ is the best choice for Windows application developer because of the

compatibility with Windows operating system. In addition Java is one of the good

alternatives to implement the system that can run on many platforms.

Nevertheless there are only a few alternative approaches to implement an

application on a limited device such as C++, Java, Visual Basic and C#. For C++

developers, SNMP++ and Agent++ (http://www.agentpp.com) are the completed tool sets

to implement an SNMP agent on Pocket PC because a Germany company has released

the subagent for Windows CE in early March 2003. Therefore a developer can use

subagent for SNMP stack in SNMP++ and Agent++ library to implement the SNMP

application.

39

For Java, there are a lot of SNMP packages that developer can use such as

a product form Advent Network Management 16 or Java Management Extensions (JMX),

(http://java.sun.com/products/JavaManagement) from Sun Microsystems. Although Java

is an excellent initiative for a Pocket PC programming, most of the SNMP Java classes

are relatively big and run extremely slow on the Pocket PC operating system.

Although C# and .NET Compact Framework seems to be the best option,

Microsoft did not release the final version of Microsoft Visual Studio .NET 2003 yet. In

additional Microsoft Visual Studio .NET 2003 still has a problem with the connected

devices as the result it is not a good choice for Pocket PC development yet. Therefore an

Embedded Visual Basic is a best choice for now because of its compatible with Pocket

PC and ActiveX control.

IP*Works! ActiveX Edition currently supports Pocket PC 2002, Pocket

PC 2000, HPC 2000, and Smart Phone. These products provide the same interfaces and

the same functionality as the corresponding desktop versions, but in an entirely different

form factor. IP*Works! for Windows CE - including Pocket PC (Windows CE V3.0) -

allows developer to build applications with Internet communications functionality

including SNMP for network management. The IP*Works! for Windows CE includes

support for the Pocket PC emulator and inclusion of Common Executable Format (CEF)

binaries. The ActiveX edition package contains 32 bit ActiveX Controls optimized for

the Internet. The controls are small and efficient, with no dependencies on external

libraries. They can be used from Visual Basic, and all other environments that support

ActiveX Control such as MS Access, FoxPro, etc. The compatibility of ActiveX control

is shown in Table 1.

16 http://www.nemoto.ecei.tohoku.ac.jp/~nitou/snmpdocs/tutorial.html

40

Operating System for Deployment

• Windows CE 3.0

Architecture of Product

• 32Bit

Tool Type

• Component

Component Type

• ActiveX (OCX)

Built Using

• ActiveX Template Library (ATL)

Business Function

• Internet Communication Components

General

 Internet Enhanced
 Includes Digital Signature
 Marked as Safe for Scripting
 Marked as Safe for Initialization
 OCX96 Compatible
 Supports Apartment Model Threading
 Microsoft Transaction Server Compatible (MTS)

Table 1 – ActiveX Compatibility From: Ref.15.

41

D. EXPERIMENTAL STRUCTURE

1. Experimental Procedure

• Enable the SNMP service on PC clients both Windows 2000 and

Windows XP Professional.

• Test whether SNMP agent on clients can communicate with all three

SNMP manager; Loriot, SNMPView, and 3COM Network Supervisor.

• Test the implemented proxy on the Windows desktop environment.

• Shutdown the SNMP service on Windows Clients, so an application can

use port 161 and 162.

• Check if the SNMP managers are able to detect the Windows devices that

turn off the SNMP service.

• Install and run the SNMP agent proxy application on Windows Clients.

• Test if the SNMP proxy agent is visible on SNMP managers.

• Test whether Pocket PCs are visible in the SNMP manager after starting

an SNMP agent on the Pocket PC device.

2. Hypothesis

It is feasible to implement SNMP services software on a handheld wireless

device. If the SNMP proxy agent, implemented on the desktop is successfully running

and visible on SNMP agent, the SNMP proxy agent on Pocket PC should be observed by

the SNMP manager as well because the same code for Pocket PC and desktop versions

are reused with the same common framework from IP*Works! If the applications use the

available limited features that work on both frameworks, both applications should get the

same result.

42

E. IMPLEMENTATION

The SNMP Proxy agent application is implemented with the architecture

described on the Figure 10 by using the SNMP Component from IP*Works!,

nsoftware.IPWorks.SNMP as described in Appendix E.

Figure 11 – SNMP Proxy Application Architecture [From: Ref.02.]

The SNMP component from IP*Works! implements a standard SNMP Agent as

specified in the SNMP RFCs. both SNMP v1 and SNMP v2c . The component provides

both encoding/decoding and transport capabilities. The SNMP agent is activated by

setting the local port to 161. SNMP object ids, types, and values are provided in arrays.

43

The SNMP proxy agent application also includes the Trap command to send the signal to

the manager. SNMP Traps are received through the Trap event and sent through the

Action property by specifying appropriate values in the various Trap properties.

The MIB in an application is written on the top of ActiveX component by

specifying an ObjID to each object such as system description has an id 1.3.6.1.2.1.1.1.0.

The entire MIB objects for this application are kept in an array consists of seven element

properties therefore an NMS can query the state of MIB by index. The SNMP Proxy

agent application contains the following fields as shown in Figure 12 the screen shot from

proxy agent prototype and Figure 13 the screen shot from Pocket Agent.

