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Introduction

This final report is being submitted by High Speed Connectivity Consortium
(HSCC), for work performed under Award Agreement No. F30602-98-2-0193, for
the period September 18, 1998 through December 31, 2002.

Technical Report

Beginning September 18, 1998, HSCC planned to have five sites operational at
OC 48 rates. The contract was subsequently modified to have four sites and a
distributed classroom experiment which uses the high bandwidth. A
geographical index of the web experiment was added as a subcontract to Meta-
Carta in July 2001.

1. Los Angeles, CA - NTON Network

This network connection was operational at OC 48 rates between October 15,
1999 and November 04, 2002. It linked NTON (National Testbed for Optical
Networking) Network to the HSCC backbone via a direct in-building connection
on Wilshire Boulevard in LA. Using HSCC network NTON provided connectivity
for Lawrence Livermore Laboratory (LL), NASA, Ames and SRI.

2. Washington, DC - ATD Network

This network connection was in operation at OC 48 rates between October 25,
1999 and November 04, 2002. It linked the DARPA supported ATD (Advanced
Technology Demonstration) network to the HSCC backbone via an OC-48 line
from ISI-East.

3. Pittsburgh, PA - Pittsburgh Super Computer Center

This network connection became operational at OC 12 rates since December
1,1999. It was upgraded to OC 48 rates in January, 2001 and was in operation till
Nov 04, 2002. It linked Carnegie Mellon University to the HSCC backbone via an
intermediate connection at the Pittsburgh Supercomputer Center (PSC).

4. Seattle, WA- Pacific Northwest Network

This network connection was in place since December 15, 1999. However, this
link was terminated as of June 30, 2000 due to the merger between Qwest and
US West communications.

HSCC attempted to include Argone National Laboratory in Argone, IL as the new
fourth node for the last year of operation. However due to the difficulties in
obtaining local access fiber this option did not become operational in time.



Distributed Science Classroom Experiments

In December 2000, HSCC requested and received a modification to change the
work statement for this project. Accordingly, HSCC have provided partial funding
for distributed Classroom experiments to four nationally recognized Universities.

Brown University

Carnegie Mellon University
University of California at Berkeley
University of Washington at Seattle

Experiments are ongoing and will continue beyond the scope of this contract.

METACARTA subcontract

In July 2001, HSCC requested and received additional funding for the
METACARTA project. These funds were provided to create software to support
the following activities

e Generate a prototype geographic index of web pages.

e Geographic structuring of non-relational information.

e Location specific applications that require surrounding information for
analysis and planning.

e Wireless applications that require proximity- sensitive searching.

e Platform for organizing data from instruments, sensors, and
communications.

The MetaCarta final report can be read in its entirety at URL:
http://www.hscc.net/MetaCarta_GTS _Appliance.ppt.




Technical Highlights

SuperNet/HSCC continued its support for multiple research programs and
demonstrations, which are described in detail at this web URL: http://www.nqi-
supernet.org/experiments.html.

Various programs under NGI-Supernet were able to utilized the bandwidth which
was provided by HSCC:

e Matisse
e« BOSSNET
e Gigabit To The Desktop

e Gigabit Rate IP Security

e Secure Network Toolbox (Secure Network Monitoring and Management
Infrastructure)

e High Performance Local Area Networks (10-40Gb/s)

o NGI Multicast Applications and Architecture (NMAA)

¢ Uncompressed High Definition Television (HDTV) over IP

e Access Grid (AG)

e« Collaborative Advanced Interagency Research Network (CAIRN)
Experiments




The List of the research programs, which utilized HSCC bandwidth, is given

below:

TCP performance across high bandwidth-delay product networks
Remote Media Immersion (RMI)

IMSC's Remote Media Immersion (RMI)

Integrated Media Systems Center (IMSC)

Matisse

Distributed-Parallel Storage System (DPSS)

Gigabit To The Desktop

Gigabit Rate IP Security

Secure Network Toolbox (Secure Network Monitoring and Management
Infrastructure)

Collaborative, Operational Virtual Exploitation Team (COVET)

NGI Multicast Applications and Architecture (NMAA)

Uncompressed High Definition Television (HDTV) over IP

Access Grid (AG)

Collaborative Advanced Interagency Research Network (CAIRN)
Experiments

X-Bone (Automated Overlay Network Deployment)

Active Networks Backbone (ABone)

National Internet Measurement Infrastructure (NIMI)

Multicast-based Inference of Network-internal Characteristics (MINC)
Secure Border Gateway Protocol (S-BGP)

Border Gateway Multicast Protocol (BGMP)

Network Time Synchronization Project (NTSP)

Reliable Multicast Performance

DNS Security (DNSSEC) in CAIRN

Secure Network Toolbox (SNMPv3, SSL, SSH)

SNMPv3 in CAIRN

Fault-Tolerant Networking Through Intrusion Identification and Secure
Compartments (FNIISC)

Fault-Tolerant Mesh of Trust Applied to DNSSEC (FMESHD)

Bro: A System for Detecting Network Intruders in Real-Time
Realizing Adaptive Distributive Internet Operations on ACTIVE Networks
(RADIOACTIVE)

Secure Conferencing Access with Multicast Protocols for the

Internet (SCAMPI)



The List of experiments and demonstrations, which utilized HSCC bandwidth, is
given below:

ACCESS Facility Demos

Stereoscopic Rendered Images and Video Streaming with Real-time
Compression Methods (Internet2 and Super Net infrastructure)
Telepresence in the Operating Room Utilizing IP Video (Internet2 and
Super Net infrastructure)

Super Computing 2000

Accelerated Strategic Computing Initiative (ASCI)

VisaPult: Image Based Rendering Assisted Volume Rendering - SC2000
Network Challenge Winner

Cal Tech Particle Physics Using Globus

Data Management Infrastructure for Climate Modeling Research
(Striped FTP)-SC2000 Network Challenge Winner

Stanford Linear Accelerator Center (SLAC)

NASA Digital Sky Demo

Digital Amplitheater

Digital Earth

Land Speed Record

Internet2 Land Speed Record

UW-ISle High Bandwidth Tests

UW-ISle Internet HDTV Tests

Super Computing 2001

Telelmmersion



Publications
As a result of HSCC'’s collaborative efforts the following articles were published.

e Retransmission-Based Error Control in a Many-to-Many Client-Server
Environment. Roger Zimmermann, Kun Fu, Nitin Nahata, and Cyrus
Shahabi. Accepted for presentation at the SPIE Conference on Multimedia
Computing and Networking 2003(MMCN 2003), Santa Clara, California,
January 29-31, 2003.

