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Abstract 

During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual 

stress is often induced in the thin films that are deposited to create these systems.  These 

stresses can cause the device to fail due to buckling, curling, or fracture.  Government 

and industry are looking for ways to characterize the stress during the deposition of thin 

films in order to reduce or eliminate device failure.  Micro-Raman spectroscopy has been 

successfully used to analyze poly-silicon MEMS devices made with the Multi-User 

MEMS Process (MUMPS®).  Micro-Raman spectroscopy was selected because it is 

nondestructive, fast and has the potential for in situ stress monitoring.  This research 

attempts to validate the use of Raman spectroscopy to analyze the stress in MEMS made 

of silicon carbide (SiC) using the Multi-User Silicon Carbide surface micromachining 

(MUSiCSM) process.  Surface interferometry of fixed-fixed beam arrays and comb drive 

resonance test are employed to determine stress and compare it to the Raman values.  

Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.  

Raman spectra of 1- to 2-µm thick 3C-SiC thin films deposited on silicon, silicon nitride, 

and silicon oxide substrates are presented as an attempt to establish a baseline spectra for 

3C-SiC, the poly-type of SiC found in MEMS made with the MUSiCSM process.  
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STRESS ANALYSIS OF SILICON CARBIDE  
MICROELECTROMECHANICAL SYSTEMS 

USING RAMAN SPECTROSCOPY 
 
 
 

Chapter 1:  Introduction 
 
 The material properties of silicon carbide (SiC) make it a prime candidate in the 

search for a better high-temperature, high-frequency, and extreme-environment 

semiconductor.  The Air Force is very interested in developing microelectromechanical 

systems (MEMS) for extreme environments to enhance the performance of aircraft 

engines, space-based platforms, and smart munitions.  The process of fabricating SiC 

MEMS often leaves undesirable stress concentrations in the thin films that make up these 

microscopic systems, resulting in failure of the device.  This thesis explores the potential 

for Raman spectroscopy to characterize these stresses, with the objective of discovering 

the best way to alleviate undesirable stress concentration in SiC MEMS. 

 

1.1 Motivation 

Since the end of World War II, the development of modern electronic devices has 

seen resounding success.  A prime example is the computer industry, where a decrease in 

the cost of manufacturing integrated circuits has put a personal computer at the tips of 

nearly everyone’s fingers.  However, the demand for solid-state devices that can perform 

their intended function in an environment other than the home or office is increasing. 

The Department of Defense (DoD) is particularly interested in more robust solid-

state control devices for use in aircraft, satellites, and munitions.  Silicon and other 
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commonly used semiconductors are limited by their operating temperature and 

mechanical properties from use in high temperature, high power, high voltage and high g-

force environments.  Modern jet aircraft rely heavily on sensors and on-board computers 

to enhance their efficiency and capabilities.  Many of these electronics monitor and 

control vital engine components and control surfaces that operate at high temperatures.  

However, due to the shock and temperature limitations of silicon-based electronics, they 

must be located in environmentally controlled areas.  This requires running wire from the 

electronics to the high temperature sensors and controls.  In some instances, fuel flowing 

into the engine compartment has been used as a coolant for these electronic devices.  But, 

these methods are less than perfect since they have led to a significant increase in weight, 

lower fuel efficiency and added complexity that has created reliability and maintenance 

problems.  SiC electronics that have a maximum operating temperature of approximately 

800° C could replace these sheltered electronics resulting in life-cycle cost savings, 

weight reduction, and increased performance and reliability. [1] 

There are many material properties that make SiC very attractive for integrated 

circuit and MEMS applications.  SiC, with a breakdown voltage that is eight times higher 

than silicon (Si), would eliminate the need to harden micro-circuitry against electro-

magnetic-pulse, directed-energy weapons, and cosmic events.  Its high operating 

temperature would allow sensors to be made that could be mounted in jet engine 

compartments.  Figure 1.1 shows the plan view of a 4-mm-wide SiC micro pressure 

sensor that can operate at temperatures up to 400° C.  [2] 
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Figure 1.1:  SiC piezo-resistive micro-pressure sensor [2] 

 

Figure 1.2 shows a typical lateral resonator fabricated by PolySiC surface 

micromachining.  The device uses suspension beams that are 2-µm-thick PolySiC by 3-

µm wide and 100-µm to 200-µm long.  With resonance operation has high as 900° C, the 

actuation voltage was as low as 30 V and resonant frequencies ranged from 30-60 kHz, 

depending on geometry.  [2] 

 

 

Figure 1.2:  PolySiC electrostatic micro-actuator [2] 

Figure 1.3 shows the swirl chamber and exit orifice of a micro-machined fuel 

atomizer. After fabrication of the atomizer pattern using Deep Reactive Ion Etching 
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(DRIE), the Si microstructure was coated with layer of SiC.  Both coated and uncoated 

atomizers were tested for erosion.  The uncoated atomizers had their edges rounded by 

erosive wear near the exit orifice edge, whereas coated atomizers showed no evidence of 

edge rounding. Additionally, uncoated atomizers are more likely to break and chip upon 

handling.  [2] 

 

 

Figure 1.3:  Micro-machined fuel atomizer conformally coated with SiC [2] 

 
In the last decade alone, SiC devices such as P-N junction diodes, Schottky 

barrier diodes, rectifiers, and MESFETs have been developed.  Each of these is capable 

of operating in the high voltage (4500 Volts), high temperature (600° C) or high 

frequency (3 GHz) range. [3]   

These are just a few of the examples of where this technology is headed.  With the 

vast number of weapon systems and satellites that rely heavily on electronics or operate 

under extreme conditions, it is not difficult to see the cost savings and strategic edge SiC 

can deliver to national defense. 
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1.2 Background 
 

This thesis constitutes a partial continuation of research begun by L.A. Starman in 

his Ph.D dissertation entitled, Characterization of Residual Stress in 

Microelectromechanical Systems (MEMS) Devices using Raman Spectroscopy.  In his 

research, he used micro-Raman spectroscopy to measure the residual and induced stresses 

in MUMPs® processed PolySi and GaAs MEMS devices.  Raman spectroscopy line and 

mapping scans were collected to obtain Raman residual stress profiles on unreleased and 

released MEMS fixed-fixed beams, cantilevers, and micro-mirror flexures.  These 

profiles were compared to finite element analysis models to assess the realization of the 

Raman stress profiles.  Finite element residual and induced stress profiles were obtained 

from MEMCAD and used to assess the viability of micro-Raman spectroscopy as an in 

situ stress measurement technique.  Micro-Raman spectroscopy was selected since it is 

nondestructive, fast and provides the potential for in situ stress monitoring.  [4] 

This thesis attempts to duplicate some of the same results but for SiC MEMS in 

place of PolySi MEMS.  FLX Micro, Inc. (formerly known as Fiberlead, Inc.) has 

developed a method similar to MUMPs® (a process whereby MEMS are machined in 

PolySi) for PolySiC.  This process is known as the MUSiCSM process and uses 

micromolding and surface micromachining techniques to form MEMS structures.  Prior 

to finishing his dissertation, Dr. Starman designed and submitted plans for test devices to 

FLX Micro, Inc. that were nearly identical to those used for the PolySi research in his 

dissertation.  These test devices included fixed-fixed beam arrays, cantilever arrays, comb 

drives, actuatable micro-mirrors, etc.   
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1.3 Approach 
 

The goal of this research is to validate a method of characterizing stress in thin 

films of SiC used to make MEMS devices.  First, several different samples of bulk SiC 

poly-types (4H, 6H, and 15R) were obtained and the Raman spectra of each were 

determined using a micro-Raman system manufactured by Renishaw, Ltd.  

Unfortunately, a sample of bulk 3C-SiC, the poly-type typically used for SiC MEMS thin 

films, was not available.  Next, Raman spectra were gathered from samples of PolySiC 

thin films on Si, Si3N4 and SiO2 substrates.  All of these had an aluminum mask in place 

on the surface of the film.  When the full MUSiCSM run was completed and arrived at 

AFIT, spectra were gathered for these chips as well, specifically on anchor points and 

along the length of cantilevers and beams.  Then, after etching and releasing the MEMS 

structures on the MUSiCSM chips, Raman spectra were collected again at the same 

locations. 

To verify the residual stress results from the Raman test, other post-release tests 

were performed to provide useful information about the material properties of the 

structures.  These tests include Zygo interferometer profiling to determine maximum 

beam length before buckling and a comb-drive resonant frequency tests.  The 

interferometry measurements (IFM) of the buckling beam arrays are used to determine 

the residual stress once a value for Young’s modulus is determined from the comb-drive 

tests. 
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1.4 Overview 

 This thesis rests upon a foundation of theory and technology in several different 

areas, all of which, when brought together, make the research possible.  In Chapter 2, a 

thorough treatment of silicon carbide, MEMS and the MUSiCSM process, thin-film stress, 

and Raman spectroscopy are set forth.  With this foundation in place, experimental 

procedures are explained in Chapter 3.  Results and the analysis of the data are presented 

in Chapter 4.  Finally, Chapter 5 includes any conclusions that can be drawn from the 

results, and several recommendations for future study are suggested.  References for each 

chapter are listed at the end of each chapter. 
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Chapter 2:  Samples 

 
 This thesis requires an understanding of several different topical areas.  These 

primarily include:  the material properties of silicon carbide (SiC), 

microelectromechanical systems (MEMS) and the Multi-user Silicon Carbide surface 

micromachining (MUSiCSM) process, thin film stress, the ambient pressure chemical 

vapor deposition (APCVD) process, micro-Raman spectroscopy, and other electronic and 

spectrographic characterization techniques.  In this chapter, the first four topical areas 

will be treated at a level that will enable the reader to understand the samples being 

examined and the implications of the research.  Micro-Raman spectroscopy will be 

treated in the following chapter as part of the experiment.   

 

2.1 Silicon Carbide 
 

For over a hundred years now, silicon carbide has been mass-produced for use as 

an industrial abrasive due to its near-diamond hardness of just over 9 on the Moh scale.  

Silicon carbide was first discovered by a Swedish scientist, Jöns Jacob Berzelius (1779-

1848), while he was trying to synthesize diamonds.  Then, in 1891, Edward Goodrich 

Acheson (1856-1931) mistakenly thought the crystals were a compound of carbon and 

aluminum, and in 1893 patented the trademark "carborundum" for the substance he had 

“discovered” and marketed as a synthetic grinding stone [3]. 

For the interest of this thesis, the most significant discovery was the 

electroluminescence of silicon carbide by the British electronics engineer Henry Joseph 

Round (1881-1966) in 1907. [3]   Many other advances in crystal growth and applications 
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have developed since silicon carbide’s initial discovery.  Only recently has it begun to 

receive serious attention as a solution for some wide-band-gap semiconductor 

applications. 

 

 

Figure 2.1:  Silicon carbide grinding stones or “carborundum” [3] 

 

It is generally accepted that a “wide” band-gap semiconductor material has an 

energy gap over 2 eV.  Other potential materials for the wide-band-gap role include GaN, 

diamond, ZnSe, and ZnO.  Table 1 compares SiC to some other common semiconductors.  