• sysDescr – the specification of the system.

o MIB ID 1.3.6.1.2.1.1.1.0

• sysObjectID – the unique ID of the system.

o MIB ID 1.3.6.1.2.1.1.2.0

• sysContact – the contact information.

o MIB ID 1.3.6.1.2.1.1.3.0

• sysName – the name of the system.

o MIB ID 1.3.6.1.2.1.1.4.0

• sysLocation –the location of the system.

o MIB ID 1.3.6.1.2.1.1.5.0

• sysUptime – the duration since the agent start.

o MIB ID 1.3.6.1.2.1.1.6.0

• sysService – define the service currently requested from agent: default is 0

o MIB ID 1.3.6.1.2.1.1.7.0

The last part of the application interface includes the Trap command so user can

input an IP address in the Remote Host field and be able to send Trap to a managed

station.

44

Figure 12 – The Pocket Agent Prototype for desktop.

45

Figure 13 – The Pocket Agent for Pocket PC.

46

F. EXPERIMENTAL TESTING

a. SNMP Agent Prototype Testing

All the network devices are tested for the SNMP communication by three

SNMP mangers as mentioned in Chapter IV-C. Both PC Clients are connected to the

server by specify IP address to the network management station. All managers are able to

ping SNMP and discover the agent on both PC clients. Then an SNMP Agent Prototype

running on the third device has been added to the system.

3COM Network Supervisor automatically detects all the devices and can

view the entire SNMP devices graphically including an SNMP Proxy Agent although it

can not get the name from the proxy agent as in Figure 14 because the NMS can not

query the requested MIB from an agent. Network Supervisor can also view the properties

of the entire devices except the proxy agent.

Figure 14 – 3COM Network Supervisor.

47

The Loriot can discover all the devices that connected to the NMS

manually by specifying the IP addresses. All the devices are successfully connected to the

Loriot as shown in Figure 15. The NMS can also query the system properties except for

the proxy agent because an NMS cannot complete the requested command to an agent.

The Loriot provide more detail than Network Supervisor as in Figure 16. Even though

Loriot cannot query the MIBS from SNMP Proxy Agent, the Loriot can send the SNMP

Ping to the proxy agent and receive the SNMP response back from SNMP Proxy Agent

with the name that is specified in an application as shown in Figure 17.

Figure 15 – Loriot.

48

Figure 16 – MIBS query in Loriot.

Figure 17 – SNMP Ping for Proxy Agent.

The last tested manager appears to be the most compatible to the

implemented application because the SNMPView can query all the MIBs information

from a proxy agent. Although SNMPView does not include the graphical detail, the

SNMPView output is able to view the proxy agent’s MIB over the web browser via port

8888. SNMPView can show all the MIB specifying in config file. There are 4 MIBs

49

requested for this test: System Location, System Description, System Name and System

Uptime. All the devices communicated with SNMPView are successfully query the MIBs

state from an NSM as shown in Figure 18.

Figure 18 – SNMPView.

50

b. SNMP Agent Prototype Testing Result

The tables below conclude the testing result for SNMP service on

Windows system and Proxy Agent Prototype. The result conducts with 4 major features

for SNMP Manager; SNMP Agent Visibility, Ping SNMP, MIBs Query,and Trap

detecting.

• SNMP Agent Visibility is the ability to detect the SNMP agent in

the local subnet both automate and manual.

• Ping SNMP is the ability that SNMP can ping the SNMP service

on an Agent device. This feature is available in the Loriot only.

• MIBs Query is the ability to acquire the system properties from an

Agent device.

• Trap detecting is the ability for SNMP Manager to sense the Trap

command from SNMP Agent.

Remark: In the tables Y = Yes , N = No, and N/A = Not Available

NMS/Feature Testing SNMP Visibility Ping SNMP MIBs Query Trap detecting

Network Supervisor Y N/A Y N/A

Loriot Y Y Y Y

SNMPView Y N/A Y Y

Table 2 – Compatibility test result from native agent.

NMS/Feature Testing SNMP Visibility Ping SNMP MIBs Query Trap detecting

Network Supervisor Y N/A N N/A

51

Loriot Y Y N Y

SNMPView Y N/A Y N

Table 3 – Compatibility test result from proxy agent.

c. PocketAgent Testing

An SNMP proxy agent for Pocket PC is written on Embedded Visual

Basic, which has a Pocket PC 2002 Emulator, integrated. Therefore an application can be

tested on an Emulator before connected to a real device. However the ActiveX control

component from IP*Works! has a connection problem with x86 platform Emulator. As

the result, all the Pocket PC experiments are conducted on the Pocket PC devices.

An SNMP proxy agent on PC is translated in to Pocket PC edition. Then

an SNMP agent Pocket PC version is packed to a CAB file to install in to Pocket PC. The

Pocket PCs is connected to the wireless network, and start an SNMP agent application.

The 3COM Network Supervisor can automatically discover the Pocket PC

agent within the local subnet. An NMS then can monitor the status of the connected

devices as shown in Figure 19.

52

Figure 19 – 3COM Network Supervisor Pocket PC.

The SNMP agent Pocket PC can be added to the Loriot manually by

specify IP address. The NMS can ping the SNMP agent on the Pocket PC device as

shown in Figure 20 and 21. However the MIBs from Pocket Agent can not complete the

request from NMS. The SNMP agent can successfully send Trap command to the

manager. However a Loriot cannot query the MIB properties from an agent.