e Ladan Gharai & Colin Perkins, Implementing Congestion Control in the
Real World, Proceedings of the IEEE International Conference on
Multimedia and Expo, Lausanne, Switzerland, August 2002.
http://www.east.isi.edu/projects/NMAA/hdtv/publications/icme2002.pdf

e Ladan Gharai, Colin Perkins & Allison Mankin, Large Group
Teleconferencing: Techniques and Considerations, Proceedings of the 3rd
International Conference on Internet Computing, Las Vegas, June 2002.
http://csperkins.org/publications/ic2002.pdf

e Christian Rembe, Rishi Kant, Michael P. Young, Richard S. Muller,
"Network-connected MEMS-measuring system for high-speed data
transfer to CAD and simulation tools," Conference on Vibration
Measurements by Laser Techniques," Italian Assn. for Laser Velocimetry,
Ancona, ltaly, 18-21 June 2002

e Yima: A Second Generation Continuous Media Server. Cyrus Shahabi,
Roger Zimmermann, Kun Fu, and Shu-Yuen Didi Yao. Published in the
IEEE Computer magazine, June 2002, pp. 56-64.
http://idefix.usc.edu/pubs/IEEEComp.pdf

e On Internet of the Future, Surfers May Almost Feel the Spray, New York
Times Article, May 9, 2002. Article about RMI.
http://idefix.usc.edu/pubs/NY Times-RMI.pdf

e Colin Perkins, Ladan Gharai, Tom Lehman & Allison Mankin, Experiments
with delivery of HDTV over IP Networks, Proceedings of the 12th
International Packet Video Workshop, Pittsburgh, April 2002.
http://www.east.isi.edu/projects/NMAA/hdtv/publications/pv2002.pdf

e J.Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J. Bresnahan,
S.Tuecke, " Applied Techniques for High Bandwidth Data Transfers
across Wide Area Networks", Proceedings of Computers in High Energy
Physics 2001 (CHEP 2001), Beijing China, LBNL-46269.
http://www-didc.lbl.gov/papers/dpss_and_gridftp.pdf




e B. Tierney, D. Gunter, J. Lee, M. Stoufer, "Enabling Network-Aware
Applications", Proceedings of the 10th IEEE Symposium on High
Performance Distributed Computing (HPDC-10), August 2001, LBNL-
47611. http://www-didc.Ibl.gov/papers/Enable. HPDCO1.pdf

e W. Bethel, Tierney, B., Lee, J., Gunter, D., Lau, S., "Using High-Speed
WANSs and Network Data Caches to Enable Remote and Distributed
Visualization", Proceeding of the IEEE Supercomputing 2000 Conference,
Nov. 2000. LBNL-45365. http://www-didc.lbl.gov/papers/visapult-sc00.pdf

e W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau, "Using High-Speed
WANSs and Network Data Caches to Enable Remote and Distributed
Visualization," in Proceedings of SC00, November 2000. 2000/LBNL-
45365-VisapultSCO0.pdf (LBNL 45365).
http://www-vis.lbl.gov/Publications/2000/LBNL-45365-VisapultSCO00.pdf

The MetaCarta final report can be read in its entirety at URL:
http://www.hscc.net/MetaCarta_GTS_Appliance.ppt

Print outs of these hyper-linked publications are attached in Appendix A.
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IMPLEMENTING CONGESTION CONTROL IN THE REAL WORLD

Ladan Gharai Colin Perkins

University of Southern California
Information Sciences Institute

ABSTRACT

It is well known that congestion control is a key issue for
the safe deployment of multimedia applications over IP. We
describe our initial experiences implementing TCP-friendly
congestion control in a system designed to deliver HDTV
content over IP. In particular we discuss the effects of packet
reordering on the calculated throughput, and highlight the
problems this can pose for high-rate applications.

1. INTRODUCTION

Given the proliferation of high speed networks and multi-
media applications, it is becoming increasingly important
to consider congestion control. This is especially critical
for applications with unusual bandwidth requirements, due
to their potential to disrupt existing network traffic.

An example of the emerging class of ultra-high rate mul-
timedia applications might be delivery of gigabit rate high
definition television (HDTV) signals over IP networks. We
have implemented such a system [7], at a constant data rate
of 850 Mbps, and have experience of the problems such
high rate traffic can cause. To make this application safe for
use outside carefully controlled testbeds, we desired to im-
plement congestion control. This paper describes our initial
experiences with TCP-friendly rate control of this applica-
tion.

The paper is organized as follows. Section 2 describes the
demonstrator system, and outlines algorithms for multime-
dia congestion control. Section 3 describes our implemen-
tation, while Sections 4 and 5 discuss experimental setup
and results. The lessons learnt from our experiment are de-
scribed in section 6, along with directions for further work.
Finally, Section 7 concludes the paper.

2. BACKGROUND

In previous work, we developed a prototype telepresence
system that uses HDTV equipment to provide very high

quality telepresence over IP networks [7]. The system runs
at rates of approximately 850 Mbps, delivering 1280x720
pixel video at 60 frames-per-second in 24-bit YUV color. It
is implemented with off-the-shelf components: a PC-based
server running Linux, with HDTV 1/O and gigabit Ethernet
cards. It uses standard RTP over UDP/IP network transfer
protocols [8, 4].

Our wide area tests with this system proved the viability of
transporting high bandwidth video streams over IP. How-
ever, they also highlighted a severe limitation: due to the
lack of congestion control our tests could only be conducted
with permission, and careful monitoring, from the network
operations staff, so as to ensure that such a high-rate non-
congestion controlled stream did not adversely affect other
traffic on the network.

In order for multimedia traffic and TCP/IP flows to co-exist
and receive a fair share of available bandwidth, the non-TCP
traffic must be TCP friendly. A TCP friendly flow will fairly
share bandwidth with other flows, while judiciously seek-
ing free bandwidth. It has been shown that, for a saturated
steady state TCP sender, throughput is proportional to in-
verse of the square root of the packet loss rate, p [5]. This is
known as the TCP-friendly equation, and it provides an up-
per bound on the steady state throughout 7', for packet size
S, round trip time R, retransmission timeout tgro ~ 4R
and the steady state loss event rate p, such that:

S
T =
Ry/22 + trro(3y/32)p(1 + 32p2)

Utilizing the TCP-friendly equation has resulted in a class
of equation based congestion control schemes, such as the
TCP friendly rate control (TFRC) protocol [3]. The basic
concept is to regulate throughout using equation 1, guaran-
teeing that the flow is TCP-friendly. Once a sender is aware
of the loss event rate p and the round trip time R, it can com-
pute its fair share of bandwidth and adjust its sending rate
accordingly. Damping is applied, to ensure that the rate of
adaptation is smoother than TCP, while maintaining long-
term fairness. The dynamics of TFRC, and its interaction
with TCP, are described in [3].

o))



3. DESIGN AND IMPLEMENTATION

TCP friendly rate control relies on the sender being able to
adjust its sending rate according to the amount of loss the
flow is experiencing. In TFRC, loss is measured as a loss
event fraction by the receiver. TFRC distinguishes between
loss fraction and loss event fraction, to better emulate TCP.
Loss event fraction measures the fraction of loss occurring
more than one round trip time (R7"T") apart. In other words,
once an initial loss occurs, any other following loss within
a RT'T is ignored. This closely mimics most TCP variants.

