(AASERT-97) (BMDO) Modeling & Simulation of Multiwavelength Conversion in Semiconductor Laser Optical Amplifiers for Logic, Switching, Communication

DR BLUMENTHAL

GEORGIA TECH RESEARCH CORP
GEORGIA INSTITUTE OF TECHNOLOGY
CENTENNIAL RESCH BLDG RM 246
ATLANTA GA 30332-0420

AFOSR/NE
4015 WILSON BLVD
SUITE 713
ARLINGTON VA 22203

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

This grant was an AASERT funded project that supported one graduate student in association with parent grant F49620-96-1-0168. The program achieved several wavelength conversion demonstrations via four-wave mixing in semiconductor optical amplifiers (SOAs) and computer simulation to describe multiwavelength propagation in SOAs with wavelength dependent gain and gain saturation. They studied the effect of generation of composite dynamic gratings on the FWM wavelength conversion process and demonstrated the following FWM milestones: single channel conversion of 12.5 Gbps pseudo-random bit sequence (PRBS) data, single pump/multichannel probe conversion of four 2.5 Gbps channels and simultaneous conversion of two 2.5 Gbps data channels using two spectrally segmented FWM process within a single amplifier. The later demonstration represents a significant milestone in the direction of our program objectives. The team also implemented several models for multiwave propagation in SOAs that account for wavelength dependent gain asymmetry, saturation power, small signal modulation, and pulse propagation.
AFOSR FINAL PROGRESS REPORT

Grant Number F49620-95-1-0466

Daniel J. Blumenthal
Optical Communications and Photonic Networks (OCPN) Laboratory
Georgia Institute of Technology
Atlanta, GA 30332-0250
Tel: 404-894-5168
Fax: 404-894-4700
Email: danb@ee.gatech.edu

1. Objective:
This grant is an AASERT funded project that supports one graduate in association with parent grants Grant Number F49620-96-1-0168.

2. Status of effort:
The final status of this project includes several wavelength conversion demonstrations via four-wave mixing in semiconductor optical amplifiers (SOAs) and computer simulation to describe multiwavelength propagation in SOAs with wavelength dependent gain and gain saturation. We have studied the effect of generation of composite dynamic gratings on the FWM wavelength conversion process and have demonstrated the following FWM milestones: single channel conversion of 12.5 Gbps pseudo-random bit sequence (PRBS) data, single pump/multichannel probe conversion of four 2.5 Gbps channels and simultaneous conversion of two 2.5 Gbps data channels using two spectrally segmented FWM process within a single amplifier. The later demonstration represents a significant milestone in the direction of our program objectives. We have also implemented several models for multiwave propagation in SOAs that account for wavelength dependent gain asymmetry, saturation power, small signal modulation, and pulse propagation.

3. Accomplishments/New Findings:

3.1. Distributed FEM Model
We have developed a wave propagation simulation program for an SOA using a distributed wavelength dependent gain model. Starting with the quasi-steady state carrier density equation that accounts spontaneous emission (i.e. nonradiative, radiative and Auger recombination) and stimulated emission, the total electric field is propagated in z-direction through the amplifier. We keep track of carrier density and
resulting gain and index for each distributed section in the amplifier. Complete wavelength dependence is maintained.

3.2. Carrier Density Equation and Gain Flattening

It is well known that Auger recombination is an important effect in long wavelength semiconductor devices. As opposed to other models, we do not attempt to find an analytical solution for the nonlinear carrier density equation. Instead we solved the quasi steady-state carrier density equation numerically. This makes it possible to retain the effects of Auger recombination on the carrier density. As a result, the gain flattening as a consequence of gain saturation in the amplifier can be modeled more accurately. The results of this research will be presented at the LEOS topical meeting Nov. 1997 [3].

3.2.1. Time dependent Model

We have generalized steady state model to include the temporal behavior of FWM effects in SOAs. We demonstrate fluctuations in carrier density as a result of electric fields of slightly different frequencies beating within the semiconductor material. We are currently developing a novel composite grating view of this process to aid in understanding how multiple FWM processes operate within the same SOA gain medium.

3.2.2. Two pump-probe Model

The results of a two-pump-probe model are complete and are reported in a thesis by Chris Scholz.

4. Personnel Supported:

Graduate Students: Chris Scholz
Research Engineer: Laurent Dubertrand
Postdoctoral Fellow: Nitin Kothari
Faculty: Daniel J. Blumenthal

5. Publications:

6. Interactions/Transitions:

 Chair Atlanta Chapter of the LEOS/ED 1996-1997
 Program Committee OSA Top. Mtng. on Photonics in Switching 1997
 Program Committee IEEE/LEOS WDM Component Technol. 1997

7. New discoveries, inventions, or patent disclosures.

 None

8. Honors/Awards:

 Young Investigator Award Office of Naval Research 1997
 Associate Editor IEEE Photonics Technology Letters 1997