53

Figure 20 – SNMP Ping response from Loriot.

Figure 21 – Added device in Loriot.

54

An SNMPView cannot detect SNMP agent on Pocket PC because the

problem with SNMP standard therefore an SNMP Manger created using IP*Works!

component has been used to test the SNMP agent because an SNMP agent is not fully

compatible with the tested SNMP managers. An SNMP manager from IP*Works! is able

to automatically discover an SNMP agent, moreover it can query the MIB properties in

Pocket PC as shown in Figure 21. An agent can also send Trap command to the manger

by input the remote host in Pocket PC agent. The testing result is shown in Table 4.

Figure 22 – SNMP Manger from IP*Works!

55

NMS/Feature Testing SNMP Visibility Ping

SNMP

MIBs Query Trap detecting

Network Supervisor Y N/A N N/A

Loriot Y Y N Y

SNMPView N N/A N N

IP*Works! Y N/A Y Y

Table 4 – An SNMP proxy agent Pocket PC test result.

G. SUMMARY

This chapter describes the experimental design and testing result. An SNMP

proxy agent running on desktop PC seems to get the same result as the standard SNMP

service on Windows 2000 and XP Professional. However after migrating an SNMP agent

from desktop PC to Pocket PC version, the SNMP agent capabilities were reduced due to

the limitation of framework and device because the component in Windows CE

development is the subset of Windows development framework. As the result some

component in Windows CE edition cannot use full functionality as Windows desktop.

More over the performance of the Pocket PC is less than desktop PC in the aspect of

speed, wireless signal and delay.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

V. CONCLUSION

A. SUMMARY

Many problems arise in wireless mobile devices due to the communication

between SNMP applications that rely on different platforms. Some platforms are

proprietary solutions that do not comply with the open industry standards and cannot

interoperate with any network device other than their own products. This is a problem for

network managers because the network may include equipment and software from

different vendors that do not subscribe to the same proprietary platform. These devices

cannot be managed by the management system; the manager is “blind” to these devices’

activity and performance. The proxy SNMP agent that conforms to the open standard

must be implemented in order to communicate with the standard SNMP manager.

B. CASE STUDY

In the past there were some research explained how to solve the problem between

a Pocket PC and SNMP. One of the solutions offered is Embedded Linux. Several SNMP

applications are available for Linux platform such as NET-SNMP, making the

developers’ job easier when implementing an SNMP agent for the Linux and using the

Embedded Linux on a Pocket PC. Even though somewhat impractical having Linux OS

on the Pocket PC device, it is easier to format Pocket PC OS to Linux rather than to

implement it, such as a SNMP agent for Pocket PC. This case study is ideal for the

developers familiarize with Linux OS and for the organizations using the Linux platform

and requiring the portable device to communicate with the server.

C. FUTURE RESEARCH

While this thesis concentrated on the possibility of using Microsoft Visual Tool

and IP*Works! Framework, other areas of programming and tools are available that can

implement the system. However IP*Works! is a complete tool set for implementing an

internet application on many platforms. The first alternative solution is C# and Microsoft

.NET Compact Framework that seems to be the most compatible and practical for

Windows software implementation; therefore, a C# version of SNMP agent and SNMP

manger should be implemented on .NET framework and .NET compact framework. This

58

results in a full SNMP system that can be set up on any device that supports .NET

strategies, such as Windows CE or SmartPhone following the standard. Java is the other

alternative area that should be implemented and tested for the SNMP application because

Java is a versatile and flexible language that can run on the other portable device

platforms, such as Palm and Symbian.

A MIB query feature in this research application is not fully functional and needs

to be addressed to conform with the open standard. Moreover an SNMP agent should run

in the background of the Pocket PC so that the agent will start up every time the user

turns on the system.

In addition, the Pocket PC competitor, Palm OS, the most popular personal digital

assistants, is the other area to be studied. The most difficult and challenging part of

implementing such an SNMP system on a Palm device is the size of the application and

available SNMP package to use. On the other hand, other embedded operating systems

such as Symbian, Orange or Embedded Linux, are still the other areas that should be

studied.

59

 APPENDIX A. SOURCE CODE

Appendix A consists of two source files: ProxyAgentPrototype.cs is written in C#
and PocketAent.vb in Embedded Visual Basic.

ProxyAgentPrototype.cs

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
namespace SnmpAgent
{
/// <summary>
/// Summary description for Form1.
/// </summary>
public class SnmpAgent : System.Windows.Forms.Form
{
internal System.Windows.Forms.Button cmdSendTrap;
internal System.Windows.Forms.Button cmdListen;
internal System.Windows.Forms.Label Label6;
internal System.Windows.Forms.Label Label8;
internal System.Windows.Forms.Label Label9;
internal System.Windows.Forms.Label Label5;
internal System.Windows.Forms.Label Label4;
internal System.Windows.Forms.Label Label3;
internal System.Windows.Forms.Label Label2;
internal System.Windows.Forms.TextBox txtRemHost;
internal System.Windows.Forms.TextBox txtOIDVal5;
internal System.Windows.Forms.TextBox txtOIDVal4;
internal System.Windows.Forms.TextBox txtOIDVal3;
internal System.Windows.Forms.TextBox txtOIDVal2;
internal System.Windows.Forms.TextBox txtOIDVal1;
internal System.Windows.Forms.TextBox txtOIDVal0;
private nsoftware.IPWorks.Snmp snmp1;
private System.Timers.Timer timer1;
private int sysUpTime = 0;
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components = null;
public SnmpAgent()