Other than 3C-SiC (also known as beta-SiC), silicon carbide grows in several different 

arrangements, of which there are about 70 hexagonal and 170 rhombohedral lattice 

crystal structures.  These are known as alpha-SiC.  The most interesting for use in 

electronic devices and MEMS are 4H, 6H, and 3C.  Figure 2.2 shows the two possible 

lattice structures. 
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Table 1:  Material properties of wide-bandgap and common semiconductors [5] 
 3C-SiC 4H-SiC 6H-SiC Α-GaN β-GaN Diamond Si GaAs 

Density  
(g/cm3) 3.17 - 3.21 6.095 - 3.52 2.326 5.32 

Lattice constant(s) 
(Å) 4.38 

a=3.09  

c=10.08 

a=3.08  

c=15.12 

a=3.18  

C=5.17 
4.520 3.566 5.431 5.85 

Melting point  
(℃) 1800(>) 1200(?) 3872 1415 1238 

Thermal 
conductivity  

(W/cm·K) 
3.9 3.7 4.9 1.3 - 6-10 1.5 0.54 

Thermal 
expansion 
coefficient 

(10-6/K) 

2.9 - 4.3 
a=5.59  

C=3.17 
3.17 1.0 2.1 6.0 

electrons 1000 900 450 440-900 - 1800 1450 8500 Mobility  
(cm2/V-

s) hole 100 100 50 - - 1400 450 400 

Eg[300K]  
(eV) 2.2 3.26 3.02 3.44 3.25 5.50 1.11 1.428 

Breakdown 
voltage  

(106/V·cm) 
2.0 3.3 3.0 5.0 - 10 0.3 0.4 

Band structure Indirect Indirect Indirect Direct Direct Indirect Indirect Direct 

Crystal Structure Zincblende Wurtzite Wurtzite Wurtzite Zincblende Diamond Diamond Zincblende

Crystal System Cubic Hexagonal Hexagonal Hexagonal cubic Cubic Cubic Cubic 

Space Group Td2-F43m P63mo P63mo P63mo  Or7-
Fd3m 

Or7-
Fd3m Td2-F43m

 

SiC exhibits a form of one-dimensional polymorphism called polytypism. SiC 

crystallizes in many different polytypes, which differ from one another only in the 

stacking sequence of a double layer.  Each double layer consists of two planes of close-

packed Si and C atoms (one Si atom lying directly over one C atom), and each successive 

double layer is stacked over the previous one in a close-packed arrangement.  Notice in 

Figure 2.2 that each silicon atom bonds with the four closest carbon atoms, and each 

carbon atom bonds with the four closest silicon atoms.   
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Figure 2.2:  Lattice structures of SiC  [6] 

 

These polytypes are designated by the form, NX-SiC, where N is the number of 

stacked layers before the pattern repeats itself and X is the crystalline arrangement.  Since 

3C-SiC is arranged in a Zinc-blende structure, it can be grown on a silicon substrate.  [2] 

Silicon, GaAs, and Ge have had the spotlight in the semiconducting realm 

because they are easier and cheaper to grow as relatively pure, bulk crystalline ingots.  

Wafers cut from these ingots are nearly defect free and readily doped with impurities in 

order to make transistors, diodes, or other electronic devices.  They are also easily etched 

with chemicals, so machining MEMS structures out of PolySi is also a relatively easy and 
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inexpensive affair.  In contrast, the material properties that make SiC such a desirable 

semiconductor also create problems in its manufacture and processing.  Hence, a great 

deal of effort and creativity has gone into finding ways to manufacture electronic devices 

and MEMS from SiC in the cheapest way possible.  Case Western Reserve University 

(CWRU) and FLX Micro, Inc. have pioneered one such effort. 

 

2.2 MEMS and the MUSiCSM process 

 The Multi-user Silicon Carbide surface micromachining (MUSiCSM) process is an 

eight-mask MEMS fabrication process using chemical vapor deposition at ambient 

pressure to deposit polycrystalline silicon carbide (PolySiC) for the structural layers.  The 

process creatively combines a few different techniques used in MEMS fabrication.  These 

include bulk micromachining, surface micromachining, micromolding, and chemical-

mechanical polishing (CMP).  This section will describe these techniques.   

 

2.2.1 SiC Use in Bulk Micromachining of Si 

Because of its outstanding electrical and mechanical properties, SiC is becoming 

the material of choice for high-temperature solid-state transducers.  With new methods 

that will be detailed in the next section, large-area silicon substrates can be used to grow 

thin films of 3C-SiC.  Being able to deposit thin films on semiconducting material is the 

first step in MEMS fabrication.  The fact that it can be done on a relatively large wafer is 

significant since this is required for batch fabrication and to be economically competitive.  

CWRU was the first to successfully deposit a spatially uniform film of 3C-SiC on a 4-
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inch (100) silicon wafer. [2]  It is upon these wafers that bulk micromachining structures 

like diaphragms and cantilevers can be created. 

 Etchants like KOH and ethylene diamine pyrochatechol (EDP), that are 

commonly used to machine PolySi layers, cannot be used to form SiC structures in the 

bulk since it is highly resistant to such corrosive fluids.  Instead, reactive ion etching 

(RIE) with a C2F6/O2 plasma and an aluminum mask is used.  First, SiC is deposited to 

the desired thickness, etched with RIE and then polished to a mirror finish.  Next it is 

cleaned and thermally oxidized.  This creates a 1.5-µm-thick layer of silicon dioxide on 

the backside of the silicon substrate and slight oxidation of the SiC surface.  The 1.5-µm-

thick layer of silicon dioxide is patterned using standard photolithography techniques to 

create an etch mask for diaphragms, beams and cantilevers.  Any silicon dioxide on the 

3C-SiC surface is removed by wet chemical etching in HF.  Finally, SiC diaphragms are 

made by etching the unmasked regions of the silicon substrate in a KOH/H2O solution.  

Figure 2.3 shows the process flow and Figure 2.4 shows an SEM image of the 

diaphragms and bridges created with this bulk micromachining technique.  [2] 

 

 

Figure 2.3:  Bulk SiC micromachining process [2] 
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Figure 2.4:  SEM image of bulk SiC micromachined structures [2] 

 

2.2.2 PolySiC Surface Micromachining 

The top surface of PolySiC can be successfully micromachined using two 

methods:  (1) using a PolySi sacrificial layer with KOH as the release etchant, and (2) 

using a SiO2 sacrificial layer with HF as the release etchant.  Both use RIE to pattern the 

PolySiC structures just like one would for the bulk case in the previous section.  Figure 

2.5 shows the process flow for the first method, and Figure 2.6 shows the process flow 

for the second method. 
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Figure 2.5:  PolySiC surface micromachining with PolySi sacrificial layer [2] 

 

The method with PolySi as the sacrificial material starts with a crystalline Si 

substrate as shown in white in Figure 2.5.  The substrate is first coated with a layer of 

SiO2 by thermal oxidation to protect the Si substrate from the KOH etch during the 

release process and to provide electrical isolation between the PolySi layer and the 

substrate.  After the SiO2 layer is completely grown, subsequent layers of PolySi and 

PolySiC are grown by chemical vapor deposition.  Finally, a 5000-Å-thick aluminum 

masking layer is deposited by sputtering.  Then, the aluminum mask is defined and 

patterned using conventional ultraviolet photolithography and wet-chemical etching, 

respectively.  This completes step (a) in Figure 2.5.  Step (b) shows PolySiC 

microstructures defined by RIE in a CHF3/O2 (97%/3%) mixture.  This etch is reasonably 

anisotropic with an etch rate of approximately 400 Å/min.  Next, the aluminum mask is 

removed using an HF solution.  Finally, the PolySiC microstructures are released by 
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selectively etching the PolySi sacrificial layer in 40 wt% KOH at 40oC; the etch rate is 

approximately 6 µm/hr.  The etching time is controlled so that the PolySi sacrificial layer 

is etched from everywhere, but the anchor regions underneath the PolySiC devices. [2] 

The second method is very similar to the first but uses only one layer of SiO2 as a 

sacrificial layer.  The Al masking and reactive ion etching of SiC is the same.  The main 

difference is that a 48% solution of HF is used to release the free standing structures by 

removing the sacrificial layer.   

There are three main reasons for using this kind of SiO2 sacrificial layer process 

instead of the PolySi sacrificial layer process previously described.  First, a CMOS-

compatible (after being passivated with nitride) release etchant (HF), which does not 

attack Si, can be used.  Second, the release layer provides electrical isolation between 

electrostatic device elements.  Finally, this process is similar to the standard PolySi 

surface micromachining process. [2] 

 

Figure 2.6:  PolySiC surface micromachining with SiO2 sacrificial layer [2] 
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2.2.3 SiC Micromolding  

Micromolding is a MEMS processing technique that uses a sacrificial material to 

create a mold.  The mold is created with standard masking and UV lithography 

techniques.  Once the mold is created, it is filled with the material from which the final 

device will be made.  Then, the mold is dissolved with a solvent and the desired structural 

part remains.  A similar technique was developed in Germany by Ehrfeld, et al. in 1986 

and is know as “Lithographie, Galvanoformung, and Abformung” or LIGA. [7].  Figure 

2.7 illustrates the LIGA process and is given as an example to assist the reader in 

understanding the micromolding process. 

 

Figure 2.7:  Sample LIGA process for metal [8] 
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Silicon carbide can be micromolded in the same manner.  First, a mold is created 

in PolySi or SiO2 with photolithography and wet etching.  Then, the mold is filled with 

3C-SiC until the mold is completely filled.  Next, the excess 3C-SiC is chemically 

mechanically polished until the surface of the mold is completely exposed.  Finally, as in 

Figure 2.7, the mold is etched away leaving the SiC structure behind. 

 

2.2.4 Chemical Mechanical Polishing 

Chemical Mechanical Polishing (CMP) is a process that employs chemical 

etching to increase the mechanical removal rate of a semiconducting material until it is 

rendered smooth, planar, and the desired thickness.  CMP is commonly used to polish 

high spots on semiconductor wafers or on films that are deposited on wafers.  This is 

often referred to as planarization. The chemical reaction that increases the mechanical 

removal rate is tailored to provide a higher removal rate of one material over another.   

SiC is particularly challenging to polish due to its chemical inertness.  

Traditionally, diamond grit compounds and water have been used to “polish” SiC wafers.  

But, this is purely a mechanical process and often leaves the surface too rough for good 

adhesion and PolySiC layer growth.  However, J. Anthony Powell (High Temperature 

Integrated Electronics and Sensors (HTIES) team at NASA) [9] and Dr. Pirouz Pirouz 

(Case Western Reserve University (CWRU)) [9] developed a CMP technique for 

removing the subsurface polishing damage prior to epitaxial growth of the single-crystal 

SiC films.  This technique uses a polishing procedure with an alkaline (pH > 10) slurry of 

colloidal silica at elevated temperatures (about 55° C).  Surfaces of SiC wafers prepared 
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with and without this type of CMP are shown in Figure 2.8 below.  [9]  Figure 2.9 shows 

the system used to polish the wafers at CWRU. 

 

Figure 2.8:  Atomic Force Microscope images of SiC wafers.  Top: As-received 
commercial wafer.  Bottom: Same wafer after CMP. [9] 

 

 

Figure 2.9:  Chemical mechanical polishing system at CWRU. [2] 
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Films grown on SiC surfaces using this method of CMP had “significantly fewer 

morphological defects than films prepared on conventionally polished wafers.  [This] 

CMP technique is still in an early state of development and much work remains before a 

commercially viable process can be produced.” [9] 

 

2.2.5 The MUSiCSM Fabrication Process 

FLX Micro, Inc. and Case Western Reserve University developed the MUSiCSM 

process to become the easiest and most cost effective means of fabricating SiC MEMS.  