18 17 16 15 14 13 12 11 10

e S e e S 5 57w ST<
time
x packet loss, after one RTT

o packet loss, within one RTT last packet

RTT
10-18 TRFC Loss Intervals

Figure 1: TFRC Loss Intervals.

Handling of loss intervals in TFRC is shown in Figure 1.
TFRC recommends the use of N = 8 intervals, however as
seen in Figure 1, N +1 intervals are actually maintained. To
compute the average loss interval, TFRC chooses the max-
imum of the values of 37 _ I, and >°°_, I,,. Therefore,
if the interval since the last packet loss event, Iy, is large,
it is accounted for in the computation of the loss event rate,
helping TFRC increase its sending rate in the absence of
loss.

To implement TFRC, the following two feedback loops are
needed: first, the sender must periodically send perceived
RTT to the receiver, thereby allowing the receiver to com-
pute the loss event rate, p. Secondly, the receiver must send
the computed lose event rate, p, back to the sender. Figure
2 illustrates the process.

rd 0
sender receiver 4 L
TP .
RR APP L 23
\
N 26 N1
= | — 0= 27
\ 28
R
—— [RTTT .. ] < 3| no
RTCP packet APPSR o[B8t
N
RTP packet 100
arrival history

Figure 2: TFRC feedback loops implemented in RTCP.

Our implementation uses RTP over UDP/IP transport. RTP
provides feedback using the RTP Control Protocol, RTCP.
At regular intervals, implementations generate Receiver Re-
port (RR) or Sender Report (SR) packets, providing recep-
tion quality feedback and support for lip-synchronization.
Application specific feedback is supported using APP pack-
ets, that are piggy-backed at regular intervals with RR or SR

ISI-East

Figure 3: The network used in our tests.

packets. In our implementation, each time the sender gen-
erates a sender report it also sends the RT'T to the receiver
in an APP packet. Likewise, when the receiver sends back a
receiver report it also includes an APP packet with the latest
computation on the loss event rate, p.

4. EXPERIMENTAL SETUP

To test our system, we need a wide-area network capable
of supporting high rate UDP flows. Several such networks
have become available recently, including Internet2 and the
DARPA SuperNet testbed. We report on tests conducted
using SuperNet (previous experiments have used Internet2).

The SuperNet testbed comprises several research networks,
connected using a cross-country overlay on a commercial
ISP network. The individual research networks are multi-
gigabit capacity, and the overlay is intended to support giga-
bit rate applications. In practice, the capacity of the overlay
network varies with the load on the underlying network.

The network path we tested is shown in Figure 3. The wide
area path from ISI East in Arlington, VA, to ISI West in
Los Angeles is nine IP hops. We configured a tunnel to
return traffic from the router in LA, looping traffic back to
our laboratory. This allows us to display the results, and
gives a network path with 10 logical — 18 actual — hops and
a 132ms round trip time.

The sender and receiver are Dell PowerEdge 2500 servers
with dual 1.2GHz Pentium Il processors, running Linux
2.4.2. They are equiped with 3Com 3c985 gigabit Ethernet
and DVS HDstationOEM HDTYV interface cards. We cap-
ture live HDTV content, packetize and transmit RTP pack-
ets destined for the tunnel interface of the receiver. The
routing is such that the packets traverse the network before
returning though the tunnel to the receiver, where they are
depacketized and displayed. The full rate of the system
is 850 Mbps, although it can adapt by sending at reduced
frame rate.

When the underlying network is lightly loaded, we have
consistently been able to run cross-country HDTV-over-1P

10
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Figure 4: Packet reordering gives the appearance of loss

at 850 Mbps without packet loss. As the network becomes
more loaded, typically during business hours, we see packet
loss in our application, indicating congestion in the network.

5. EXPERIMENTAL RESULTS

We conducted a number of experiments with our system,
both local area and on the wide area network described in
Section 4. As expected, the network performance varied:
much of the time it was loss free, but there were instances
when packet loss was observed, making congestion control
necessary.

We are still evaluating the performance of our system in the
presence of packet loss, and tuning our congestion control
and rate adaptation algorithms. These results are outside the
scope of this paper (although we discuss the issues in Sec-
tion 6). The results we present here reflect our experience
when the network was lightly loaded, and loss free.

In the absence of packet loss, we noticed that our conges-
tion control function was suggesting we send at a relatively
low rate (and was stable at that rate). This was somewhat
unexpected, since TCP performance, and by extension the
performance of TFRC congestion control, is driven mostly
by packet loss. Indeed, a naive interpretation of equation 1
would say that zero packet loss should result in infinite rate.

That interpretation does not, however, take into account the
effects of packet reordering in the network. Experiments
showed that some amount, up to 1.3% depending on time
of day, of packets were reordered (a value not incompatible
with [1, 2, 6]).

Our hypothesis is that reordering causes the congestion con-
trol function to return lower-than-expected rates. For ex-
ample, packets that arrive at least four places out of order
would cause TCP to deliver a triple duplicate ACK, giving
the appearance of loss (see Figure 4). The analysis behind
the TCP-friendly rate control equation [5] reflects this, so
TFRC can also be expected to treat reordering as loss.

To validate this hypothesis, we took a closer look at packet
reordering and how it effects the computation of the loss
event rate. The results shown in Figure 5 plot the evolution

11

0.0001

T
Loss Event Rate

Reordering Events ~ +

8e-05 -

6e-05

4e-05

Loss Event Rate

2e-05 |-

I
30 35 40 45 50 55 60
Time(seconds)

Figure 5: Evolution of Loss Event Rate due to reordering.

of the loss event rate along with reorderings that give the ap-
pearance of loss and start a new loss interval, I,,, as defined
by TFRC. Itis evident that changes in the loss event rate cor-
relate with the new intervals, demonstrating that significant
packet reordering causes TFRC to change its transmission
rate.

It is also interesting to note that throughout the graph, when
new loss intervals are substantially spaced apart, this results
in a gradual reduction in the loss event rate. A good example
of this occurs at about second 48 in the graph. As discussed
in Section 3, TFRC may or may not include the last interval
Iy in its computation of the average loss intervals. Clearly,
around point 48 second in the graph, due to lack of loss, I
gradually grows, and this growth correlates to the gradual
reduction of the loss event rate.

As an additional validation step, we conducted a number of
performance tests with TCP traffic. Although there was not
an exact match, we found that — after the hosts were tuned
for optimal performance — the Linux TCP stack gave com-
parable throughout to that predicted by our congestion con-
trol function. Our results show the Linux TCP achieving
throughput on the order of twice that of our TFRC imple-
mentation. This is somewhat more than expected, perhaps
due to the use of SACK TCP in Linux which is less sensitive
to reordering than the Reno TCP used in the derivation of
the TCP-friendly equation, but not unreasonable. Detailed
comparison of TCP and TFRC throughput in the presence
of reordering is ongoing, but omitted here due to lack to
space.