60

{
//
// Required for Windows Form Designer support
//
InitializeComponent();
//
// TODO: Add any constructor code after InitializeComponent call
//
snmp1.LocalPort = 161; // act as agent
}
/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing)
{
if (components != null)
{
components.Dispose();
}
}
base.Dispose(disposing);
}

Windows Form Designer generated code
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.Run(new SnmpAgent());
}
private void cmdListen_Click(object sender, System.EventArgs e)
{
if (snmp1.Active) {
sysUpTime = 0;
txtOIDVal2.Text = sysUpTime.ToString();
} else {
snmp1.RemoteHost = txtRemHost.Text;
}
snmp1.Active = !snmp1.Active;
timer1.Enabled = snmp1.Active;
cmdListen.Text = snmp1.Active ? "Stop Listening" : "Start Listening";

61

}
private void cmdSendTrap_Click(object sender, System.EventArgs e)
{
bool initialState = snmp1.Active;
snmp1.Reset();
snmp1.TrapEnterprise = txtOIDVal1.Text;
snmp1.TrapGenericType = nsoftware.IPWorks.SnmpTrapGenericTypes.
tgtEnterpriseSpecific;
snmp1.TrapSpecificType = 777;
snmp1.TrapTimeStamp = System.Int32.Parse(txtOIDVal2.Text);
snmp1.SendTrap();
if (!initialState) snmp1.Active = false;
}
private void timer1_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
sysUpTime += 1;
txtOIDVal2.Text = sysUpTime.ToString();
}
private void snmp1_OnGetRequest(object sender, nsoftware.IPWorks.
SnmpGetRequestEventArgs e)
{
snmp1.RemoteHost = e.SourceAddress;
snmp1.RemotePort = e.SourcePort;
for (int i = 1; i <= snmp1.ObjCount; i++){
SetOIDVals(GetIndex(snmp1.ObjId[i]), i);
}
snmp1.SendGetResponse();
snmp1.Reset();
}
private void snmp1_OnGetNextRequest(object sender, nsoftware.IPWorks.
SnmpGetNextRequestEventArgs e)
{
snmp1.RemoteHost = e.SourceAddress;
snmp1.RemotePort = e.SourcePort;
int OIDidx = GetIndex(snmp1.ObjId[1]) + 1;
if (OIDidx >= 0 && OIDidx < 8){ //within OID value range
snmp1.ObjId[1] = "1.3.6.1.2.1.1." + OIDidx.ToString() + ".0";
SetOIDVals(OIDidx, 1);
snmp1.SendGetResponse();
snmp1.Reset();
}
}
private void snmp1_OnSetRequest(object sender, nsoftware.IPWorks.
SnmpSetRequestEventArgs e)
{

62

for (int i = 1; i <= snmp1.ObjCount; i++)
{
int OIDidx = GetIndex(snmp1.ObjId[i]);
switch(OIDidx)
{
case 1: txtOIDVal0.Text = snmp1.ObjValue[i];break;
case 2: txtOIDVal1.Text = snmp1.ObjValue[i];break;
case 3: txtOIDVal2.Text = snmp1.ObjValue[i];break;
case 4: txtOIDVal3.Text = snmp1.ObjValue[i];break;
case 5: txtOIDVal4.Text = snmp1.ObjValue[i];break;
case 6: txtOIDVal5.Text = snmp1.ObjValue[i];break;
case 7: txtOIDVal6.Text = snmp1.ObjValue[i];break;
}
}
snmp1.Reset();
}
private int GetIndex(string OID)
{
switch(OID)
{
case "1.3.6.1.2.1.1.1.0": return 1;
case "1.3.6.1.2.1.1.2.0": return 2;
case "1.3.6.1.2.1.1.3.0": return 3;
case "1.3.6.1.2.1.1.4.0": return 4;
case "1.3.6.1.2.1.1.5.0": return 5;
case "1.3.6.1.2.1.1.6.0": return 6;
case "1.3.6.1.2.1.1.7.0": return 7;
default: return 0;
}
}
private void SetOIDVals(int OIDidx, int Index)
{
snmp1.Community = "public";
switch(OIDidx)
{
case 1: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.
otOctetString;break;
case 2: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.otObjectId;
break;
case 3: snmp1.ObjType[Index] =

nsoftware.IPWorks.SnmpObjTypes.otTimeTicks;
break;
case 4: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.
otOctetString;break;
case 5: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.