The key to this is a less costly prototyping directly in SiC.  This is achieved because 

several different designs can be formed on the same wafer, thereby lowering cost through 

economy of scale.  After processing, the wafer is diced and individual designs are sent to 

those who designed them.  [10] 

This process itself creatively combines micromolding, surface micromachining, 

and CMP for the MEMS structures.  From the Multi-User Silicon Carbide (MUSiCSM) 

Design Handbook, Version 2.0, Figures 2.10 to 2.19 show schematic cross-sections that 

illustrate the MUSiCSM process in the context of building a silicon carbide (SiC) 

micromotor with a flange bearing design.  These figures are not to scale, and the films 

deposited on the backside of the wafer as a result of the chemical vapor deposition 

process are not shown.  In each step that includes photolithography, the mask name is 

noted in bold.  The SiC-0, SiC-1, and SiC-2 layers are created by micromolding and 

chemical mechanical polishing (CMP).  Only the SiC-3 is machined with the traditional 

dry etching technique known as reactive ion etching (RIE).  [10] 
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Micromolding is accomplished by depositing a sacrificial mold material (silicon 

dioxide or polysilicon) then etching a “reverse” pattern of the intended SiC structure into 

the mold material.  Next, the SiC film is deposited to fill the mold.  CMP is then 

performed to remove SiC from the “field” areas (i.e., on top of the mold), resulting in a 

planar surface.  The resulting films contain the desired pattern in SiC surrounded by the 

sacrificial layer.  The RIE technique used to form the SiC-3 layer is explained previously 

in Section 2.2.2.:  SiC Surface Micromachining. [10] 

 

 

Figure 2.10:  Step 1.  The starting substrate is a 100 mm diameter silicon 
wafer, p-type, 1-10 Ω-cm resistivity.  First, a 0.6 µm-thick layer of low-
stress silicon nitride is deposited. Next, a 0.5 µm-thick low temperature 
oxide (LTO) is deposited and patterned to create the mold for the SiC-0 
layer (mask SiC-0). The 0.5 µm-thick SiC “shield” layer (SiC-0) is then 
deposited over the oxide mold. [10] 
 
 
 

 

Figure 2.11:  Step 2.  The SiC-0 layer is polished using chemical-
mechanical polishing (CMP) until the SiC-0 is coplanar with the surface 
of the oxide mold. [10] 
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Figure 2.12:  Step 3.  A 2 µm LTO is deposited and patterned to create the 
second oxide mold for the SiC-1 layer (mask Anchor 1). Then, the 2 µm-
thick “anchor” layer (SiC-1) is deposited. Note that SiC-1 cannot be used 
as a movable structural layer. [10] 
 
 
 

 

Figure 2.13:  Step 4. SiC-1 is polished until it is coplanar with the second 
oxide surface using CMP. Note that SiC-1 is anchored to the silicon 
nitride if no SiC-0 feature is underneath. [10] 
 
 
 

 

Figure 2.14:  Step 5.  Bushings are defined and etched (using BOE, and 
therefore isotropic in nature) into the second LTO mold to a depth of 7500 
Å (mask DIMPLE). A 2 µm sacrificial polysilicon layer (Poly-1) is 
deposited and patterned to create the third mold (mask SiC-2). The 2 µm-
thick SiC-2 film is then deposited over the polysilicon mold. [10] 
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Figure 2.15:  Step 6.  SiC-2 is polished using CMP until it is coplanar with 
the polysilicon mold.  [10] 
 
 

 

Figure 2.16:  Step 7.  Poly-1 is selectively removed to open access down 
to the first oxide (mask Anchor 2). A 0.75 µm-thick oxide is deposited to 
encapsulate the SiC-2 layer. This oxide is then patterned to open up 
contact areas to SiC-2 (mask SiC2_SiC3_VIA). Then, a 1.5 µm-thick SiC 
“cap” layer (SiC-3) is deposited.  Note that the SiC-3 conformally coats 
the under etched regions created using Anchor 2. [10] 
 
 

 

Figure 2.17:  Step 8.  SiC-3 is patterned and etched using RIE (mask SiC-
3). [10] 
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Figure 2.18:  Step 9.  A 0.75 µm nickel layer (metal-1) is deposited by 
PVD to create an ohmic contact to the SiC structures. [10] 
 
 
 

 

Figure 2.19:  Step 10.  The Metal-1 is patterned and etched, and the device 
is ready for dicing and release (mask METAL-1). [10] 
 
 
“To release the structural devices, a three-step release process is required: an 

oxide removal (e.g., in HF), removal of the sacrificial polysilicon (e.g., using KOH), and 

then the final oxide is removed (e.g., in HF).”  [8]  Table 2 lists the different layers, their 

respective thicknesses and their photolithographic layer designations.  Where a mold is 

used to pattern a layer, the mold material is also listed.  From the table, “SiC-0 is used to 

create a ground plane, SiC-1 is used to anchor the upper SiC layers (and cannot be used 

to make free standing structures), and finally, both SiC-2 and SiC-3 are the structural 

layers used to create freestanding devices.” [10] 
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Table 2:  Layer names, thickness and lithography levels for the MUSiCSM 
fabrication process. [10] 

 

 

For the MUSiC-01 run, no patterning of the initial silicon nitride layer is available 

to allow for anchoring of structures directly to the substrate. Also note that any SiC or 

polysilicon depositions will deposit material on the backside of the wafer due to the 

vertical orientation of the wafers during chemical vapor deposition. [10] 

 

2.3  Sources of Thin Film Stress 
 

If the residual stress in these SiC MEMS devices is too great, it can cause 

cantilevers to flex up or down and bridges to buckle or resist flexing to a greater degree.  

Unless determined during processing, residual stress in the structures will not manifest 

itself until after the structures are released, when consequently, it is too late and the 

MEMS device would be useless for its intended purpose. 

Residual stress is a by-product of the manufacturing process.  Since the PolySiC 

lattice within the SiC structural layers is deposited on crystalline silicon, silicon nitride or 
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a silicon dioxide substrate, there is a mismatch in the lattice constants, which results in 

voids and defects.  This section will briefly explain the ambient pressure chemical vapor 

deposition (APCVD) process and the mechanism of induced stress during this process. 

 

2.3.1 Ambient Pressure Chemical Vapor Deposition (APCVD) 

An APCVD technique was developed at Case Western Reserve University to 

deposit 3C-SiC on 4-inch diameter (100) silicon substrates.  Two wafers can be loaded 

for deposition in a cold-wall, vertical-geometry, radio frequency (RF) induction-heated 

reactor (Figure 2.20).  The reaction chamber is a double-walled quartz tube with an inner 

diameter of about 170 mm.  A susceptor, which holds the silicon wafers, is mounted on a 

quartz tube, which is mounted to the base-plate of the chamber.  This piece is attached to 

a platform, which can be raised or lowered to insert or remove the susceptor from the 

chamber.  A 50-kW RF generator with a ten-turn induction coil is used to heat the 

chamber.  All gases flow into the reactor via a single line at the top of the chamber.  The 

two gases used in the process are propane (15% propane in hydrogen) and silane (5% 

SiH4 in hydrogen).  Argon is used as the purge gas since nitrogen is a donor impurity in 

SiC.  The system can deposit PolySiC layers that are undoped, or doped with phosphorus 

or boron.  All gases are vented through the base-plate. [2] 

Prior to the deposition process, the chamber is evacuated to below 100 mTorr, 

then backfilled to atmospheric pressure with ultra-high purity argon to flush the reactor of 

any gaseous contaminants.  There are three steps in the process, they are:  1) an in situ 

hydrogen etch, 2) the formation of a carbonized layer, and 3) PolySiC film growth.  

Following the final purge with argon, the reactor is filled with hydrogen and heated to 
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1000 °C to remove the polysilicon native oxide and any other contaminant on the surface 

of the silicon wafers. [2] 

Next, a carbonized layer is formed in preparation to grow SiC layers.  This is 

done by heating the reactor to 1360 °C with a constant flow of propane at 84 sccm 

(standard cubic centimeters per minute) and hydrogen at 25 slm (standard liters per 

minute).  As the hot gases pass over the surface of the wafer, the propane (C3H4) breaks 

down into hydrocarbon fragments that react with the silicon atoms on the surface, thus 

forming SiC.  Once a thin SiC film is formed, the silicon can no longer react with the 

hydrocarbons and the process must be altered to continue SiC growth. [2] 

 

 

Figure 2.20:  Ambient pressure chemical vapor deposition reaction chamber [2] 

 

In the third step, the flow of propane is reduced to 26 sccm while simultaneously 

the flow of silane (SiH4) is increased until a rate of 102 sccm is obtained.  These 

temperature and flow rates are held constant for the entire growth process.  Ceasing the 
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flow of propane and silane terminates film growth.  A flow of hydrogen is continued 

while the wafer cools.  Finally, the chamber is purged with argon. [2] 

As a side note, Figure 2.21 shows a schematic of a system at the Japan Atomic 

Energy Research Institute (JAERI) which is similar to the one used at CWRU.  By 

varying flow rates of silane, propane and hydrogen, researchers at JAERI have been able 

to grow a single crystal wafer of 3C-SiC (non-polycrystalline).  This wafer is defect free 

and capable of being used in robust memory devices capable of withstanding radioactive 

environments. [11]  

 

 
 

Figure 2.21:   Chemical vapor deposition apparatus for growth of silicon carbide 
single crystal [11] 

 

2.3.2 Induced Stress 

The residual stress found in thin films of 3C-SiC deposited on silicon or a similar 

wafer comes from two main sources; differing lattice constants and different thermal 

expansion coefficients (TEC).  Other sources include impurities introduced during the 
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deposition process, variations in the process, and interstitial atoms or vacancies in the 

crystal lattice.  Figure 2.22 illustrates the differences in the thermal expansion 

coefficients (TEC) of Si and 3C-SiC.  Since the SiC deposition process occurs at a 

temperature of 1360 °C, the chart clearly indicates that residual stress from TEC will be 

measured in the PolySiC layers. 

 

 

Figure 2.22: Thermal expansion coefficients for Si and 3C-SiC as a function of  
temperature [12] 

 
 
Finite element modeling (FEM) and empirical data from research done by CWRU 

and the US Army Research Laboratory and NASA Glenn Research Center, Cleveland, 

OH quantify the amount of stress one would expect to see in 3C-SiC on Si from lattice 

mismatch and different TEC’s.  The FEM analysis predicted 259 MPa (x106 N/m2)(247 
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MPa after etching the substrate) due to different TEC’s.  Experimental measurements 

indicated an overall residual stress of 280 MPa.  When one takes into account that there is 

an additional 30 – 40 MPa due to lattice mismatch, theses numbers agree quiet well. [12] 

Vacancies and interstitial atoms at the grain boundaries can provide a stress 

relieving mechanism as the crystalline layers grow.  From Figure 2.13, one can visualize 

that the stress through the thickness decreases as thickness increases due to defects in the 

lattice.  As growth continues, eventually the effects of lattice mismatch are significantly 

overcome as to minimize the stress through the thickness.  This is known as the critical 

thickness, tc, and is important in calculating how thick to make MEMS structures.   

 

 

Figure 2.23:  Examples of lattice defects in silicon [4] 

 

A theoretical estimate of the critical thickness can be calculated with the 

following equation [13]: 
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where b is the Berger’s vector, ν is Poisson’s ratio, β is the angle between Berger’s vector 

and the dislocation line, γ is the angle between the glide plane of the dislocation and 

substrate/epilayer interface, ς is a numerical factor which accounts for the energy of the 

dislocation (ς ≈ 4), and fo is the misfit given by [13]: 
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where asubstrate and aepilayer are the lattice constants of the substrate and deposited 

layer (or epilayer), respectively. [13] 

Of the two main sources, TEC-induced stress is the dominant factor, and efforts 

are being made to carbonize silicon at lower temperatures to reduce the amount of 

residual stress.  As a point of interest, one research group in Italy, at the Sezione Istituto 

Fotonica e Nanotecnologie, is looking to grow SiC on Si wafers via a kinetic energy 

mechanism. [14] 

 

2.4  Sample Description 
 

Fortunately, a wide variety of samples were made available for study during this 

research, and with the preceding background, a brief description of these samples should 

be adequate for the reader’s understanding. 