We also note that the fraction of reordered packets we ob-
serve appears to be somewhat independent of the transfer
rate. This can be expected to disrupt the operation of the
congestion control algorithm to some degree.



6. LESSONSLEARNT AND FUTURE WORK

First, and foremost, our experience has taught us that packet
reordering is not innocuous, even on the scales of 0.2%.
The results presented show that TFRC loss events caused by
packets arriving too late and out of order can significantly
affect throughput in the absence of actual packet loss.

Our implementation utilizes RTCP to provide the feedback
loops needed by TFRC. Since feedback timing is important,
and directly impacts calculation of the loss event rate, we
are investigating the interaction between RTP and the TFRC
protocol. In particular, how often loss event and round trip
time information can be communicated, and how the trans-
mission rate can be adapted.

As noted in Section 3, we piggyback feedback information
into RTCP APP packets. Standard reporting intervals are on
the order of seconds, too slow for effective TFRC feedback,
but the reduced reporting interval of

TRTC’P = 360/Bsession (2)

where Bgessi0n 1S the session bandwidth expressed in kilo-
bits per second may be used. For our application, this corre-
sponds to a report every 400us on average, easily allowing
feedback at least once per round trip time (although the pro-
cessing load may prohibit this).

Processing load is also an issue when implementing the loss
interval calculation. We noticed that our implementation
observed packet loss at a lower data rate when the calcula-
tion of the TFRC parameters was enabled, even if they were
not used to control the sending rate. Investigation pointed to
the calculation of the average loss interval: performing this
computation for every packet is a significant bottleneck, es-
pecially for high-rate sources (tests show that the loss event
calculation, for a full rate HDTV source, consumes 14% of
the CPU on an otherwise unloaded host).

There are also issues with rate adaptation, since the obvi-
ous method of changing the transmission rate — adapting
the video frame rate — will cause significant step changes in
the throughput, and cannot choose any arbitrary rate. TFRC
assumes the TCP-friendly rate can be selected, and it is not
clear how deviations affect the system behavior. These is-
sues also feed into the human factors of the system: not only
must the rate adaptation fit the dictates of TCP-friendly be-
haviour, it must be chosen to avoid disturbing viewers with
sudden quality changes.

7. CONCLUSIONS

When discussing congestion control, it is common to focus
on packet loss, since that is the primary driver in TCP, and

TCP-friendly, congestion control. There are, however, real-
world IP networks in which packet loss is a extremely rare
event, but where packet reordering is not infrequent. Our
measurements show that this reordering limits the transmis-
sion rate of both native TCP flows, and multimedia flows
controlled by the TCP friendly rate control protocol.

We understand the desire to be TCP-friendly, but it is not
clear that this behavior is appropriate for multimedia appli-
cations. Indeed, one of major philosophies in the design of
RTP was Application Level Framing, making applications
tolerant to packet loss and reordering. We believe that, if
the network is not congested, emulation of TCP’s response
to packet reordering is overly conservative.

To allow the deployment of high-rate multimedia, such as
HDTV-over-IP, it is necessary to develop congestion control
that is both safe and usable. The TFRC protocol is clearly
safe, but we have demonstrated scenarios where its overly
conservative nature limits its usefulness. It is desirable to
develop modifications to TFRC that decouple its response to
congestion and packet reordering, so that reordering without
congestion ceases to be a limiting factor.
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Abstract

Much work has focused on the problems of small group communication and of one-to-many broadcast,
while issues in large scale interactive networked teleconferences have received less attention. In this paper, we
consider the problems inherent in conducting large scale conferences: teleconferences with hundreds, or perhaps
thousands, of active participants. The lessons learnt from our design for a digital amphitheater — a system based
on active agents, where about one hundred remote participants can conference together — are discussed. In that
system we successfully overcame end system limitations by off-loading some processing into the network, thus
creating parallelism and reducing the bottleneck inherent in the serial nature of the hosts managing each display.
We expand on this architecture, further exploring parallelism by pushing functions from individual end systems,

to clusters and the network, with the aim of scaling to thousands of users.

*This paper is based upon work supported by the Information Technology Office of the Defense Advanced Research Projects Agency. Any
opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views

of DARPA. The authors may be contacted as {ladan|csp|mankin}@isi.edu
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1 Introduction

The infrastructure of the Internet has grown at an incredible pace since its inception. With the widespread intro-
duction of optical networking, bandwidth has become plentiful and wide-area networks operating at OC-48 rates,
such as the SuperNet * and Internet2 2, are common with OC-192 and other higher rate connections becoming
available. This growth in wide area connectivity has been matched by improvements in LAN technology: 100

Mbit Ethernet is ubiquitous, 1 gigabit is becoming common, and 10 gigabit Ethernet is now being introduced.

Parallel to the growth of the infrastructure, consumers and academics have been busy envisioning new and far
reaching applications: the traditional uses — email, netnews, file transfer — are giving way to more interactive
applications based on the world wide web, to streaming media, digital radio, television and cinema, and to real-

time interactive teleconferencing.

There is another variable which affects this happy growth in network bandwidth and application demand: the
performance of the end-systems. According to Moore’s Law, the number of transistors that will fit on a chip
doubles every 18 months, and performance closely follows this. This is an impressive increase, but is dwarfed by
the rate of increase in network capacity, which has grown at a much faster pace (figure 1). Given the availability
0OC-48 PCI network interface cards, gigabit—and soon 10 gigabit — Ethernet cards, the question remains: is current

processing power capable of processing such data rates?

In this paper we explore end-system limitations in the context of scaling video conferencing, tele-conferencing
hundreds, or perhaps thousands, of participants. Such a conference may be held worldwide with participants from
different university campuses, corporate facilities, government organizations or even a lone participant from the
Arctic. In this work we draw from our experience with the digital amphitheater, where we successfully video

conferenced close to one hundred participants.

We begin, in section 2, by further describing the architectural implications of scaling teleconferencing systems.

http://www.ngi-supernet.org/
2http://www.internet2.org/
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Figure 1: Moore’s law vs. network growth.

Next, in section 3, we briefly describe our initial experiences with a prototype large-scale conferencing system —
the digital amphitheater — and the lessons learnt from it. We expand on this experience to explore issues related to
scaling up further, to possibly thousands of participants, in section 4. Finally we discuss related work in this area,

section 5, and conclude in section 6.

2 Architectural Implications of Scaling

We envision a system capable of supporting several hundred, perhaps one thousand, simultaneous interactive
users. The benefits of such a system are obvious: large organizations can have regular meetings with all levels of
management involved without incurring high travel cost, long distance educational programs can meet as if within
a lecture hall while students and lecturers join from geographically disparate locations, or it could be used for

political and other debates.