63

otOctetString;break;
case 6: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.
otOctetString;break;
case 7: snmp1.ObjType[Index] = nsoftware.IPWorks.SnmpObjTypes.otInteger;
break;
default: snmp1.ErrorStatus = 2; return;
}
switch(OIDidx)
{
case 1 : snmp1.ObjValue[Index] = txtOIDVal0.Text;break;
case 2 : snmp1.ObjValue[Index] = txtOIDVal1.Text;break;
case 3 : snmp1.ObjValue[Index] = txtOIDVal2.Text;break;
case 4 : snmp1.ObjValue[Index] = txtOIDVal3.Text;break;
case 5 : snmp1.ObjValue[Index] = txtOIDVal4.Text;break;
case 6 : snmp1.ObjValue[Index] = txtOIDVal5.Text;break;
case 7 : snmp1.ObjValue[Index] = txtOIDVal6.Text;break;
}
}
}
}

PocketAgent.vb

Form1 - 1
Option Explicit
Dim Listening As Boolean
Dim sysUpTime As Integer
Dim txtOIDVal(8) As TextBox
Private Sub Form_Load()
txtOIDVal0.Text = "Pocket PC"
End Sub
Private Sub cmdSendTrap_Click()
SNMP1.Reset
SNMP1.TrapEnterprise = txtOIDVal(1).Text
SNMP1.TrapGenericType = tgtEnterpriseSpecific
SNMP1.TrapSpecificType = 777
SNMP1.TrapTimeStamp = CLng(txtOIDVal(2).Text)
SNMP1.SendTrap
End Sub
Private Sub Timer1_Timer()
sysUpTime = sysUpTime + 1
txtOIDVal(2).Text = sysUpTime
End Sub
Private Sub SNMP1_GetNextRequest(RequestId As Long, Community As String,

SourceAddress As String, Sour

64

cePort As Integer)
Dim OIDidx As Integer
SNMP1.RemoteHost = SourceAddress
SNMP1.RemotePort = SourcePort
OIDidx = GetIndex(SNMP1.ObjId(1)) + 1
If OIDidx >= 0 And OIDidx < 8 Then
SNMP1.ObjId(1) = "1.3.6.1.2.1.1." & OIDidx & ".0"
SetOIDVals OIDidx, 1
SNMP1.SendGetResponse
SNMP1.Reset
End If
End Sub
Private Sub SNMP1_GetRequest(RequestId As Long, Community As String,

SourceAddress As String, SourcePo
rt As Integer)
Dim i As Integer
SNMP1.RemoteHost = SourceAddress
SNMP1.RemotePort = SourcePort
For i = 1 To SNMP1.ObjCount
SetOIDVals GetIndex(SNMP1.ObjId(i)), i
Next i
SNMP1.SendGetResponse
SNMP1.Reset
End Sub
Private Sub SNMP1_SetRequest(RequestId As Long, Community As String,

SourceAddress As String, SourcePo
rt As Integer)
Dim i, OIDidx As Integer
For i = 1 To SNMP1.ObjCount
OIDidx = GetIndex(SNMP1.ObjId(i))
If OIDidx > 0 Then txtOIDVal(OIDidx - 1).Text = SNMP1.ObjValue(i)
Next i
SNMP1.Reset
End Sub
Private Sub cmdListen_Click()
Form1 - 2
'Toggle listening, initialize
Listening = Not Listening
If Listening Then
SNMP1.LocalPort = 161
SNMP1.RemoteHost = tRemHost.Text
SNMP1.Active = True
cmdListen.Caption = "Stop Agent"
Timer1.Enabled = True
Else

65

SNMP1.Active = False
Timer1.Enabled = False
sysUpTime = 0
txtOIDVal(2).Text = sysUpTime
cmdListen.Caption = "Start Agent"
End If
End Sub
Private Sub SetOIDVals(ByVal OIDidx As String, Index As Integer)
SNMP1.Community = "public"
Select Case OIDidx
Case 1: SNMP1.ObjType(Index) = otOctetString
Case 2: SNMP1.ObjType(Index) = otObjectId
Case 3: SNMP1.ObjType(Index) = otTimeTicks
Case 4: SNMP1.ObjType(Index) = otOctetString
Case 5: SNMP1.ObjType(Index) = otOctetString
Case 6: SNMP1.ObjType(Index) = otOctetString
Case 7: SNMP1.ObjType(Index) = otInteger
Case Else:
SNMP1.ErrorStatus = 2
End Select
If SNMP1.ErrorStatus = 0 Then
SNMP1.ObjValue(Index) = txtOIDVal(OIDidx - 1).Text
End If
End Sub
Private Function GetIndex(ByVal OID As String) As Integer
Select Case OID
Case "1.3.6.1.2.1.1.1.0": GetIndex = 1
Case "1.3.6.1.2.1.1.2.0": GetIndex = 2
Case "1.3.6.1.2.1.1.3.0": GetIndex = 3
Case "1.3.6.1.2.1.1.4.0": GetIndex = 4
Case "1.3.6.1.2.1.1.5.0": GetIndex = 5
Case "1.3.6.1.2.1.1.6.0": GetIndex = 6
Case "1.3.6.1.2.1.1.7.0": GetIndex = 7
Case Else: GetIndex = 0
End Select
End Function
Form1 - 1
VERSION 5.00
Object = "{53337303-F789-11CE-86F8-0020AFD8C6DB}#1.0#0";

"snmp50.ocx"
Begin VB.Form Form1
Appearance = 0 'Flat
BackColor = &H80000005&
Caption = "PocketAgent"
ClientHeight = 3615