The first samples to be studied were pieces of bulk crystalline wafers made of 4H-

SiC, 6H-SiC, and 15R-SiC.  Unfortunately, 3C-SiC was not available in bulk crystalline 

form.  Crystalline bulk 3C-SiC is very difficult to grow and, as mentioned earlier, only 
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the group in Japan has reported success in doing so.  Figure 2.14 shows an example of 

what the 6H-SiC sample looks like.  The 15R-SiC sample looked the same, only more 

yellow-green in color.  These bulk samples were characterized with a micro-Raman 

system to establish a baseline of SiC polytype spectra.  This information is useful for 

polytype recognition and Raman-shift verification.  The Raman spectrum of a sample 

will vary somewhat between different systems, so it is important to establish a baseline 

for a specific system.  The system available for use was made by Renishaw, Ltd., and is 

described in Chapter 3. 

 

 

Figure 2.24:  6H-SiC crystal samples [3] 

The next samples to be studied were wafers of Si, SiO2, and Si with 1 to 2 µm of 

PolySiC deposited on them at CWRU via the APCVD process.  The goal here was to 

establish a baseline Raman spectra for the PolySiC used in APCVD, a process in which 

the dominate polytype should be 3C-SiC.  All of these samples had an aluminum mask 

deposited on them in preparation for etching. 

The third and final type of samples tested were MEMS test chips from the 

inaugural MUSiCSM run completed in December 2002.  Raman spectra (of anchors, 
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cantilever and beams), interferometer (Zygo), and resonance tests (on comb drives) were 

performed on the material and structures of these samples.  The results from all the tests 

will be presented at length in Chapters 3 and 4.  Figures 2.15 and 2.16 show a picture and 

an overall schematic of the chip layout, respectively. 

 

 

Figure 2.25:  Picture of MEMS structure on AFIT test die 
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Figure 2.26:  Plan view of AFIT MUSiC test die layout [15] Figure 2.26:  Plan view of AFIT MUSiC test die layout [15] 

  

2.5  Conclusion 2.5  Conclusion 

 This chapter provides a comprehensive view of the samples that were 

characterized in this thesis.  The material properties of SiC and several different 

techniques to fabricate MEMS out of SiC have been set forth.  Since this thesis is 

primarily concerned with residual stress in thin-film PolySiC, the process, APCVD, 

whereby these thin films are grown and the sources of stress due to this process have 

been thoroughly described. 

 This chapter provides a comprehensive view of the samples that were 

characterized in this thesis.  The material properties of SiC and several different 

techniques to fabricate MEMS out of SiC have been set forth.  Since this thesis is 

primarily concerned with residual stress in thin-film PolySiC, the process, APCVD, 

whereby these thin films are grown and the sources of stress due to this process have 

been thoroughly described. 
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Chapter 3:  Experiments 

 
This thesis conducted four different experiments on several different samples 

described in the previous chapter.  This section will discuss in detail those experiments to 

include background theory, setup and procedures.   

 

3.1 Raman Spectroscopy Theory 

3.1.1 Introduction 

In 1928, Venkata Raman discovered that light from a monochromatic source 

incident upon a specific material scattered, not only at the frequency of the incident light, 

but also at different frequencies.  It was later determined that this was due to a 

momentary polarization of the electrons involved in the bonds between molecules.  As 

the dipole relaxes, the molecule emits a bundle of vibrational energy called a phonon.  

This disturbance in the crystal lattice scatters the incident light based on the energy of the 

phonon.  This is also known as Stokes scattering.  Their separation from the incident 

frequency (Raleigh Scattering) is a direct measure of the vibrational frequencies of the 

sample.  Therefore, different materials will produce different scattering spectra since the 

vibrational energy of their bonds differ one from another.  From this was born the 

spectrographic technique known as Raman spectroscopy.  Figure 3.1 illustrates a 

diatomic molecule under vibration scattering an incident laser beam, and the subsequent 

scattering. 
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Figure 3.1:  Incident beam is scattered at same frequency (Rayleigh Scattering) and 
shifted frequencies (Raman Scattering) [4] 

 

Raman spectroscopy is a non-destructive, non-contact material characterization 

method.  With the advent of charge coupled device (CCD) cameras, Fourier-transform 

methods, high quality diffraction gratings, and computer analysis, this technique has 

become a simple-to-use method for materials characterization.  For example, it can be 

used to measure the stresses in the crystal lattices of certain materials.  To do so, a laser is 

focused on a sample and the incident radiation is scattered by the vibrations of the crystal 

lattice (phonons).  Residual stress in the crystal lattice will cause the phonons to vary 

proportionally to the strain in the lattice. [18]  Thus, a slight shift in the frequency of the 

scattered spectrum is also observed.  This makes Raman spectroscopy an effective way to 

monitor localized stress in MEMS devices.   

Raman spectroscopy can also be used to identify the presence of different atomic 

bonds and crystalline arrangements.  For example, the spectrum for silicon, 6H-SiC, 15R-

SiC, and 4H-SiC all look different from one another.  (Graphs of this can be found in 

Section 4.1, Raman Spectra for Bulk SiC Samples.)  In this way, a sample can be 
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“mapped” according to what type of material exists at a specific location within the 

sample.  This mapping can be further localized with the use of a microscope and other 

optics to focus the laser beam excitation source.  This is called micro-Raman 

spectroscopy, where in the beam is focused to a spot size of around 1-3 µm on the 

sample’s surface. 

 

3.1.2 Raman System Configuration 

As effective as it can be, Raman spectroscopy is not without issues that must be 

considered.  This section will describe the specific system used in this research and some 

of the issues encountered.  Figure 3.2 shows the basic setup of a Renishaw micro-Raman 

system.  The laser beam (argon-ion laser at a peak wavelength of 514.5 nm for this 

experiment) enters from the back in the lower right-hand corner of the optics case and is 

immediately expanded and reflected up to point D where it is directed to the microscope 

objective to be focused on the sample at point A.  The scattered light from the sample is 

then backscattered and collected 180° along the incident beam’s path to point D where 

the laser is filtered to reduce its intensity on the detector at point F. 

The scattered light is allowed to pass through the filter and makes its way to point 

C where a diffraction grating separates the light for detection at point F.  The CCD is 

linked to a desktop computer, and software algorithms are then used to interpret and plot 

the spectra.  These algorithms use the Bragg equation (3.1) to determine the wavelength 

of the scattered light. 

 

 37



 

Figure 3.2:  Renishaw 1000 Raman system [16] 

 

     λθ md =sin                                    (3.1) 

 

In the Renishaw system, the diffraction grating (1800 lines/mm for this 

experiment) is mounted to a servo motor at point C.  As the scattered light is collected 

from the sample, the motor slowly rotates the grating and reports the angle of rotation to 

the computer.  Figure 3.3 shows how a diffraction grating can be employed in this 

manner. 
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Figure 3.3:  How a diffraction grating separates light into different frequencies [16] 

 

The CCD simultaneously reports the intensity it sees for each degree of rotation.  

These two pieces of data are matched up and used to solve the Bragg equation (3.1) for 

wavelength (λ).  This is then converted into wave numbers (ν ) with the following 

relation for energy, where h is Planck’s constant and c is the speed of light: 

)2.3()(1 1−= cm
λ

ν  

Now, the data is ready to be plotted in graphical form.  The software can also 

perform numerical analysis such as curve smoothing, adding or subtracting two different 

spectra and other mathematical operations.  Figure 3.4 is a good example of Raman data 

in graphical form for 4H- and 3C-SiC.  Notice the sharp peaks at specific wave numbers 

could be used to distinguish the presence of two different polytypes in a given sample.  

Because of differences in the crystal arrangement, different polytypes will disperse 

phonons at different energies.  For example, Figure 3.4 shows that 3C-SiC has sharp 

peaks at 796 cm-1 for the folded transverse optical (FTO) mode and 972 cm-1 for the 
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folded longitudinal optical (FLO) mode.  Other modes that one might see in Raman 

spectroscopy are the folded transverse acoustic (FTA) and the folded longitudinal 

acoustic (FLA).  These modes can be theoretically determined with the dispersion 

relation specific for a given crystalline structure.   

 

Figure 3.4:  Raman spectra for 3C-SiC and 4H-SiC [17] 

 

3.1.3 Signal Detection Issues 

 Getting pristine results out of a Raman system is not always easy, if at all 

possible.  Several problems can give weak or ambiguous Raman lines or strong 

background noise in the collected signal.  Some of these include cosmic ray events, 

detector saturation, fluorescence, line-broadening, and penetration depth.   

 Cosmic ray events are completely random in occurrence and rather benign in 

effect.  They appear as a very sharp peak in the spectrum and are caused by high-energy 

particles passing through the detector at the time of data collection.  They are usually 
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easy to distinguish as just being out of place.  The remedy is simply to perform another 

data collection.  If the anomalous peak disappears, then it was a cosmic ray event.  If not, 

then other sources of spectral contamination must be considered.  These might include 

room light being reflected off the sample, laser back-scattering or a hot pixel in the CCD. 

[4] 

 Detector saturation often occurs when exposure time of the CCD is lengthened in 

order to bring out the Raman signal from the background noise.  This problem can be 

seen in the output as a large peak in the spectrum that abruptly drops to zero and then just 

as abruptly resumes to a high peak a few wave numbers later.  The remedy is to reduce 

exposure time or decrease laser power. 

 Fluorescence often manifests itself as high background noise, but is usually due to 

the material properties of the sample.  It is often much stronger than the weak Raman 

scattering and can be obstructive in obtaining clear Raman data.  Figure 3.5 demonstrates 

the difference between fluorescence and Raman scattering.  A confocal microscope can 

eliminate mild problems with fluorescence, but if the fluorescence is too high, then the 

only real solution is to switch excitation sources to a laser with a longer wavelength 

(lower energy) that does not excite radiative transitions in the sample. 
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Figure 3.5:  A lower energy in excitation wavelength will eliminate fluorescence [16] 

 

In comparison to spectra from solid crystals, line-broadening often occurs in 

samples with a higher degree of structural disorder or high concentrations of defects.  An 

example of this is shown in Figure 3.6 for crystalline and glassy potassium digermanate. 

 

 

Figure 3.6:  Raman spectra of crystalline and glassy potassium 
digermanate [18] 
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 The last issue to be discussed, penetration depth, is very applicable to this 

research.  All materials are more or less transparent depending on radiation wavelength.  

Since MEMS devices are made of 1-2-micron thick films, we may be limited to certain 

wavelengths as an excitation source.  If the laser excitation source has a penetration depth 

greater than the thickness of structure being inspected, the incident beam and the 

subsequent Raman scattering will extend beyond the thin film and scatter off the 

substrate.  This will contaminate the spectra with information about the substrate 

underneath the structure.  This may or may not be a bad thing, depending on what part of 

the structure is to be analyzed.  Table 3 below shows absorption coefficients (α) and 

penetration depths (α-1) for several common excitation wavelengths in the UV range for 

3C-SiC.  Unfortunately, a precise value for penetration depth in 3C-SiC at a wavelength 

of 514.5 nm is not available. 

 

Table 3:  Absorption coefficients and depth penetration for 3C-SiC [19] 
3C-SiC

300 K 2 K (estimate) Wavelength (Å) Laser 

α  (cm-1) α-1  (µm) α  (cm-1) α-1  (µm)
3250 He-Cd 3660 2.7 3480 2.9 
3336 Ar+ ion 3190 3.1 3030 3.3 
3371 N2 gas 2970 3.4 2860 3.5 
3511 Ar+ ion 2260 4.4 2160 4.6 
3540 He-Cd 2160 4.6 2070 4.8 
3550 3xQ/Nd:YAG 2120 4.7 2030 4.9 
3564 Kr+ 2070 4.8 1980 5.1 

 

 

 

 

 43



3.2 Baseline and MUSiCSM Raman Experiments 

Raman spectra can vary slightly from system to system depending on the 

calibration, quality of optics, and other system-dependent parameters.  To validate the 

system and provide a baseline of what is expected from the Raman spectra of MUSiC-01 

MEMS structures, spectra from four different SiC polytypes were collected.  For all 

scans, the diffraction grating in the Raman system described in the previous section was 

first calibrated at the dominate FLO silicon peak (520 cm-1) using a piece of polished 

silicon provided by Renishaw.  The calibration “zeros” the diffraction grating to the 

proper Raman shift according to the Bragg diffraction equation.  Scan times (10 to 70 

seconds) and parameters varied from run to run in order to optimize results and are 

included with the data in Chapter 4. 