Video teleconferencing among small groups of people is now quite common, and is supported by a humber of
commercial and open-source tools. However large structured meetings, on the scale that we are envisioning, have

not yet been tried. There are a number of reasons for this: processing such a large number of video streams
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Figure 2: The end-system bottleneck.

presents a formidable challenge, both in the network and for the end-user application, and display technology is
often a limiting factor. Processing over a thousand video streams can easily overwhelm most consumer grade
workstations, in terms of bus access, interrupt processing, context switching, packet handling and demultiplexing,

decoding, display processing and rendering.

Many of the current teleconferencing tools, especially the research oriented ones such as the popular multicast
toolset maintained by University College London [13] have been designed with scaling properties in mind. How-
ever, their focus has been mainly on attaining scaling via multicast, and thereby reducing network load. This
approach does not address the problem of the end-system bottleneck, and in fact it aggravates it. End-users can
generate video content in parallel, this content moves through the network, but once received at its destination,
must be processed by an inherently serial system. As all the video flows must be instantaneously reconstructed,

decompressed and rendered (figure 2), thereby creating a performance bottleneck in the end-system.

Given that the processing limitations of end-systems are the main bottleneck and deterrent to very large scale
video conferencing, what are the possible solutions? Our experience shows that the simple brute force technique
of “faster end-systems’ is not a viable solution, as even the fastest available workstations cannot keep up with

hundreds of video streams.

The implication is that we must distribute the processing, leveraging the increased communication ability rather
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Figure 3: Large group conferencing: An architectural template.

than drinking from the firehose of the full set of input streams. Parts of processing must be pushed into the network
infrastructure, offloading functions from the end-system to agents within the network (figure 3). The questions
remains as to how much and which parts of the process can be off-loaded from the end-system, and exactly what

are the tradeoffs involved.

We have explored some of these tradeoffs, and the performance which can be gained through the use of agents, in
our prototype digital amphitheater. In the next section we discuss this in some detail, followed by an evaluation of

the extensibility of this model to other large scale conferences.

3 TheDigital Amphitheater: Prototyping L arge-Scale Conferencing

When attempting to conduct a teleconference with upwards of one hundred participants using the standard multi-
cast toolset, it rapidly becomes clear that those tools are unable to process the received data: the system load goes

to 100%, data is dropped, and the visual appearance of the conference is destroyed.

There can be a number of reasons for this poor performance: it could be that the system cannot handle the
total bandwidth of the incoming media streams, it could be the per-packet processing, it could be limited CPU

performance, or it could be limited memory bandwidth in the host.
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Our initial investigation led us to believe that the limit was not related to the raw bandwidth of the media streams:
experiments with high rate TCP and UDP traffic on similar hosts have shown that they can receive significantly
higher data rates, if tuned correctly. Those experiments also suggest a number of approaches to tuning the system,

including: use of large frames, interrupt coalescing, zero copy networking, and checksum offloading [3].

When considering these, our first observation was that the media streams comprise a large number of small packets,
due to the compressed nature of their payload. If these packets could be combined into larger frames, it might
be possible to increase performance without having to tune the end host. This can also be expected to ease the

application performance, by reducing the number of participants it must track.

This is a simple matter for TCP streams, since the communication is point to point and the data can be split
arbitrarily. For real-time communication, however, the problem is more complex due to the following factors: (1)
a video conferencing session naturally involves multiple sources; (2) the size of the packets generated depends on
the compression scheme used, and cannot be arbitrarily varied. In particular, any change in the compression ratio

to affect the packet size will vary the rate, defeating the point of the change.

We devised a technique we have term ‘Spatial Tiling’ which address the above constraints: combining data from

multiple sources whilst maintaining the rate [7].

3.1 Spatial Tiling

Our concept of spatial tiling is to tile N frames from separate sources next to each other, and to modify the meta-
data of the tiled frame, such that it represents a single frame. This is illustrated via an example in figure 4 where
three individual video frames are placed side by side to form a single frame. Each individual frame is completely
represented in the tiled frame, however the meta-data, in this case block coordinates, has been adjusted accordingly.
We believe tiling satisfies both of our constraints: packetizing the tiled frame provides more opportunity for

generating fuller packets, and the number of input sources is reduces from N to a single source.
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Figure 4: Tiling three frames into a single frame. Both frame size and block coordinates have been adjusted for

the tiled frame.

It is important that spatial tiling does not add additional delay to the video stream. Tiling agents only parse and
deconstruct the incoming video streams into smaller building blocks, whilst maintaining their relevant meta-data:
no decompression is done in the tiling agent. To maintain independence between incoming and outgoing frame-
rates, two sets of buffers are maintained per stream. The tiled frame is constructed at given intervals (determined
by the outgoing frame rate) from the output buffers. New incoming frames are copied from the incoming buffer to

the output buffers, once they are received in full.

Although, theorically, it is possible to tile an unlimited number of streams, we have restricted the tiling to 15 video
streams. This restriction allows us to use the built in mixer functionality of RTP/RTCP [15], since an RTP packet
can carry the contributing source identifiers for up to 15 different sources. The input streams can be tiled in any
geometry requested: for 15 streams the agent can generate a single row of 15x1, a square of 4x4 (where the last

square will be empty), a 5x3 rectangle, or even a single row/column.

In our current implementation, the spatial tiling agents support two video representations: high bandwidth raw
YUV video with conditional replenishment (YUVCR) [8] and H.261 [17] using only intra-frame compression.

Spatial tiling agents may be employed within a standard video conferencing session, or in conjunction with a
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Figure 5: The digital amphitheater: user interface and architecture.

special purpose application, such as our digital amphitheater [14] system.

Figure 5 displays the digital amphitheater’s user interface (with a conference in session). The amphitheater consists
of the rows of attendees, four front panel members and the speaker. In all instances the background of the offices
have been removed, in order engender a feeling of presence and location. To do so we have adapted a simple, low

cost background substitution algorithm which runs in real time on the senders systems.

Each attendee in the amphitheater participates by unicasting video to the ‘closest’ agent, located via an anycast
address. The agent, in turn, tiles together all the video streams it receives, and multicasts the tiled video stream
to a multicast group. All participants join this group, receiving and displaying the combined audience video. The

panel members and speaker send directly to the multicast group, thus avoiding the tiling.

3.2 Performance Gains

To determine the performance gains obtained by using the tiling agents we decided to measure and quantify: (1)
bandwidth, in bits per second (bps); (2) packets per second (pps); and (3) the total number of streams the end
system is capable of decoding and rendering (V). We compared the value of these variables in a conferencing

session with and without the use of STAs. Here, we only present results obtained from the H.261 tests (results
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Variable | seperate tiled gain%

pps 186 | 122 | 34.51%
bps 979 | 936 | 4.33%
N 55 | 97 | 43.2%

Table 1: Variables quantified with and without the STAs for H.261 video: average bit-rate, bps, average packet

rate, pps, and N total number of streams.

with YUVCR support these conclusions, and are omitted due to lack of space).