66

ClientLeft = 60
ClientTop = 840
ClientWidth = 3480
ForeColor = &H80000008&
ScaleHeight = 3615
ScaleWidth = 3480
ShowOK = -1 'True
Begin VBCE.Timer Timer1
Left = 360
Top = 0
_cx = 847
_cy = 847
Enabled = -1 'True
Interval = 0
End
Begin VBCE.CommandButton cmdSendTrap
Height = 255
Left = 120
TabIndex = 3
Top = 3360
Width = 3255
_cx = 5741
_cy = 450
BackColor = 12632256
Caption = "Send Trap"
Enabled = -1 'True
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
Style = 0
End
Begin VBCE.TextBox tRemHost
Height = 255
Left = 1320
TabIndex = 4
Top = 3000
Width = 1815
_cx = 3201
_cy = 450

67

BackColor = -2147483643
BorderStyle = 1
Enabled = -1 'True
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = -2147483640
Text = "255.255.255.255"
Alignment = 0
HideSelection = -1 'True
Locked = 0 'False
MaxLength = 0
MultiLine = 0 'False
Form1 - 2
PasswordChar = ""
ScrollBars = 0
End
Begin VBCE.TextBox txtOIDVal
Height = 255
Left = 1320
TabIndex = 2
Top = 480
Width = 1815
_cx = 3201
_cy = 450
BackColor = -2147483643
BorderStyle = 1
Enabled = -1 'True
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = -2147483640
Text = "Pocket PC "

68

Alignment = 0
HideSelection = -1 'True
Locked = 0 'False
MaxLength = 0
MultiLine = 0 'False
PasswordChar = ""
ScrollBars = 0
End
Begin VBCE.Label Label1
Height = 255
Left = 0
TabIndex = 1
Top = 480
Width = 1095
_cx = 1931
_cy = 450
AutoSize = 0 'False
BackColor = -2147483643
BackStyle = 1
BorderStyle = 0
Caption = "sysDescr"
Enabled = -1 'True
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
ForeColor = -2147483640
Alignment = 0
UseMnemonic = -1 'True
WordWrap = 0 'False
End
Begin SNMPLibCtl.SNMP SNMP1
Left = 0
Top = 0
Community = "public"
InBufferSize = 2048
LocalPort = 0
OutBufferSize = 2048
RemoteHost = ""
RemotePort = 0

69

SNMPVersion = 1
Form1 - 3
WinsockLoaded = -1 'True
End
Begin VBCE.CommandButton cmdListen
Height = 285
Left = 600
TabIndex = 0
Top = 120
Width = 2745
_cx = 4842
_cy = 503
BackColor = 12632256
Caption = "Start Agent"
Enabled = -1 'True
BeginProperty Font {0BE35203-8F91-11CE-9DE3-00AA004BB851}
Name = "Tahoma"
Size = 8.25
Charset = 0
Weight = 400
Underline = 0 'False
Italic = 0 'False
Strikethrough = 0 'False
EndProperty
Style = 0
End
End

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

 APPENDIX B. HARDWARE SPECIFICATION

Personal Computer Specification

 Computer x86 Family 6 Model 5 Stepping 1 AT/AT compatible

OS provided Microsoft Windows

RAM 261,672 KB

Hard drive capacity 4 GB

CPU Pentium II Family

Network Interface 3Com EtherLink 10/100 PCI TX NIC (3c905B-TX) (on server)

 3Com EtherLink 10/100 PCI NIC (3c905-TX)

Ports 2 USB, PS2, Serial and Parallel

Appendix B: Table 1 - Specification of Managed PCs

WAP11 Specification

 Device type Wireless access point

Compatibility Windows

Form factor External

Connectivity technology Wireless

Max range indoors / outdoors 490 ft / 1640 ft

Networking compliant standards IEEE 802.3-LAN, IEEE 802.11-LAN

Data bandwidth 2.4 GHz

Data transfer rate 11 Mbps

Data link protocol Ethernet, Fast Ethernet

Appendix B: Table 2 - Linksys WAP11 specification

Toshiba E740 is the first Pocket PC in the market that equipped with Wi-Fi due to

the popularity of the 802.11b standard. Toshiba is one of the good Pocket PC that packed

72

with all the features such as removable battery, built in compact flash slot, even though it

has a main battery leak problem and the Toshiba Company has to recalled it back to fix.

Toshiba E740 Specification

 Release date June 2002

OS provided Microsoft Pocket PC 2002

Installed RAM 64 MB

ROM installed (max) 32 MB

Weight 6.3 oz

Width 0.6 in

Depth 4.9 in

Height 3.1 in

Input device type Touch-screen

Audio input Microphone

Audio output Speaker(s)

Processor Intel PXA250 400 MHz

Modem No

Built-in devices Speaker(s), microphone, display

Display

Display type 3.5" color reflective TFT

Color support 16-bit (65K colors)

Max resolution 240 x 320

Expansion/Connectivity

Connectivity device(s) included Docking cradle

Expansion slot(s) total (free) 1 x CompactFlash Card, 1 x MultiMedia Card / SD Memory
Card

Port(s) total (free) / connector
type

1 x Wi-Fi, 1 x USB, 1 x headphone, 1 x microphone, 1 x AC
adapter

73

Wireless connectivity IrDA, Wi-Fi (IEEE 802.11b)

Power

Battery installed (max) 1 x Lithium Ion battery

Appendix B: Table 3 - Toshiba E740 Specification

HP IPAQ 5450 is the most featured loaded Pocket PC that come with built in Wi-

Fi and Bluetooth. As well as the finger print recognition so it is the solution for the large

scale enterprise.