Three of the four SiC polytypes, 4H-, 6H- and 15R-SiC, were bulk crystalline 

samples.  The fourth was PolySiC, of which the dominate polytype is assumed to be 3C-

SiC.  The 6H-SiC and 15R-SiC samples where highly crystalline, polished samples 

similar to what is shown in Figure 2.10.  Both of these were placed on a polished silicon 

wafer while the data was taken to simulate SiC deposited on a silicon wafer as is done in 

the MUSiCSM process.  These samples were approximately 1-mm thick.  The 4H-SiC was 

not transparent looking, but looked more like polished silicon.  Only one side of this 

sample was polished, which was also the side on which the scans were taken.  A wafer 

from FLX Micro, Inc. that had a 1 to 2-µm think layer of APCVD PolySiC on a silicon 

wafer substrate was used as a sample of 3C-SiC, since a bulk crystalline sample was not 

available. 
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After establishing a baseline, scans of the thickest portions of the MUSiCSM chips 

(i.e., anchor points) and of beams and cantilevers were performed.  The Raman scans on 

a particular MUSiCSM chip were performed at the same locations before and after release. 

 

3.3 Release Experiment 

In the MUSiCSM process, the final step is to “release” the SiC structures that form 

the MEMS devices by chemically etching away all the sacrificial material that forms the 

mold for the PolySiC.  This can be done with a variety of wet chemical acids or bases for 

the two different sacrificial materials, SiO2 and PolySi, used in the MUSiCSM process.  

Since the MUSiCSM process is quite new and because of possible variations in layer 

thickness, the time tables for etching away each sacrificial layer have not been clearly 

defined, but guidelines from the more developed MUMPs process should be able to used.  

The goal of this experiment is to establish a suitable procedure for the AFIT MUSiCSM 

test structures and provide other users of the MUSiCSM process with data for perfecting 

the release process.  For the SiO2 layer, a solution of 48% hydrofluoric acid (HF) at room 

temperature was used.  The equation for the reaction is as follows: 

SiO2 + 4 HF → SiF4 (non stable) + 2 H2O; to eliminate the non-stable process: 

SiF4 + 2 HF → H2[SiF6], and thus, the overall reaction is: 

SiO2 + 6 HF → H2SiF6 + 2 H2O .    [7,20] 

For the PolySi layer, two fundamentally different etching processes were tried: 

isotropic and anisotropic wet etching.  The isotropic etch is a mixture of three acids in the 

following ratios:  5 parts nitric acid (HNO3):3 parts hydrofluoric acid (HF):3 parts acetic 

acid (CH3COOH).  This mixture also works to remove the SiO2 layers, as well, since the 
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primary mechanism here is for the nitric acid to oxidize the silicon before dissolving it in 

solution.  The overall reaction is a complex one involving several steps.  First, silicon is 

oxidized with nitric acid (HNO3) and nitrous acid (HNO2) according to the following 

reactions: 

Si + 4 HNO3 → SiO2 + 4 NO2 +2 H2O  (slower process) 

Si + 4 HNO2 → SiO2 + 2 H2O + 4 NO (faster process) 

Then, the SiO2 is dissolved in solution by HF as described above.  “The acetic acid 

(CH3COOH) which is much less polar than water (smaller dielectric constant in the liquid 

state), helps prevent the dissociation of HNO3 into NO3
- or NO2

-, thereby allowing the 

formation of the species directly responsible for the oxidation of silicon, HNO2.” [7,20]  

The overall reaction can be written: 

18 HF + 4 HNO3 + 3 Si → 2 H2SiF6 + 4 NO(g) + 8 H2O   [7,20] 

However, this is a simple view of a complex reaction.  For a more complete explanation 

see [7,20]. 

 For the anisotropic etch of polysilicon, an alkali hydroxide etchant, potassium 

hydroxide (KOH), was used.  From the literature, where the true form of the reaction is 

still under debate, the overall reaction is: 

Si + 2OH- + 2H2O → SiO2(OH)2
2- + 2H2           [7,20] 

This too is a simple form of a complex reaction and, to better understand the chemistry, 

see [7,20].  What is more important to note is that this reaction will selectively etch the 

silicon substrate on the (100) and (110) planes as it etches the PolySi sacrificial layer in 

an isotropic manner.  This minimizes the undesirable etching of the substrate.  Also 
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noteworthy is that this reaction requires water to proceed, so a higher concentration of 

KOH does not necessarily lead to better results. 

 

3.4 Zygo Interferometry 

Interferometers can provide very useful information about MEMS.  This 

inspection method can provide a sharp image of the topography of the chip surface.  Dr. 

Kevin Leedy, Air Force Research Laboratories/Sensors Directorate, performed the 

interferometry for this experiment.  Figure 3.7 shows a picture of the system and a 

working schematic.  From the equipment manufacturer’s webpage, the following 

provides a brief description of the interferometer and how it works. 

The NewView 5000 is based on scanning white-light interferometry, a 
traditional technique in which a pattern of bright and dark lines (fringes) 
result from an optical path difference between a reference and a sample 
beam. The mechanism is simple. Incoming light is split inside an 
interferometer, one beam going to an internal reference surface and the 
other to your sample. After reflection, the beams recombine inside the 
interferometer, undergoing constructive and destructive interference and 
producing the light and dark fringe pattern. In the NewView 5000, a 
precision vertical scanning transducer and camera together generate a 
three-dimensional interferogram of the surface, processed by the computer 
and transformed by frequency domain analysis resulting in a quantitative 
3-D image. [21] 
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Figure 3.7:  Picture of Zygo system and working schematic [21] 

Interferometry is particularly useful in determining which beams in a buckling 

beam array have buckled and which have not.  On each of the MUSiC-01 test chips, four 

fixed-fixed beam arrays were cast.  Two sets of example beams are shown in Figure 3.8.  

These arrays are made up of a series of micro-bridges increasing in length from 110 µm 

to 900 µm in increments of 10 µm, each with a width of 10 µm.  A cross-section file was 

not available for the L-edit program (a computer aided design program used to layout 

MEMS devices).  However, from the labeling and design rules, the SiC-3 array should be 

1.5-µm thick and the SiC-2 array should be 2.0-µm thick.  This was to be a primary 

means of determining the residual stress of the SiC layers.  This method relies upon the 

following equation for the maximum length before buckling occurs, which is based on 

Euler beam theory: 

    )(
3

22

mEtL µ
σ

π
=                                                      (3.4) 
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Here, t (µm) is the beam thickness, σ (Pa) is the residual stress, and E (GPa) is the 

Young’s modulus of the material. [4]   

 Figure 3.8 shows an L-edit image of these micro-beam arrays.  Note how each 

array is labeled according to the layer it is cast in and numbers indicating the lengths of 

the beams. 

 

Figure 3.8:  Fixed-fixed Euler buckling beam array [14] 

 

3.5 Comb Drive ResonanceTtest 

Young’s modulus is a mechanical property most all solid materials possess and is 

defined as the slope of the stress-strain curve during elastic deformation.  The elastic 

portion of the stress-strain curve is linear; hence, the relationship between stress and 
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strain is a simple ratio which is called Young’s modulus.  The stiffer the material, the 

steeper the slope, and hence the larger the value for the Young’s modulus where:   

)( 2m
N

strain
stressE

ε
σ

==     (3.5) 

The hypothetical example curves in Figure 3.9 would be for a material that would 

undergo plastic deformation.  SiC is not such a material; it is far too brittle.  The curve for 

SiC will be a steep straight line almost all the way to the breaking point. 

 

 

Figure 3.9:  Example stress-strain curves in arbitrary units [22] 

 

Young’s modulus varies significantly according to slight and often uncontrollable 

changes in the fabrication process.  Thus, it is advantageous to measure Young’s modulus 

at a local level.  Comb-drive resonators are a common device used to measure the 

Young’s modulus of MEMS devices.[4]  The AFIT test die for the MUSiC-01 run had 
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two different comb drive designs, one for the SiC2 layer and the other for the SiC3 layer, 

as shown in Figure 3.10. 

 

      

Figure 3.10:  L-edit image of SiC2 and SiC3 comb drive lateral resonators [14] 

 

Tang developed a mathematical model for the oscillating frequency of a comb 

drive.  “Using the spring constant in the x-direction, kx, the resonant frequency can be 

calculated as: 
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where E (Pa) is Young’s modulus, Iz (m4) is the cross sectional moment of inertia for the 

beam with respect to the axis of rotation, L (µm) is the beam length, and Mp, Mt, and Mb 

are the masses of the plate, trusses and beams (kg), respectively.” [4]  With this equation, 

a sinusoidal potential is used to induce a frequency response in the comb drive.  When 

resonance is achieved (i.e., when the shuttle suddenly stops moving) the frequency is 

noted and Young’s modulus can then be calculated.  A schematic of the test setup, 

provided by Dr. Starman, is shown in Figure 3.11.  Setup and procedure directions are 

located in Appendix A.  
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Figure 3.11:  Test configuration for comb-drive resonance experiment [24] 

 

Calculations for the approximate values for resonant frequency were performed 

using MathCAD and are located in Appendix C.  For the SiC-2 comb drive, an estimated 

Young’s modulus of 329 GPa [23] will give a resonant frequency of 58.6 kHz.  The same 

modulus estimate will give a resonant frequency of 31.4 kHz for the SiC-3 comb drive.  

The difference in the two values is primarily due to the fact that the beams with the SiC-3 

design are 50 µm longer.  Therefore, the test range for SiC-2 will be from 55 kHz to 75 

kHz, and the test range for SiC-3 will be from 25 kHz to 40 kHz. 
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3.6  Conclusion 

 This thesis uses four different experiments to fully characterize the stress in SiC 

MEMS fabricated via the MUSiCSM process.  This chapter has described these 

experiments in detail, along with some background and theory on Raman spectroscopy.  

These experiments are Raman spectroscopy, release of MEMS via wet-chemical etching, 

interferometry measurements using a Zygo interferometer, and comb-drive resonance 

test. 
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Chapter 4:  Results and Analysis 

 This thesis conducted four different experiments, Raman spectroscopy, release of 

MEMS structures via wet chemical etching, comb-drive resonance frequency test, and 

interferometer surface mapping with a Zygo interferometer.  Experiment setup and goals 

are outlined in the previous chapter, with the results and analysis given in this chapter. 

 

4.1   Raman Spectra for Bulk SiC Samples 

For the 4H-SiC sample, three scans at different locations on the samples were 

taken with the same scan parameters.  Operating in a continuous extended mode from 

2000 to -100 cm-1, the 20x objective was used for 20 sec at 50% laser power (2.5 mW is 

full power).  Figure 4.1 shows the average of these three scans. 

This data agrees well with published Raman spectra of 4H-SiC (Figure 4.2).  

