REPORT DOCUMENTATION PAGE

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1244, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. **AGENCY USE ONLY** (Leave Blank)

2. **REPORT DATE**
 05/01/03

3. **REPORT TYPE AND DATES COVERED**
 Final report (5/1/01-7/31/02)

4. **TITLE AND SUBTITLE**
 Development of Artificial Y-type Hexaferrites

5. **FUNDING NUMBERS**
 DAAD 19-01-1-0583

6. **AUTHOR(S)**
 C. Vittoria

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Northeastern University,
 360 Huntington Ave. Boston, MA, 02115

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 U. S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

10. **SPONSORING / MONITORING AGENCY REPORT NUMBER**
 41490.1-MS

11. **SUPPLEMENTARY NOTES**
 The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. **DISTRIBUTION / AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited.

12b. **DISTRIBUTION CODE**

13. **ABSTRACT (Maximum 200 words)**
 We have developed a technique to orient particles of Y-type hexaferrite in which the c-axis of the particles are oriented perpendicular to a plane. As such, that plane becomes necessarily the easy plane of magnetization. For microwave device application the easy plane of magnetization is chosen as the plane to deposit a metallic microstrip and related circuit patterns. The technique entails the rotation of an external magnetic field in the easy plane, as the particles are pressed into a disc shape. We have succeeded on the orientation of particles of $\text{Ba}_3\text{MnZnFe}_{18}\text{O}_{42}$ in an easy plane of magnetization which exhibited the following properties: $4\pi M_s=2300$ Oe, $H_a=95000$ Oe, and $H_c=600$ Oe, where $4\pi M_s$ is the saturation magnetization, H_a the uniaxial anisotropy field and H_c the coercive field. The coercive field and remanence can be varied by refining the oriented particles. Maximum remanence of 27.5 % was obtained for refining temperature of 1000 C. Much higher remanence is possible for thin film plane structure, where the aspect ratio exceeding 1000. These results imply that it is possible to orient the saturation magnetization in any direction within the plane of a device and the effective magnetization can be as high as 11800 Oe. The microwave properties indicate that the ferrimagnetic resonance linewidth at 27 GHz is 350 Oe and the g-factor approximately equal to 2, see fig.1. In fig.2 the vibrating sample magnetization (VSM) measurements for ZnMnY-type are shown for the external field applied parallel and perpendicular to easy plane of magnetization. We have also been working on Co2Y-type, our experiments show $4\pi M_s=2.2$ kOe, $H_a=42$ kOe and linewidth around 2000Oe at 38 Ghz. Potential microwave applications are fabrications of IC circuits and microwave ferrite devices.

14. **SUBJECT TERMS**
 Hexaferrite, Orientation, and Ceramic.

15. **NUMBER OF PAGES**
 1

16. **PRICE CODE**

17. **SECURITY CLASSIFICATION OR REPORT**
 UNCLASSIFIED

18. **SECURITY CLASSIFICATION ON THIS PAGE**
 UNCLASSIFIED

19. **SECURITY CLASSIFICATION OF ABSTRACT**
 UNCLASSIFIED

20. **LIMITATION OF ABSTRACT**

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102
Oriented Y-type Hexaferrites for ferrite devices

M. Obol, X. Zuo, T. Sakai and C. Vittoria. Northeastern University, Boston, MA 02115

We have developed a technique to orient particles of Y-type hexaferrite in which the c-axis of the particles are oriented perpendicular to a plane. As such, that plane becomes necessarily the easy plane of magnetization. For microwave device application the easy plane of magnetization is chosen as the plane to deposit a metallic microstrip and related circuit patterns. The technique entails the rotation of an external magnetic field in the easy plane, as the particles are pressed into a disc shape. We have succeeded on the orientation of particles of Ba$_2$MnZnFe$_{15}$O$_{22}$ in an easy plane of magnetization which exhibited the following properties: $4\pi M_s = 2300$ Oe, $H_a = 9500$ Oe, and $H_c = 600$ Oe, where $4\pi M_s$ is the saturation magnetization, H_a the uniaxial anisotropy field and H_c the coercive field. The coercive field and remanence can be varied by reorienting the particles. Maximum remanence of 27.5% was obtained for reorienting temperature of 1000 C. Much higher remanence is possible for thin film plane structure, where the aspect ratio exceeding 1000. These results imply that it is possible to orient the saturation magnetization in any direction within the plane of a device and the effective magnetization can be as high as 11800 Oe. The microwave properties indicate that the ferrimagnetic resonance linewidth at 27 GHz is 350 Oe and the g-factor approximately equal to 2, see fig 1. In fig. 2 the vibrating sample magnetization (VSM) measurements for ZnMnY-type are shown for the external field applied parallel and perpendicular to easy plane of magnetization. We have also been working on Co2Y-type, ours experiment shows $4\pi M_s = 2.2$ kOe, $H_a = 42$ kOe and linewidth around 2000 Oe at 38 GHz. Potential microwave applications are in the fabrication of IC circuits and microwave ferrite devices.

![FMR data](image1)

![VSM data](image2)

Fig.1

Fig.2