HP IPAQ 5450 Specification

Release date November 2002

OS provided Microsoft Pocket PC 2002

Installed RAM 64 MB

ROM installed
(max)

48 MB Flash

Weight 7.1 oz

Input device type Touch-screen

Software
included

Calendar, Contacts, Task, Voice Recorder, Notes, Pocket Word, Pocket
Excel, Pocket Internet Explorer, Windows Media Player 8, Calculator,
Solitaire, Inbox, Microsoft Reader, File Explorer, MSN Messenger,
Terminal Services Client, VPN Client

Audio input Microphone

Audio output Speaker(s)

Processor Intel XScale 400 MHz

Modem No

Built-in devices Display

Display

Display type 3.8 in transreflective TFT

74

Color support 16-bit (65K colors)

Max resolution 320 x 240

Expansion/Connectivity

Connectivity
device(s)
included

Docking cradle

Expansion slot(s)
total (free)

1 x SD Memory Card

Port(s) total (free)
/ connector type

1 x IrDA, 1 x USB, 1 x serial RS-232, 1 x headphone, 1 x microphone, 1 x
AC adapter

Wireless
connectivity

Bluetooth, IrDA, Wi-Fi

Power

Battery installed
(max)

1 x Lithium Ion battery

Power supply
included

Power adapter - external

Appendix B: Table 4 - HP IPAQ 5450 Specification

75

APPENDIX C. HOW TO ENABLE SNMP SERVICE

A. ENABLE THE SNMP SERVICE

For Windows 2000/XP17

1. Login with Administrator status.

2. Open the Windows Components Wizard. To open the Windows

Components wizard, click Start, point to Settings, click Control Panel,

double-click Add/Remove Programs, and then click Add/Remove

Windows Components.

3. In Components, click Management and Monitoring Tools (but do not

select or clear its check box), and then click Details.

4. Select Simple Network Management Protocol check box, and click OK.

5. Click Next.

To ensure that the SNMP agent is installed go to the Control Panel and click on

Administrative tools, then Component Services. Highlight Services in the left frame then

scroll through the right frame to locate SNMP Service. However make sure that the

SNMP agent is running before attempting to test it. This can be determined by looking at

the status field. To ensure that the agents start up automatically right-click on SNMP

Service then choose Properties. Under the General tab set the Startup type to automatic.

Next, to set the community strings for this agent click on the Security tab then click on

Add under the accepted Community Names. Here is the field for entering a community

name. In this experiment, by disregarding the security scope, the default community

string “public” will be used.

17 Adapt from Windows 2000 help file

76

77

Appendix C: Figure 1 - SNMP configuration in Windows 2000

B. SNMP CONFIGURATION

To configure agent properties for Windows 2000/XP18

1. Open Computer Management. [Figure 2]

2. In the console tree, click Services.

3. In the details pane, click SNMP Service

4. On the Action menu, click Properties. [Figure 3]

5. On the Agent tab, in Contact, type the name of the user or administrator for this
computer. [Figure 4]

6. In Location, type the physical location of the computer or the contact.

7. Under Service, select the appropriate check boxes for this computer, and then
click OK.

Notes

• To open Computer Management, click Start, point to Settings, and click Control
Panel. Double-click Administrative Tools and then double-click Computer
Management.

• If you change existing SNMP settings, your changes take effect immediately. If
you are configuring SNMP for the first time, you must restart SNMP before these
settings take effect.

18 adapted from Microsoft Windows 2000 Help File

78

Appendix C: Figure 2 - The Computer Management Console

79

Appendix C: Figure 3 - SNMP Service Properties

80

Appendix C: Figure 4 - SNMP Service Properties - Agent Configuration

81

 APPENDIX D. APPLICATION SETUP

A. POCKET AGENT PROTOTYPE SET UP

1. Double click the set up file in Debug folder then the set up Wizard will
begin. [Figure 1]

2. Select the installation folder. The application will be created under the
specify folder, the default folder is C:\Program Files\Default Company
Name\PocketAgent\ [Figure 2]

3. Then click Next> [Figure 3]
4. Click Next>
5. The application is installed and ready to use. [Figure 4]
6. To run the program, direct to the installed folder and double click

PocketAgent.exe file.

Appendix D: Figure 1 – Set Up Wizard

82

Appendix D: Figure 2 – Select Installation Folder

83

Appendix D: Figure 3 – Confirm Installation

84

Appendix D: Figure 4 – Complete Installation

85

 APPENDIX E. SNMP COMPONENT

SNMP Component

 The SNMP control is used to implement SNMP Management Applications and SNMP Agent
Applications. (

The SNMP control implements a standard SNMP Version 1 Manager and/or Agent as
specified in RFC 1157.

The control provides both encoding/decoding and transport capabilities, making the task
of developing a custom SNMP agent or manager as simple as setting a few key properties
and handling a few events. SNMP data, such as for instance SNMP object id-s (OID-s)
are exchanged as text strings, thus further simplifying the task of handling them.

The control is activated/deactivated by first setting the LocalPort to 161 or 162,
depending on whether you want to implement an SNMP agent or SNMP manager, and
then setting the Active property. This property enables or disables sending or receiving. It
operates completely asynchronously. Messages are sent to other agents or managers by
using the Action property, and are recieved through events such as GetRequest,
GetResponse, or Trap.