Notice in Figure 4.2 how some peaks increase in height as the excitation wavelength 

changes.  The FLA peak shown in Figure 4.2 (around 610 cm-1) is barely visible in the 

data take here (Figure 4.1), which was taken with a 514.5-nm excitation source. 
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Figure 4.1:  Average results of 4H-SiC micro-Raman spectra 

 

 

Figure 4.2:  Reference Raman spectra for 4H-SiC for comparison to Fig. 4.1 [25] 
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For the 6H-SiC sample, three scans at different locations on the samples were 

taken with the same scan parameters, except for laser power.  The second and third scans 

were done at 50 % power because of saturation problems.  Scans were done in a 

continuous extended mode from 2000 cm-1 to -100 cm-1 with the 20x objective for 10 sec.  

Figure 4.3 shows the spectra collected in this research and Figure 4.4 shows other 

published results for comparison. 
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Figure 4.3:  Average results of 6H-SiC Raman spectra 
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Figure 4.4:  Reference Raman spectra for 6H-SiC for comparison with Figure 4.3 [25] 

 

For the 15R-SiC sample, three scans at different locations on the samples were 

taken with the same scan parameters, except for laser power.  The first scan was done at 

50% power and the second and third scans were done at 100 % power (2.5 mW).  Scans 

were done in a continuous extended mode from 2000 to -100 cm-1 with the 20x objective 

for 10 sec. Notice the increased number of peaks as crystalline structure becomes more 

complex.  Figure 4.6 provides other published spectra for comparison. 
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Figure 4.5:  Average results of 15R-SiC Raman spectra 

 

 

Figure 4.6:  Reference Raman spectra for 15R-SiC for comparison with Figure 4.5 [25] 
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A baseline spectra for 3C-SiC was also attempted by using a sample from FLX 

Micro, Inc. that had a 1 to 2-µm thick layer of PolySiC on a silicon wafer deposited by 

APCVD.  Once again, three scans at three different locations where preformed with a 20x 

objective, for 20 sec at 100% power.  The range was 1100 to -100 cm-1.  This did not 

produce very good results, as will be explained later.  So, other samples were procured 

from FLX Micro, Inc.  Four spectra (two from two chips) were collected with the 20x 

objective, from 1200 to –100 cm-1 at 100% power for 25 sec.  The SiC on Si3N4 spectra 

was taken at 50% power for 20 sec.  Figure 4.7 shows these results. 
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Figure 4.7:  Results of 3C-SiC Raman spectra 
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It is assumed that 3C-SiC is the dominant poly-type in PolySiC deposited by 

APCVD since it is first formed on a crystalline silicon wafer, which also has a cubic 

structure.  However, the spectra collected in the Figure 4.7 are not what one would have 

expected, as is illustrated in Figure 4.8 with a FLO peak at 972 cm-1 and a FTO at 797 

cm-1.  The spectra in Figure 4.7 indicate that the SiC poly-type on these samples is too 

transparent to the 514.5-nm wavelength radiation used to induce Raman scattering, or 

that the deposited 1- to 2-µm SiC film is too thin to scatter a useful Raman signal.  Thus, 

baseline spectra for 3C-SiC was not obtained.  Therefore, the published spectrum will be 

relied on for this thesis.  The spectrum in Figure 4.8 was collected by A. J. Steckl and J. 

Devrajan, at the Nanoelectronic Laboratory, University of Cincinnati, from a crystal of 

3C-SiC grown via methyltrichlorosilane. 

 

 

Figure 4.8:  Raman spectrum taken in the backscattering configuration from the (111) 
surface of the 3C-SiC crystal shown in Figure 4.9 at 300K [26] 
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Figure 4.9:  Photograph of undoped 3C-SiC grown by methyltrichlorosilane [26] 

 

4.2   MUSiC-01 Raman Spectra 

In early December 2002, the first MUSiCSM run was complete, and data collected 

from several locations noted in Figure 4.10.  It was anticipated that a useful Raman 

spectrum would be obtainable from locations on the chips with the thickest SiC.  The 

chips themselves were very inconsistent as a finished product, which was to be somewhat 

expected as a first run of a new process.  As indicated in Figure 4.10, these points (1-9) 

were scanned to test the quality of spectra available from these samples before moving on 

to beams and cantilevers to obtain stress distributions.  Points 1-7 are anchor points for 

some Guckel rings of about 6-µm thickness.  Point 8 is an anchor for some test gauges 

and point 9 is on a beam of one of these gauges.  These were taken with a 50x objective 

lens from 1200 to -100 cm-1 for 60 seconds in an extended continuous mode at 100% (2.5 

mW) power.  The results are shown in Figure 4.11. 
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rejection filter that reduces the laser line at the CCD.  More importantly, it indicates the 

base intensity is very high and can be observed to increase on a constant slope as 

wavenumbers increase.  This is a classic indication of fluorescence.   
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Figure 4.11:  Raman anchor scans for MUSiC-01 chip #1 

 

The presence of a sharp silicon peak at 520 cm-1, which is more pronounced on 

the thin beam, indicates the Raman scattering being collected is off the silicon substrate 

and not from the thin SiC layers.  The problem here is lack of absorption and, hence, too 

large of a penetration depth at the 514.5-nm wavelength.  Therefore, even though the 
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films on the finished MEMS chips are thicker than the bulk samples, a penetration 

problem will still exists. 

Again, a FLO peak at 972 cm-1 and a FTO at 796 cm-1 was expected for a sample 

that is mostly 3C-SiC.  Instead, broad peaks were observed in roughly those locations.  

The peak around 794.67 cm-1 in the data is somewhat more reliable to accept as a 3C-SiC 

peak; not so with the peak at 951.48 cm-1.  Silicon also had second order peaks around 

that location from 930 cm-1 to 1000 cm-1, and the broadening could also be attributed to 

the presence of other SiC poly-types.  Notice a broadening of the peaks in Figure 4.12 

when the 4H-, 6H-, and 15R-SiC baseline spectra are averaged together. 
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Figure 4.12:  4H-, 6H-, 15R-SiC averaged Raman spectra 
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4.3   Release Experiments 

Four chips were released overall, and all reactions took place at room temperature 

in a cleanroom environment.  To illustrate the results, each release session’s procedure is 

put forth in the following sections to include post-etched pictures and the rationale for 

each step in the process. 

4.3.1 07 January 2003 

This procedure etched the same two chips from which pre-release Raman spectra 

were collected.  Both chips were etched at the same time, being moved from one beaker 

to the next with cleanroom grade tweezers.  Several beakers were set-up under the 

ventilation hood for the following etching dips: 

1. Acetone 
2. 5 (HNO3):3 (HF):3 (CH3COOH)  (total of 110 ml) 
3. Methanol 
4. Methanol 
 

Here is the procedure with times included. 

1. 15 min in beaker 1 (acetone) to remove any photo resist that might be on the 
chips. 

 
2. 2 min in acid etching solution—originally planned to start with only one 

minute first then examine under a microscope, but changed plan since the acid 
solution would not etch the SiC in any significant manner, and to save time, 
they were etched for two minutes.  Mild agitation of the beaker occurred 
during the etching. 

 
3. 5 min in beaker 3 methanol to rinse 

4. 5 min in beaker 4 methanol to rinse 

5. Both chips examined under microscope.  At this point, the chips were taken 
out of the methanol, and of course the methanol evaporated from the surface 
of the chip rather quickly.  Chip #1 had quite a bit of damage to the structures, 
but looked completely etched.  Chip #2 looked well-etched in some areas but 
had a reddish-brown material around a great majority of the structures.  The 
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reddish-brown material seemed to indicate that the chips needed more etching.  
So, both chips were etched in the following manner. 

 
6. 3 min in beaker 2 acid etch  

7. 5 min in beaker 3 of methanol to rinse 

8. 5 min in beaker 3 of methanol to rinse 

9. Examined under microscope again, and found the reddish-brown material to 
still be present on chip #2 and more extensive damage to the structures on 
chip #1.  The procedure concluded at this point, since the reddish-brown film 
did not etch. 

 
10. Hot-plate dry at 100° C for 1 min. 

Figures 4.13 and 4.14 contain pictures under x10 microscope objective of both chips after 

release. 
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Figure 4.13:  Post-Etch MUSiC-01 Chip #1 

   

   



 

    

 

Figure 4.14:  Post-Etch MUSiC-01 Chip #2 

 

4.3.2 15 January 2003 

This procedure etched an additional chip from the MUSiC-01 run.  This chip was 

moved from one beaker to the next with cleanroom-grade tweezers.  Several beakers 

were setup under the ventilation hood for etching dips.  The procedure to etch the 

MUSiC-01 chip #3 is as follows: 

1. Mix KOH solution: 
a. Filled 50 ml of DI H2O in a 250 ml beaker 
b. Cover beaker and place on hotplate set to 140° C 
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c. Weigh out 0.42 g of dry KOH pellets 
d. Place KOH pellets in 50 ml of heated H2O (does not have to reach 140° C) 

2. Placed chip in acetone solution for 15 min 
3. Placed chip in 48% HF solution for 1 min 
4. Placed chip in KOH solution for 40 min or until bubbling almost completely stops 
5. Place chip in 48% HF solution for 10 min 
6. Rinse in methanol for 5 min 
7. Rinse in methanol for 5 min 
8. Dry with supercritical CO2 dryer 
 

This was done without any guidance on time tables or KOH concentration, and it was 

discovered after the procedure that there were not enough KOH pellets in stock to mix up 

a solution that would make a strong enough concentration.  This drove the need to etch 

this chip again on 04 Feb 03 with a stronger solution of KOH (9 g KOH pellets/20 ml 

H2O).  “In general, concentrations below 20 wt% are not used due to high surface 

roughness and the formation of potential insoluble precipitates.  A more typical 

concentration of KOH is in the range of 40 wt%.” [7]  Figure 4.15 shows the chips after 

the first etching described above. 
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Figure 4.15:  Post-etch MUSiC-01 Chip #3 
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4.3.3 04 February 2003 

To get a released chip with a high yield of

etched on this day.  The guidance given from

B was followed for this procedure.  Also, th

the possibility of damaging the structures from

agitation while in the etching fluids.  Figure 

was as follows:   

1. Lock chip in clamping holder 
2. 15 min in acetone 
3. 3.5 min in 48% HF 
4. 10 min in 45% KOH (9 g KOH pellets/20 m
5. 8 min in 48% HF 
6. 10 min in methanol 

placed in basket for CO
 
 

2 dry 7. Remove from clamp and 

 testable structures, a fourth chip was 

 FLX Micro, Inc. as presented in Appendix 

e chips were placed in a clamp to minimize 

 handling them with tweezers or excessive 

4.16 shows the end result, and the procedure 

l H2O) 

 71



 72

 

   

    

Figure 4.16:  Post-Etch MUSiC-01 Chip #4 

 

As stated before, clear guidance was not given before the procedure, so the 

process whereby KOH etches silicon was not understood.  It is possible that the reaction 

was slowed due to an increasing concentration of KOH, lack of available H2O in solution 

and low solution temperature.  So, not only is there a problem with residual SiC (reddish-

brown film), Chip #4 may also have polysilicon left on the chip, which appears as shiny 

iridescent material in between the structures.  An important point to observe in Figure 

4.16 is the lack of damage to the structures that one can see on the other chips.  This can 



be attributed to the use of a clamping stick that Chip #4 was placed in during etching and 

the use of the supercritical CO2

reaction during the etching pr

in HF.  Rinsing in de-ionized (DI) wa

eliminate this problem and the potential source of da

Chip #3 was etched again on this day in 

ensuring a full release.  Figure 4.17 shows 

 dryer.  Another noteworthy observation was an audible 

ocess when the chip was placed in KOH after having been 

ter between the HF and KOH beakers should 

mage. 

a stronger KOH solution with the goal of 

the end result, and the procedure was as 

follows: 

1. 1 min 48% HF 
2. 10 min in 45% KOH 
3. 8 min in 48 % HF 
4. 10 min in methanol 
5. Placed in basket for CO2 dry 

 73



    

    

Figure 4.17:  Post-etch MUSiC-01 Chip #3 after second etching 

 

 This did not seem to produce much change except for some to the reddish-brown film 

coming off and taking part of the largest Guckel ring with it.   