The receiving system was what is currently considered an average user grade system: a 550Mhz Pentium Il
machine with 256M of memory, running Red Hat Linux 7. The tiling was initially run on a somewhat lower grade
system, a 400Mhz Pentium Il with 64M memory, running FreeBSD 3.4, but this was found to have insufficient
memory, although it was sufficient in other ways. A more powerful system, with 512M of memory, was used to
host the tiling agents during the tests we report. Work is underway to reduce the memory footprint of the tiling

agents, since they are otherwise not very compute intensive and require only a few percentage of CPU time.

In our initial set of trials, we measured bps and pps. To do so, first we streamed the 15 test video streams
individually to the receiver. Next, we ran the test video through the tiling process with the output frame rate set
to 8 fps - essentially the same as the input frame rate of the test videos. To measure the bitrate, bps, and packet
rate, pps, we instrumented the receiver such that it logged these variables, along with other decoding statistics, to
afile. Figure 6 displays the results of these tests. In these graphs, pps clearly show a reduction for the tiled H.261
stream. Although not apparent, bps, also shows an overall reduction of 4.33% percent for the tiled stream over the

entire test run. Table 1 summarizes these results.

The reduction in pps is primarily due to the aggregation of smaller packets. The tiling process generates a single
large frame, therefore there are fewer ‘half empty’ packets in the resulting stream. In the tiled H.261 stream pps

is reduced by approximately 35%. Given the average size of H.261 packets such a decrease is to be expected.
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Figure 7 displays the cumulative packet size for 15 individual H.261 streams and their corresponding tiled video

frame.

In terms of bandwidth, bps is reduced by 4%. Although bandwidth is reduced over the duration of the test runs, the
graphs reveal that this in not the case on a per minute bases, as in some instances the bps of the separate streams
appears to be less than the tiled stream. This is in part due to synchronization differences between the separate
streams and the tiled stream, and in part due to measurement artifacts resulting from the averaging process. We
also note the the low reduction in bandwidth is to be expected. In these tests the tiling agents reproduce the input
video streams, exactly as they come in, without any temporal or spatial down sampling. Both the input and output
frame rates are 8 fps and the tiling agents more or less copy each incoming frame to the outgoing tile frame. The

existing reduction in bps is mainly a reflection of the reduced pps and lower packet overhead,

Finally, we turned our attention to the performance of the end-system, and quantifying N. Our decoder maintains
statistics on the number of packets correctly decoded and on packets discarded due to late arrival or lack of
rendering time. We used these statistics to measure the maximum number of streams, N, our end-system could
receive without loss, both with and without tiling. This process was conducted by incrementally increasing the
number of individual streams until the end-system reached the point of saturation. For the H.261 video streams
it was found that the system could decode and render up to 55 individual video streams without loss. With this
number of streams CPU was at 100% utilization. When receiving tiled H.261, the system could receive 6 tiled
streams of 15 and an additional stream of 2 tiles, comprising a total of 97 individual streams, an overall increase

of 43% in number of streams.

These numbers clearly demonstrate the reduction of workload on the end-system due to the spatial tiling process.
Despite almost no reduction in bit-rate, the end-system is capable of receiving almost twice as many video streams,
once the video streams are tiled and packet rate is reduced. This leads us to conclude that a primary load on end-
systems is per-packet interrupt processing and per-source rendering, rather than the computational complexity of

the decoding process and therefore spatial tiling is more amendable to relatively highly compressed video streams
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where the average packet size is significantly smaller than the network MTU. Having a significant number of

‘half-full’ packets, gives the tiling agents more leverage in reducing the overall packet rate.
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Figure 6: Comparison of 15 separate H261 QCIF video streams and the equivalent 5x3 tiled stream (a) packets

per second (b) bits per second.

3.3 Limitationsand Lessons L earnt

The spatial tiling agents were designed with two goals in mind: (1) reducing the number of sources visible to
the receiver; and (2) reducing the number of smaller packets, combining them into larger output. Clearly this
has resulted in performance increases: the number of streams received successfully by our end-system has almost
been doubled, whereas the number of streams has actually been reduced from 55 to 5, as the 97 tiled streams, are

really 5 separate streams.

By allowing the tiling agents to packetize bigger frames, we were able to produce 35% less packets of which over

80% are at MTU size (figure 7). This is in contrast to having only 40% of packets at full capacity.

Although, it is very promising that 80% of the packets are mostly full, it also indicates that we have reached the

limit of what can be achieved via spatial tiling. Employing a hierarchy of tiling agents, or tiling more than 15
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streams, may reduce the number of sources received by an end-system, but it is unlikely that it reduce pps any

further.

4 Challengesin Further Scaling

Experience with the digital amphitheater has shown the benefit which can be gained by coalescing packets within
the network to reduce the load on an end-system. This is effective at reducing the packet rate up to a point, but

rapidly runs into a bottleneck due to limitations of the network MTU.

To further scale the system we need to consider the other limiting factors, starting with general issues in optimizing

the network stack, and moving on to issues with efficient RTP processing.

4.1 Optimizing the network stack

There are a number of ways in which the performance of the network stack can be improved, many of which have
been explored in the context of high performance TCP implementations. These optimizations fall into two major
categories: those which improve the per-packet performance of the stack, and those which reduce the per-byte

overheads.
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The major issue with respect to per-packet overheads is the interrupt processing load. High performance TCP
implementations reduce this by sending larger packets, a solution which we have explored for teleconferencing

through our use of spatial tiling.

Another solution is interrupt coalescing, where the network driver gathers several packets before signaling to the
operating system that data has been received, rather than generating an interrupt for each packet. This is clearly of

benefit, and needs little further discussion.

Reduction in the per-byte overhead is typically achieved with zero copy network stacks, where the network hard-
ware writes into a buffer which is directly mapped into the application’s memory space. This is useful, up to a

point, but the gains which can be achieved are perhaps limited compared to some other applications.

The main issue is decompression of the media stream, which not only results in a copy of the data being made, but
it’s expansion. For example, a factor of ten compression is not unreasonable, yet the memory traffic generated by

such a decompresser will dwarf the gains from a zero-copy network stack.

The other common technique used to improve performance of TCP is checksum offloading, where the network
interface verifies the TCP or UDP checksum before passing the packet to the host. Once again, there is some
gain for teleconferencing applications, but due to the processor intensive nature of these applications it may have
limited impact (for example, the cost of computing a UDP checksum is negligible compared to that if MPEG

decompression).

To conclude, there is some gain to be had from optimizing the UDP/IP network stack, but the nature of large scale
teleconferencing is such that the RTP and application processing costs dwarf those of UDP/IP network processing.
The reduction in packet rate achieved through spatial tiling is perhaps the most significant effect we can expect,

followed by the gains from zero-copy stacks.
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4.2 Optimizing RTP

Rather than considering the network stack alone, it is instructive to view the complete application, and consider
how performance of the RTP protocol and media decoding can be optimized. Such an approach fits well with
the nature of RTP, which was designed around the concepts of application level framing [4] and integrated layer

processing.

There are two major issues to consider when optimizing RTP and application performance: participant state and

media decoding performance.