SNMP object ids, types, and values are provided in arrays such as ObjId, ObjType, and
ObjValue, for both sent and received packets. ObjCount provides the number of elements
in each of the arrays. Other packet information is provided through corresponding
properties, such as Community, or RequestId, or similarly named parameters in events.

The control may behave as an SNMP agent or SNMP manager, depending on the value of
the LocalPort property. If the control listens to port 161 it may act as an SNMP agent by
responding to SNMP requests from SNMP managers, and sending traps through the
Action property. If the LocalPort is set to 162, the control listens for SNMP traps, and
may send requests to SNMP agents listening on port 161.

SNMP Traps are received through the Trap event, and may be sent through the Action
property by specifying appropriate values in the various trap properties, such as
TrapAgentAddress, TrapEnterprise, TrapGenericType, TrapSpecificType, and
TrapTimeStamp.

This control requires a Winsock 1.1 compliant TCP/IP stack. This means that the
Winsock stack installed in the system must have a version of at least 1.1. In particular,
Windows 95, 98, and NT machines with Winsock 2.0 are fully supported.

86

 PROPERTIES

Action. An action code for the control.

Active. Enables or disables sending and receiving of SNMP packets.

Community. The community string used to authenticate SNMP packets.

ErrorIndex. Index of the first variable (object) that caused an error.

ErrorStatus. Status code for outgoing 'Get-Response' packets.

InBufferSize. The size in bytes of the incoming queue of the socket.

LocalPort. The UDP port in the local host where the SNMP control listens to.

ObjCount. Number of objects in the current request.

ObjId. Array of OIDs encoded as strings.

ObjType. Array of object types.

ObjValue. Array of object values.

OutBufferSize. The size in bytes of the outgoing queue of the socket.

RemoteHost. The address of the remote host. Domain names are resolved to IP addresses.

RemotePort. The UDP port where the remote SNMP agent is listening.

RequestId. The request-id to mark outgoing packets with.

TrapAgentAddress. The address of the object generating the trap.

TrapEnterprise. The type of the object generating the trap.

TrapGenericType. The generic type of the trap being sent.

TrapSpecificType. The specific type of the trap being sent.

TrapTimeStamp. Time passed since the agent was initialized (in hundredths of a second).

LocalHost. The name of the local host. When connected, the IP address of the interface
through which the connection was made.

87

SocketHandle. The handle of the main socket used by the control.

WinsockInfo. Identifying information about the loaded Winsock stack.

WinsockLoaded. Loads and unloads Winsock on demand.

WinsockMaxDatagramSize. Size in bytes of the largest UDP datagram that can be sent or
received.

WinsockMaxSockets. Maximum number of sockets available to a single process.

WinsockPath. The path to the Winsock DLL used.

WinsockStatus. The status of the Winsock stack.

 EVENTS

GetNextRequest. Fired when a GetNextRequest packet is received.

GetRequest. Fired when a GetRequest packet is received.

GetResponse. Fired when a GetResponse packet is received.

ReadyToSend. Fired when the control is ready to send data.

SetRequest. Fired when a SetRequest packet is received.

Trap. Fired when a SNMP trap packet is received.

Error. Information about errors during data delivery.

88

THIS PAGE INTENTIONALLY LEFT BLANK

89

 LIST OF REFERENCES

[01] Michael Morrison, Using Pocket PC 2002, Que Publishing, June 2002.

[02] YoramCohen,SNMP,http://www2.rad.com/networks/1995/snmp/snmp.htm,
accessed on 20 September 2002.

[03] http://www.airlinx.com/index.cfm/id/1-11.htm , accessed on 1 February 2003.

[04] William Stalling, SNMP, SNMPv2, SNMPv3, and RMON1 and 2, Addison-
Wesley, 1999.

[05] Network Management in a Wireless Environment, white paper, Microsoft -
http://www.symbol.com/products/whitepapers/whitepapers_network_mgmt_in_wi.html ,
accessed on 20 February 2003.

[06] Simple Network Management Protocol (SNMP), Cisco System Inc. -
http://www.cisco.com/unvercd/cc/td/doc/cisintwk/ito_doc/snmp.htm, accessed on 20
February 2003.

[07] Allen Jones, C# for Java Developers, Microsoft press 2003.

[08] Bruce E. Krell PH.D., Pocket PC Developer’s Guide, McGraw-Hill 2002.

[09] Microsoft Corporation White paper, writing your own MIB for Microsoft
Windows CE 3.0, July 2002.

[10] http://computers.cnet.com/hardware/0-2709830-417-20886891.html?tag=dir ,
accessed on 3 March 2003.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

 INITIAL DISTRIBUTION LIST

1. Dudley Knox Library
Naval Postgraduate School
Monterey, California

2. Dr. Ted Lewis
Department of Computer Science
Naval Postgraduate School
Monterey, CA

3. Dr. Geoffrey Xie
Department of Computer Science
Naval Postgraduate School
Monterey, CA

4. Dr. Gurminder Singh
Department of Computer Science
Naval Postgraduate School
Monterey, CA

5. LT Jiradett Kerdsri
Supreme Headquarter
Bangkok, Thailand

92

THIS PAGE INTENTIONALLY LEFT BLANK