 After etching, some of the structures were probed to see how well they were 

released.  On all four chips, even on Chip #1 that was etched for a great deal longer than 

it needed to be, the SiC-2 comb drives were either stuck down or not released, while the 

SiC-3 comb drives moved freely when probed.  It is possible that the SiC-2 layer was not 

completely leveled with the mold via CMP.  A thin film of PolySiC remained covering 

the SiC-2 mold of PolySi, thus prohibiting it from being etched, and the SiC-2 and SiC-1 
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layers from being released.  The other possibility is simply that the SiC-2 comb drives 

were stuck down to the substrate. 

 

4.4   Zygo Interferometry 

All four released chips were inspected with the Zygo interferometer.  With such a 

high degree of variation in the quality and yield of the MEMS structures, there was no 

systematic way of inspecting these chips.  In addition, very few produced any results.   

Chip #1 had a great deal of damage to the structures, but yielded some good pictures that 

provide some indication of the stress, particularly in the SiC-3 layer.  Figure 4.18 shows a 

SiC-3 buckling beam array with all but eight of the shorter beams buckled.  With beams 

1-7 and 9 unbuckled, one can calculate the stress of the SiC-3 layer with an estimated 

value of 329 GPa [22] for Young’s Modulus (E) and the following equation. 

)(
2

mEtL µ=
2π
3σ

                                        (3.4) 

 

 

Figure 4.18:  SiC-3 fixed-fixed beam array on chip #1 with eight beams unbuckled 
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These calculations were accomplished with MathCAD and are given in Append

C.  From Figure 4.18, the stress co

ix 

uld be estimated to be between 67 MPa and 84 MPa.  

owever, this is only one data point; more would provide a better value for the general 

otice the difference in Figure 4.19, which is the other SiC-3 

fixed-fi

H

stress in the SiC-3 layer.  N

xed beam array on Chip #1 in which all of the beams have buckled, which 

indicates the stress might be over 201 MPa. 

 

 

Figure 4.19:  SiC-3 fixed-fixed beam array on chip #1 will all beams buckled 

 

On the other hand, the possibility exists that these structures are stuck down, 

rendering this data meaningless.  In order to be sure of the stress measured from this 

method, two things would need to happen.  First, a localized modulus measurement of the 

material is required via comb-drive resonance or some other method.  And second, 

several viable beam arrays should be released and the results from each statistically 

averaged. 
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From Chip #1, Figure 4.20 is a good demonstration of the random stress 

distribution that exists in these devices.  These arrays have beams and bridges that are 4-,

8-, 16-, and 20-µm wide with lengths from 150 to 600 µm in 50-µm increments.  Notice 

how some cantilevers are bent up and others bent down with some variation and some 

consistent trends.  The widest beams (20 µm) are all completely flat; this indicates 

they are not fully released.  Some of the next

 

that 

 widest beams are partially released and the 

tips are curling up, indicating the presences of residual stress.  The three narrower beams 

appear to all be released, several of which seem to be stuck down to the substrate. 

 

 

Figure 4.20:  SiC-2+3 cantilever arrays on Chip #1 

 

For Chip #2, the SiC-3 beams were too surrounded or covered with the reddish-

brown film to get any good surface scans with the interferometer.  Notice in Figure 4

that the reddish-brown film appears as low blue areas around the cantilever array and

the cantilev

.21 

 that 

ers are stuck down to the substrate. 
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Figure 4.21:  SiC-3 cantilever arrays on Chip #2 

 

Figure 4.22 illustrates how the SiC-2 layer is not fully released (i.e., stuck to SiC-

1 layer).  Notice the cantilever array at the bottom of the picture that is the SiC-2 layer; 

they are completely flat.  If the cantilevers were fully released, it is expected that they 

would curl, as well. 

 

 

Figure 4.22:  Cantilever arrays on chip #2 
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Chip #3 not only had a lot of damage, but also a large amount of the reddish-

brown film.  But, Figure 4.23 shows some cantilevers from that chip that are uniformly 

curling up.  These cantilevers were cast in the SiC-3 layer and show that there is a 

compressive residual stress at the bottom of the layer before release.  Thus, upon release 

they bow upward.  Since this is the SiC-3 layer (etched by RIE), there should be no 

residual stress in the top of this layer. 

 

 

Figure 4.23:  Remaining portion of a SiC-3 cantilever array on chip #3 

 

Chip #4 had a thin film of semi-transparent material (most likely PolySi) 

deposited in between the structures.  This material induced too much interference with 

the fringe patterns to get any surface scans with the interferometer.  This film can be seen 

in Figure 4.16 and appears iridescent in nature. 
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4.5   Comb Drive Resonance Test 

To measure the Young’s modulus of the MUSiC-01 chips, a comb-drive 

resonance test was performed.  Section 3.5 describes the background and theory for

test.  The MEMS chips were placed on a probe station with a microscope.  Two probes 

were used, one as the ground and the other as the input to the ‘MEMS device under t

as shown in Appendix A.  In Figure 4.2

 this 

est’ 

4, these probes can be seen touching the nickel 

bond pad at the edges of the photographs.  At first, many of the SiC-2 layer comb drives 

looked in great shape to perform the test.  But upon probing, it became clear that they 

were either not completely released or stuck down to the substrate and, therefore, unable 

to move.  Looking at Figure 4.21 and 4.22, it appears that some of the SiC-2 beams 

(orange in color) are stuck down to the substrate, which indicates the SiC-2 comb-drives 

are, as well.  The SiC-3 comb drives were released and, with a slight tap with the probe, 

shuttle movement and beam flexure could be observed. 

    

Figure 4.24:  SiC-3 comb drives under resonance test 
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After the test was all set up, voltage was applied but no visible actuation o

SiC-3 comb drive occurred. Next, a DC voltage of 500 V was applied to see if the shuttle

would simply move, but there was no movement at all.   

 

4.6 Conclusion 

The results of the experiments were in general somewhat limited in quantity and 

in some cases quality.  This was due primarily to the poor quality of sample from the 

MUSiC-01 run.  As mentioned before, this was the first MUSiCSM run and future samples

should be of a much higher quality.  Therefore, the Raman spectra for the bulk samp

were the best results collected and completely filled requirements.  The Raman spectra 

collected from the MUSiC-01 samples were not useful in determining the residual stress 

as intended for this thesis, but they do serve to point futu

f the 

 

 

les 

re work in the right direction.  

The release procedures also give guidance on better ways to release SiC MEMS.  The 

IFM results did not provide the intended data due to the poor quality of the samples, and 

the comb-drive resonance test simply failed to provide any useful data. 
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Chapter 5:  Recommendation and Future Work 

This chapter reviews the results of each experiment conducted during the research 

and provides any conclusions that might be drawn.  Lessons learned are presented and 

future work is recommended for the remaining four test chips and any future test chips.   

 

5.1 Raman Measurements 

From the Raman spectroscopy tests, it can be concluded that a He-Cd laser of 

325-nm wavelength (or shorter) as the excitation source is needed if residual stress in SiC 

structural layers is to be determined by this method.  At that wavelength, the penetration 

depth of the 3C-SiC will only be 2.7 µm as compared to the much larger penetration 

depth for the 514.5-nm wavelength that was used here.  This means that Raman 

backscattering will come from the first 1.35 µm of the surface being radiated.  Any 

radiation penetrating further will be either absorbed or scattered.  Since the thinnest layer, 

SiC-3, is only 1.5-µm thick, this should produce nice results.  As explained in Section 

3.1.3, the problem with fluorescence will still exist but, with better absorption, the Raman 

signal should overpower the electronic transitions. 

Another recommendation for this test would be the use of a motorized microscope 

stage.  With an automated stage, a beam on the chip can be scanned in steps of 1 µm.  

This is really essential to taking enough point scans to determine a good stress profile 

across the length of the beam, as it is impossible to have that kind of accuracy adjusting 

the stage by hand.   
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If the opportunity arises, an item for future work would be to obtain a sample of 

bulk 3C-SiC for spectral characterization. 

 

5.2 Release Process 

Currently, FLX Micro, Inc. suggests using KOH as the etchant for the PolySi 

sacrificial layer.  Since the chips used in this process had a several fabrication flaws and 

this being the first MUSiCSM run, it is difficult to challenge such a suggestion with the 

results of this study.  However, the one strong point of evidence to support such a change 

would be the reduced etch time with the 5(HNO3):3(HF):3(CH3COOH) acid dip. 

This test provided the best opportunity for lessons learned.  For example, the yield 

of viable MEMS device structures is increased dramatically when: 

1) Agitation of partially released chips is avoided as much as possible with the 

use of chip holder or clamps 

2) The use of the supercritical point CO2 drying technique is used to eliminate 

surface tension forces on MEMS structures as the liquid CO2 (which displaces 

the methanol) evaporates. 

The release process also revealed a great deal about possible manufacturing flaws.  

The reddish-brown film seems to suggest either an incomplete CMP of the SiC-2 layer or 

incomplete cleaning after the CMP of SiC-2 layer.  The inability to completely release 

the SiC-2 layer suggests that perhaps the SiC-1 layer was incompletely planarized.  

Variation in the color and texture of the SiC layers suggests poor process control, and 

variation in the deposition process will need to be controlled before the process is ready 
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Developing a precise and repeatable etch procedure for SiC MEMS would be a 

great area for future research. 

 

5.3 Interferometry of Beam Arrays 

 

.   

The Zygo-interferometer test yielded some of the best results of this research.  

Had there been enough viable fixed-fixed beam arrays to work with, a better trend for the

stress in at least the SiC3 layer could have been identified.  Nevertheless, some useful 

information was extracted from the interferometer scans.  In Figure 5.1, a comb drive in 

the SiC-3 layer is seen to be released and slightly bow up in the middle of the plate

 

 

Figure 5.1:  Zygo Interferometer profile of SiC-3  

 

The surface plot in Figure 5.2 also shows how the teeth attached to the movin

plate are bowed with the plate, while the stationary teeth are fairly level.  It also 

demonstrates that the plate is not stuck down to the substrate, but is free to move.  This 

g 
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profile could also aid in determining the amount of DC offset required to bring the teeth

into alignment during a resona

 

nce test. 

 

 

Figure 5.2:  Surface profile across the teeth of a SiC3 comb drive 

 

5.4 Comb-Drive Resonance Test 

The resonance test failed to get the drive to move and, therefore, the comb-drive 

resonance test did not provide any useful data.  Possible failure scenarios include:  

discontinuity betwee ntinuity between 

the different SiC layers; due to the stiffness of the material, 500V may not have been 

enough

for the 

n the nickel bond pads and the SiC structure; disco

 DC offset to move the drive.  Before further tests are performed, electrical 

continuity between layers and bond pads should be tested.  Furthermore, a value 

expected DC voltage offset should also be theoretically determined.  With better test 
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structures and further research, an AFIT student should pursue getting one of these comb

drives to resonate.   