An application using RTP will maintain a significant amount of state for each participant: the 32 bit synchroniza-
tion source identifier, playout calculation details, decoding state, media data awaiting playout, reception quality
statistics, source description information, etc. In total, this can easily comprise several hundred bytes per partici-

pant, excluding the media data.

When compared to the cache sizes of modern processors, where 64kBytes is considered large, it is clear that the
complete state cannot fit into the level 1 cache. It may therefore be advantageous to split data structures into
those parts necessary for decoding each packet and those parts which are required less often, so that unnecessary

references to main memory can be avoided.

The use of tiling agents within the network has the unintended consequence of reducing the amount of state which
has to be accessed during decoding. Since they act as synchronization sources for the media, it is necessary for

the receiver to maintain state per-agent, rather than per participant.

As we have noted, media decoding is significant in terms of both processor utilization and memory bandwidth.
The obvious result of this is that zero copy techniques must be adopted within an application, with media being
rendered directly onto the display device if possible. In addition, the use of various SIMD extensions to processor

instruction sets (e.g. MMX, AltiVec, VIS, etc.) can significantly reduce decoding times.

Media decoding is also a function which is parallelizable: each member of the session can be independently
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decoded and rendered. There is a clear benefit to be gained through the use of multiprocessor hardware, but this

still suffers from a bottleneck due to the single network socket used to receive data.

We believe that there is a significant amount to be gained through the use of layered coding, in conjunction with
multi-processor systems. The use of layered coding allows the network interface card to filter unwanted traffic,
so each processor sees only a fraction of the total. This gives the benefit of parallel decoding, along with a

signification reduction in the amount of state which needs to be kept.

It may be advantageous for agents near the edges of the network to combine outgoing data into a single stream, and
split incoming data into layers. The trade-off for optimal performance at the end host and in routers is different: it
is better for data to be layered at the edges, so the host can separate processing, but it is better to be combined in
the core where packet switching is not an issue but per group state maintenance is. This is an ideal use for agents:
offloading processing from groups of hosts at the boundary between relatively low speed local networks, and the

high speed core network.

5 Reated Work

The use of active service agents [1] to adapt the behavior of network traffic flows has been widely studied. Active
services avoid the well known problems of active networks by restricting computations to the application layer,
deploying services onto a network of computation servers placed within the network. As a result of this, they are

readily deployable and form the basis of a number of commercial content distribution networks.

Whilst these commercial offerings have typically focused on efficient distribution of world-wide web content, a
number of researchers have studied the problem of adapting streaming audio/video flows to match the network

capacity.

One of the earliest such papers referred to self-organized transcoding of streaming audio/video media flows [11],

leveraging from tools such as the video gateway developed at UC Berkeley [2]. More recently, implementations
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such as the ‘FunnelWeb’ Application Level Active Network [6], active routers [10], and overlay networks, such

as the X-bone [16], add genericity and flexibility to the system.

The use of these techniques, whilst beneficial to the network, degrades the quality of the media stream. It would be
desirable if the load generated by a media stream could be reduced whilst retaining its quality. Our proposed STA

network has this property, at the expense of limited adaptability (when compared to schemes based on transcod-

ing).

Critical to the operation of active services is the placement of the active elements within the network. This has
received considerable attention in the literature [18, 12, 5], particularly when related to reliable multicast, leading
to recent standards work in the IETF [9]. We do not seek to design new tree building mechanisms at present, rather

we rely on existing work.

Our proposal seeks to leverage existing work in the field of active services: the concept of active agents within the
network to adapt media flows to fit network/system constraints, the platforms for service creation and deployment,

and mechanisms for placement of service agents.

6 Conclusion

We have presented the digital amphitheater, a system for large-scale teleconferences, based around the use of
active agents to tile video streams, reducing the load on the receivers. This system illustrates one approach to

scaling a teleconferencing system to large numbers of participants.

We have also present some preliminary thoughts on how we can further scale the system, to larger or higher quality
conferences. In particular, we note the beneficial effect of RTP mixer/translators in reducing the state requirements

for end systems, and their potential role layering media streams to enable efficient parallel decoding.

The requirements for conducting large conferences are difficult to meet, and no existing application is entirely
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successful. The digital amphitheater is a step towards the solution, and points the way to further development and

performance improvements.
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Yima: A Second-
Generation Gontinuous
Media Server

Yima, a scalable real-time streaming architecture, incorporates
lessons learned from earlier research prototypes to enable advanced

continuous media services.

pplications such as news on demand, dis-
tance learning, e-commerce, and scientific
visualization all store, maintain, and
retrieve large volumes of real-time data
over a network. These data are denoted
collectively as continuous media, or CM. Video
and audio objects are popular examples; haptic and
avatar data are less familiar types. CM data require
a streaming architecture that can, first, manage
real-time delivery constraints. Failure to meet these
constraints on CM data disrupts the display with
“hiccups.” Second, the architecture must address
the large size of CM objects. A two-hour MPEG-2
video with a bandwidth requirement of 4 megabits
per second is 3.6 gigabytes in size.
The currently available commercial implementa-
tions of CM servers fall into two broad categories:

e low-cost, single-node, consumer-oriented sys-
tems serving a limited number of users; and

e multinode, carrier-class systems such as high-
end broadcasting and dedicated video-on-
demand systems.

RealNetworks, Apple Computer, and Microsoft
product offerings fit into the consumer-oriented cat-
egory, while SeaChange and nCube offer solutions
oriented toward carrier-class systems. While com-
mercial systems ordinarily use proprietary technol-
ogy and algorithms, making it difficult to compare
their products with research prototypes, we have
designed and developed a second-generation CM
server that demonstrates several advanced concepts.
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We call our system Yima, a name denoting the
first man in ancient Iranian religion. While Yima
has not achieved the refinement of commercial solu-
tions, it is operational and incorporates lessons
learned from first-generation research prototypes."
Yima distinguishes itself from other similar research
efforts in the following;:

e complete distribution with all nodes running
identical software and no single points of fail-
ure;

e efficient online scalability allowing disks to be
added or removed without interrupting CM
streams;

e synchronization of several streams of audio,
video, or both within one frame (1/30 second);

¢ independence from media types;

e compliance with industry standards;

e selective retransmission protocol; and

e multithreshold buffering flow-control mecha-
nism to support variable bit-rate (VBR) media.

Yima is also a complete end-to-end system that
uses an IP network with several supportable client
types. This feature distinguishes it from previous
research that focused heavily on server design.

SYSTEM ARCHITECTURE

Figure 1 shows the overall Yima system archi-
tecture. In our prototype implementation, the server
consists of an eight-way cluster of rack-mountable
Dell PowerEdge 1550 Pentium III 866-MHz PCs
with 256 Mbytes of memory running Red Hat
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Linux. Sixteen 36-Gbyte Seagate Cheetah hard-disk
drives store the media data and connect to the
server nodes via Ultra160 small computer system
interface (SCSI) channels.

