1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
25 April 2003 | Technical Abstract |

4. TITLE AND SUBTITLE

Simplified Liquid Rocket Engine Performance and Weight Model

5. AUTHOR(S)

Eric Paulson, Wendel M. Burkhardt, Steve Mysko, Tim Jenkins

6. AUTHOR(S)

Eric Paulson, Wendel M. Burkhardt, Steve Mysko, Tim Jenkins

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

4847

5e. TASK NUMBER

0255

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRST
4 Draco Drive
Edwards AFB CA 93524-7160

8. PERFORMING ORGANIZATION REPORT NUMBER

AFRL-PR-ED-AB-2003-104

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory (AFMC)
AFRL/PRS
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S NUMBER(S)

AFRL-PR-ED-AB-2003-104

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT

A

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

Sheila Benner

19b. TELEPHONE NUMBER (Include area code)

(661) 275-5693

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (In-House/Contractor Publication)
FROM: PROI (STINFO) 25 Apr 2003

Eric Paulson (AFRL/PRST), Wendel M. Burkhardt, Steve Mysko & Tim Jenkins (all Advatech Pacific, Inc.), "Simplified Liquid Rocket Engine Performance and Weight Model"

2003 JANNAF CS/APS/PSHS/MSS Subcommittee Meeting
(Colorado Springs, CO, 1-5 Dec 2003) (Deadline: 17 Apr 2003 – PAST DUE) (Statement A)
Unclassified Abstract
(250-300 words; do not include figures or tables)

The Air Force Research Laboratory is developing a tool to analyze liquid propellant launch systems. This tool, called Integrated Propulsion Analysis Tool (IPAT), requires the capability to predict the weight of the vehicle components as well as the performance of the rocket engines.

For IPAT, a simplified model was developed to predict liquid rocket engine (LRE) performance and weight. The LRE model was developed to be very flexible and model a wide variety of rocket engines. The model allows the user to select the propellants used for the fuel and oxidizer from a list that includes hydrogen, hydrocarbons such as RP-1, storable propellants, and oxygen. The user can select the engine power cycle from a list that includes expander, staged combustion, gas generator, and pressure fed. Other parameters used by the model include engine thrust, chamber pressure, overall engine mixture ratio, nozzle exit area ratio, and materials of manufacture.

The model uses a combination of physical relationships and weight correlations to calculate the weight of individual rocket engine components. The model predicts liquid rocket engine performance using combustion gas properties provided by the Chemical Equilibrium with Applications (CEA) computer code.

This paper will describe the analysis approach used in the model and show comparisons of weight predictions to actual flight rocket engines.

Approved for public release; distribution unlimited.