 

 

5.5 Conclusion 

Currently, the United States enjoys the benefits of having the strongest military 

not out of shear numbers of troops, but in the way it fights wars with advanced 

technology.  High-temperature and extreme-environment semiconductors are essential to 

the continued enhancement of Department-of-Defense weapon and information systems, 

a core competency of U.S. military might.  The work presented here is intended to further 

develop the budding technology of SiC MEMS devices manufactured with the MUSiCSM 

process in support of Department-of-Defense weapon systems and industry.  The success

of this techn thods of 

thin-film stress that causes device failure.  To this end, the use of Raman spectroscopy as 

interferometry and comb-drive resonance tests were 

conduc

rk for 

 

 

 

ology depends on accurate and nondestructive characterization me

such a method was explored, and 

ted to support any result found.  Although the stress gradients were not detected 

due to lack of appropriate equipment, the research done here has laid the ground wo

continued research in this area. 
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Appendix A:  Comb-Drive Test Setup 
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Appendix A:  Comb Drive Resonant Test Setup 

High Voltage 
Power Supply

Oscilloscope
Ch 2 Ch 1

Out 

Sinewave 
generator 473 K

4.7 µF
S2 R2 

Out In
MEMS Device 

Under Test 
Amplifier 10 K

Note: the 4.7 µF capacitor needs to be an electrolytic capacitor to be able to handle at least 75 Volts.

Instrument settings: 
Oscilloscope:  channel 1 – 1 V/div, AC, Dual Mode, 20 msec Time/div (used to view generated 
  sinewave from spectrum analyzer) 
  channel 2 – 5 V/div, AC (used to view output sinewave from amplifier should get 
  ~30V p-p waveform) 
Sinewave generator: Sinewave generator and resonance freq measurement 
 Port select T2/R2 
 Start Freq: 10 KHz, Resolution Bandwidth 300 Hz 
 Stop Freq; 30 KHz (The start/stop frequencies may have to be different as I’m not sure  
 what your resonance should be.) 
 S2 = 15 dBm 
 R2 = 30 dBm 
 T2 = 20 dBm 
 Scale ref – Auto A and Auto B  
High Voltage Power Supply: 
 V limit = 500 V, 
 Current limit = 5.25 mA 
 Set to adjust output Voltage 

Set HV switch to on to get a voltage output.  Leave off until ready to test and turn off as soon 
as test is completed. Be careful; there is a significant amount of Volts going through this 
circuit. 

Amplifier: 
 Use channel 2 as channel 1 was inoperable.  You need to get a maximum sinewave after the 
amp. This will be viewed on the channel 2 of the Oscilloscope. 
 
Typical Voltages for the polysilicon resonators I tested were 30 V p-p sinewave at a 50-75 V DC level. 
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Appendix B:  Suggested Release Method from FLXMicro, Inc. 
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MUSiC-1 Release Guidelines 
November 22, 2002 

 
 
Your MUSiC chips will require a combination release process since both polysilicon and 
silicon dioxide are used as sacrificial materials.  While release times will vary from chip 
to chip based on specific design features (e.g. size and density of release holes, percent 
exposed area), the following guidelines should be helpful in identifying a process 
window for release.  This information is based on trial releases performed earlier this 
week on other chips from the same run.  Note that SiC is essentially impervious to the 
etchants used for release at these timescales, so is not likely to be damaged if it is 
necessary for you to exceed the recommended times. 
 
Feel free to contact us with additional questions, problems, or concerns either by phone 
or e-mail to <melzak@fiberlead.com>. 
 
 

1. Remove protective photoresist with acetone, Nano-strip, or other metal-safe resist 
stripper. 

 
2. Perform first HF etch to remove oxide (thickness 0.75 to 1µm).  Preferred etchant 

is undiluted 49% HF. 
 

3. Perform KOH etch to remove polysilicon (thickness ~2µm).  TMAH or XeF2 may 
be used as alternative silicon etch chemicals.  The etch is observed to be complete 
when: 

a. Underlying green oxide is visible, 
b. Few, if any, bubbles are seen, and 
c. Any residual SiC-3 in the field region that was not removed during RIE 

etching lifts off (for most chips this will not be an issue). 
For 20% (w/w) KOH at 65°C polysilicon removal took between 10 and 40 
minutes.  Note that the silicon substrate will be etched at the chip edges, 
which become exposed during wafer dicing. 

 
4. Perform final HF etch to remove oxide (thickness ~2µm).  Upon release 

completion, the underlying purple nitride layer should be visible.  With 49% HF, 
this step required at least 8 minutes to complete. 

 
5. Supercritical CO2 drying may be helpful as a final step, although we have released 

devices successfully without requiring this. 
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HB 100 µm⋅:= WB 2.0 µm⋅:=

Vbeams 12 HB⋅ WB⋅ dSiC2⋅:= Vbeams 4.8 10 15−
× m3=

Mb Vbeams ρ⋅:= Mb 1.5216 10 11−
× kg=

Mass of Plate:

interior teeth: (13 on each side)

HinTeeth 3.0 µm⋅:= WinTeeth 40 µm⋅:=

VinTeeth dSiC2 HinTeeth⋅ WinTeeth⋅( ) 2⋅ 13⋅:= VinTeeth 6.24 10 15−
× m3=

outside teeth:  (2 on each side)

HoutTeeth 3.0 µm⋅:= WoutTeeth 52 µm⋅:=

VoutTeeth dSiC2 HoutTeeth⋅ WoutTeeth⋅( ) 2⋅ 2⋅:= VoutTeeth 1.248 10 15−
× m3=

Appendix C:  Calculations for Comb Drive Frequency Test
SiC-2 Layer Comb Drives

Definitions and Parameters: µm 10 6− m⋅:= GPa 109 Pa⋅:=

Density of SiC: ρ 3.17
gm

cm3
⋅:=

Thickness: dSiC2 2.0 µm⋅:=

Mass of Truss: 2 Trusses

HT 15 µm⋅:= WT 16 16+ 34+( ) µm⋅:=

VTrusses 2 HT⋅ WT⋅ dSiC2⋅:= VTrusses 3.96 10 15−
× m3=

Mt VTrusses ρ⋅:= Mt 1.2553 10 11−
× kg=

Mass of Beams: 12 beams
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E :=E
1
840

140 Mp⋅ 35 Mt⋅+ 48 Mb⋅+( )⋅ L3⋅ f 2⋅
π
2

Iz
⋅:= f

Solve for E:
f :=

L HB:=
Length of Beams:

f
1
2 π⋅

kx
M

⋅= 1
2 π⋅

24 E⋅ Iz⋅

Mp
1
4
Mt⋅+

12
35

Mb⋅+




L3⋅

⋅=Governing Equation:

Iz 1.3333 10 24−
× m4=Iz

b h3⋅

12
:=

h WB:=b dSiC2:=

Cross sectional moment of inertia, Iz :

Mp 6.9385 10 11−
× kg=

Mp Vplate ρ⋅:=

Vplate 2.1888 10 14−
× m3=

Vplate VinTeeth VoutTeeth+ Vhub+ VinArm+ VoutArm+:=

VoutArm 6.12 10 15−
× m3=

VoutArm dSiC2 HinArm⋅ WinArm⋅( ) 2⋅:=

WoutArm 12 µm⋅:=HoutArm 165 µm⋅:=

outside arm:  (1 on each side)

VinArm 6.12 10 15−
× m3=

VinArm dSiC2 HinArm⋅ WinArm⋅( ) 2⋅:=

WinArm 17 µm⋅:=HinArm 90 µm⋅:=

inside arm:  (1 on each side)

Vhub 2.16 10 15−
× m3=Vhub dSiC2 Hhub⋅ Whub⋅( ):=

Whub 54 µm⋅:=Hhub 20 µm⋅:=

plate hub:
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Estimate from other source:

Given a modulus of  E 329 GPa⋅=    for polycrystalline SiC

modulus source:       http://www-mat.ee.tu-berlin.de/research/sic_elast/sic_elas.htm

f E( )
1
2 π⋅

24 E⋅ Iz⋅

Mp
1
4
Mt⋅+

12
35

Mb⋅+




L3⋅

⋅:= f 329 GPa⋅( ) 58.5693 kHz=

f 307 GPa⋅( ) 56.5772 kHz= f 448 GPa⋅( ) 68.3457 kHz=

Vplate Vbeams+ VTrusses+

dSiC2
15324µm

2
=
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HB 150 µm⋅:= WB 2.0 µm⋅:=

Vbeams 12 HB⋅ WB⋅ dSiC3⋅:= Vbeams 5.4 10 15−
× m3=

Mb Vbeams ρ⋅:= Mb 1.7118 10 11−
× kg=

Mass of Plate:

teeth: (15 on each side)

HinTeeth 3.0 µm⋅:= WinTeeth 40 µm⋅:=

VinTeeth dSiC3 HinTeeth⋅ WinTeeth⋅( ) 2⋅ 15⋅:= VinTeeth 5.4 10 15−
× m3=

plate hub:

Hhub 20 µm⋅:= Whub 54 µm⋅:=

Vhub dSiC3 Hhub⋅ Whub⋅( ):= Vhub 1.62 10 15−
× m3=

Appendix C:  Calculations for Comb Drive Frequency Test 
SiC-3 Layer Comb Drives

Definitions and Parameters: µm 10 6− m⋅:= GPa 109 Pa⋅:=

Density of SiC: ρ 3.17
gm

cm3
⋅:=

Thickness: dSiC3 1.5 µm⋅:=

Mass of Truss: 2 Trusses

HT 15 µm⋅:= WT 78 µm⋅:=

VTrusses 2 HT⋅ WT⋅ dSiC3⋅:= VTrusses 3.51 10 15−
× m3=

Mt VTrusses ρ⋅:= Mt 1.11267 10 11−
× kg=

Mass of Beams: 12 beams
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E :=E
1
840

140 Mp⋅ 35 Mt⋅+ 48 Mb⋅+( )⋅ L3⋅ f 2⋅
π
2

Iz
⋅:= f

Solve for E:

f :=L HB:=

Length of Beams:

f
1
2 π⋅

kx
M

⋅= 1
2 π⋅

24 E⋅ Iz⋅

Mp
1
4
Mt⋅+

12
35

Mb⋅+




L3⋅

⋅=Governing Equation:

Iz 1 10 24−
× m4=Iz

b h3⋅

12
:=

h WB:=b dSiC3:=

Cross sectional moment of inertia, Iz :

Mp 5.1354 10 11−
× kg=

Mp Vplate ρ⋅:=

Vplate 1.62 10 14−
× m3=

Vplate VinTeeth Vhub+ VinArm+ VoutArm+:=

VoutArm 4.59 10 15−
× m3=

VoutArm dSiC3 HinArm⋅ WinArm⋅( ) 2⋅:=

WoutArm 12 µm⋅:=HoutArm 171 µm⋅:=

outside arm:  (1 on each side)

VinArm 4.59 10 15−
× m3=

VinArm dSiC3 HinArm⋅ WinArm⋅( ) 2⋅:=

WinArm 17 µm⋅:=HinArm 90 µm⋅:=

inside arm:  (1 on each side)
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Estimate from other source:

Given a modulus of  E 329 GPa⋅=    for polycrystalline SiC

modulus source:       http://www-mat.ee.tu-berlin.de/research/sic_elast/sic_elas.htm

f E( )
1
2 π⋅

24 E⋅ Iz⋅

Mp
1
4
Mt⋅+

12
35

Mb⋅+




L3⋅

⋅:= f 329 GPa⋅( ) 31.42637 kHz=

f 307 GPa⋅( ) 30.35746 kHz= f 448 GPa⋅( ) 36.67205 kHz=

Vplate Vbeams+ VTrusses+

dSiC3
16740µm

2
=
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Appendix C:  Calculations for Fixed-Fixed Beam Arrays in the SiC-3 Layer

)(
3

22

mEtL µ
σ

π
=

Equation 2:  µm 10 6− m⋅:= GPa 109 Pa⋅:=

MPa 106 Pa⋅:=

E 329 GPa⋅:= t 1.5 µm⋅:=

σ L( )
π
2
t2⋅ E⋅

3 L2⋅
:=

σ 170 µm⋅( ) 84.267MPa= σ 110 µm⋅( ) 201.267MPa=

σ 180 µm⋅( ) 75.164MPa=

σ 190 µm⋅( ) 67.461MPa=
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