REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

13 May 2003

3. REPORT TYPE AND DATES COVERED

FINAL REPORT 15 MAY 01 TO 14 NOV 02

4. TITLE AND SUBTITLE

ACQUISITION OF AN ALL-SOLID STATE FEMTOSECOND LASER SYSTEM

5. FUNDING NUMBERS

F49620-01-1-0319

2303/EX

61102F

6. AUTHOR(S)

Professor V.A. Apkarian

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of California, Irvine
Department of Chemistry
317B Rowland Hall
Irvine, CA 92697-2025

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NL
4015 Wilson Blvd., Suite 713
Arlington, VA 22203-1954

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

20030602 132

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approve for Public Resale: Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We have successfully constructed a rather unique femtoscenc laser system, which has already been quite productive. The system was designed around a commercial pump source, the Clark MXR-2001 system, which is a diode-pumped, additive chirp mode locked fiber laser, regeneratively amplified to produce 775 nm pulses of ~160 fs, 800 mW, at 1KHz. The output of the pump laser is split successively with 50% beam splitters, to use ~200 mW beams to pump two home-built Non-collinear Optical Parametric Amplifiers (NOPA). The latter have innovative details, to generate final outputs of 10 nJ/pulse, at 1 KHz, with pulsewidths of 10-30 fs, in the entire visible spectrum. The system enables nonlinear multicolor, multi-beam measurements, of quantum coherences, with experimental time resolution of 14 fs, in notoriously difficult measurements of 4-wave and 6-wave mixing in condensed media. The design of the NOPA is illustrated in Fig.1. The pump entering the NOPA is split between two arms, 4% is used to generate white light in a 200um sapphire disk, while the rest is used to double in a BBO x-tal, then to pump the NOPA x-tal to generate super radiance. The white light is volume matched with the superradiance on a 14” incline, and the time-spectral overlap of the chirped white light is amplified. The single delay line of TSI in the figure is sufficient to tune the color of the output. The bandwidth of the output is controlled by the chirp in the white light. Typically, bandwidths that can sustain 10 fs operation can be obtained by adjusting the white light optics. While ultrashort pulses are the aim of our setup, in many measurements longer pulses are desired. This can be managed by inserting a dispersion element in the white light arm, a water cell or an SF10 blank of variable length is used to this end.

14. SUBJECT TERMS

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std Z39.18
Designed using PerformPlus, WR/SC/DF, Oct 04
We have successfully constructed a rather unique femtosecond laser system, which has already been quite productive. The system was designed around a commercial pump source, the Clark MXR-2001 system, which is a diode-pumped, additive chirp mode locked fiber laser, regeneratively amplified to produce 775 nm pulses of ~160 fs, 800 mW, at 1 KHz. The output of the pump laser is split successively with 50% beam splitters, to use ~200 mW beams to pump two home-built Non-collinear Optical Parametric Amplifiers (NOPA). The latter have innovative details, to generate final outputs of 10 μJ/pulse, at 1 KHz, with pulsewidths of 10-30 fs, in the entire visible spectrum. The system enables nonlinear multicolor, multi-beam measurements, of quantum coherences, with experimental time resolution of 14 fs, in notoriously difficult measurements of 4-wave and 6-wave mixing in condensed media.

The design of the NOPA is illustrated in Fig. 1. The pump entering the NOPA is split between two arms, 4% is used to generate white light in a 200μm sapphire disk, while the rest is used to double in a BBO x-tal, then to pump the NOPA x-tal to generate super radiance. The white light is volume matched with the superradiance on a 14° incline, and the time-spectral overlap of the chirped white light is amplified. The single delay line of TS1 in the figure is sufficient to tune the color of the output. The bandwidth of the output is controlled by the chirp in the white light. Typically, bandwidths that can sustain 10 fs operation can be obtained by adjusting the white light optics. While ultrashort pulses are the aim of our setup, in many measurements longer pulses are desired. This can be managed by inserting a dispersion element in the white light arm, a water cell or an SF10 blank of variable length is used to this end (not shown in the figure).

We are quite proud of the system, which was built entirely by graduate students in record time, and which has already produced impressive data. As such, details of the design and performance will be published in a manuscript that is nearly complete.

---

Distance from 4% BS to BBO2: 93 cm
BBO1: 5 x 5 x 1 mm, p-Coated, 30 degree cut
BBO2: 5 x 5 x 2 mm, uncoated, 28 degree cut
DM1 = DM2: Dichroic Mirror (HR 400, HT 800)