The nodes in the cluster communicate with each
other and send the media data via multiple 100-
Mbps Fast Ethernet connections. Each server is
attached to a local Cabletron 6000 switch with either
one or two Fast Ethernet lines. The local switch con-
nects to both a WAN backbone for serving distant
clients and a LAN environment for local clients. Our
testbed also includes server clusters at other remote
locations, for example, Metromedia Fiber Network
in El Segundo, California, and Information Sciences
Institute East in Arlington, Virginia.

Choosing an IP-based network keeps the per-port
equipment cost low and makes the system imme-
diately compatible with the public Internet.

The current prototype implements clients on stan-
dard Pentium III PC platforms, but we could also
port them to digital television set-top boxes. The
client software, Yima Presentation Player, runs on
either Red Hat Linux or Windows NT. Structured
into several components, the player lets various soft-
ware and hardware decoders be plugged in. Table 1

shows the different media types that Yima currently
recognizes. One unusual type is panoramic video
with 10.2-channel audio.

SERVER DESIGN CHALLENGES

The servers for delivering isochronous multime-
dia over IP networks must store the data efficiently
and schedule the data retrieval and delivery precisely
before transmission. We studied both master-slave
and bipartite design approaches in the Yima-1 and
Yima-2 CM servers, respectively. These approaches
share many features that address design challenges
in this domain. They differ mainly in the logical
interconnection topology between cluster nodes.

Data placement and scheduling

There are two ways to assign data blocks to the
magnetic disk drives that form the storage system:
in a round-robin placement’ or randomly.* Tra-
ditionally, round-robin placement uses a cycle-based
approach for resource scheduling to guarantee a
continuous display, while random placement uses
a deadline-driven approach.

In general, the round-robin cycle-based approach
provides high throughput with little wasted band-
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Figure 1. Yima sys-
tem architecture.
The prototype imple-
mentation uses off-
the-shelf commodity
hardware compo-
nents and industry
standards end to
end.



Table 1. Yima client media support.

Media Operating
type Decoder Channels  system
DivX Software 1 video, Linux
MPEG-4 2 audio
MPEG-2 Creative 1 video, Linux
and Dolby  Dxr2 DVD 5.1 audio
Digital
MPEG-2 Software 1 video Linux
HD
MPEG-2 Vela 1 video, Linux
HD Research 10.2 audio
CineCast HD
Panoramic  Vela 5 video, Windows
MPEG-2 Research 10.2 audio  NT
CineCast

width for video objects that are retrieved sequen-

tially, such as a feature-length movie. The startup
latency for an object might be large under heavy
loads, but object replication can reduce it.’

The random deadline-driven approach supports
fewer optimizations, so it could lower throughput,
but several benefits outweigh this potential draw-
back.® First, random data placement supports mul-
tiple delivery rates with a single server block size;
it also simplifies the scheduler design, supports
interactive applications, and automatically achieves
the average transfer rate with multizoned disks.
Finally, random placement reorganizes data more
efficiently when the system scales up or down.

Random placement can require a large amount
of metadata to store and manage each block’s loca-
tion in a centralized repository, for example, in
tuples of the form <nodey, disk,>. Yima avoids this
overhead by using a pseudorandom block place-
ment. A seed value initiates a sequence of numbers
that can be reproduced by using the same seed
value. By placing blocks in a pseudorandom fash-
ion across the disks, the system can recompute the
block locations. Since Yima numbers disks glob-
ally across the server nodes, it will assign blocks to
random disks across different nodes.

Hence, Yima stores only the seed for each file
object instead of locations for every block.

Scalability, heterogeneity,
and fault resilience

Any CM server design must scale to support
growth in user demand or application requirements.
Several techniques address this requirement, includ-
ing the use of multidisk arrays. However, if the
design connected all the disks to a single large com-
puter, the /O bandwidth constraints would limit
the overall achievable throughput—hence, Yima’s
architecture uses multiple computers, or multinodes.
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Video

Minimum  resolution Audio Delivery

CPU speed (in pixels) encoding rate

500 MHz 720 x 480 MP3 <1 Mbps

200 MHz 720 % 480 Dolby AC-3 6-8 Mbps

>2x1.5 1,920 x 1,080 19.4 Mbps

GHz

500 MHz 1,920 1,080 Dolby AC-3or  19.4-45 Mbps
uncompressed  and 11 Mbps
PCM

2 %400 (5% 720) x Uncompressed 4 x5 Mbps

MHz 480 each PCM and 11 Mbps

As Figure 1 shows, the Yima server architecture
interconnects storage nodes via a high-speed net-
work fabric that can expand as demand increases.
This modular architecture makes it easy to upgrade
older PCs and add new nodes.

Applications that rely on large-scale CM servers,
such as video-on-demand, require continuous oper-
ation. To achieve high reliability and availability
for all data stored in the server, Yima uses disk
merging’ to implement a parity-based data-redun-
dancy scheme that, in addition to providing fault
tolerance, can also take advantage of a heteroge-
neous storage subsystem. Disk merging presents a
virtual view of logical disks on top of the actual
physical storage system, which might consist of
disks that provide different bandwidths and storage
space. This abstraction allows a system’s applica-
tion layers to assume a uniform characteristic for all
the logical disks, which in turn allows using con-
ventional scheduling and data placement algo-
rithms across the physical storage system.

Data reorganization

Computer clusters try to balance load distribu-
tion across all nodes. Over time, both round-robin
and random data-placement techniques distribute
data retrievals evenly across all disk drives. When
a system operator adds a node or disk, however,
the system must redistribute the data to avoid par-
titioning the server. Reorganizing the blocks
involves much less overhead when the system uses
random rather than round-robin placement. For
example, with round-robin striping, adding or
removing a disk requires the relocation of almost all
data blocks. Randomized placement requires mov-
ing only a fraction of the blocks from each disk to
the added disk—just enough to ensure that the
blocks are still randomly placed to preserve the load
balance.
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Yima uses a pseudorandom number generator to
produce a random, yet reproducible, number
sequence to determine block locations. Because
some blocks must move to the added disks when
the system scales up, Yima cannot use the previous
pseudorandom number sequence to find the blocks;
therefore, Yima must derive a new random number
sequence. We use a composition of random func-
tions to determine this new sequence. Our
approach—termed Scaling Disks for Data Arranged
Randomly (Scaddar)—preserves the sequence’s
pseudorandom properties, resulting in minimal
block movements and little overhead in the com-
putation of new locations.® The Scaddar algorithm
can support disk scaling while Yima is online.

Multinode server architecture

We built the Yima servers from clusters of server
PCs called nodes. A distributed file system provides
a complete view of all the data on every node with-
out requiring individual data blocks to be repli-
cated, except as required for fault tolerance.” A
Yima cluster can run in either a master-slave or
bipartite mode.

Master-slave design (Yima-1). With this design, an
application running on a specific node operates on
all local and remote files. Operations on remote files
require network access to the corresponding node.
The Yima-1 software consists of two components:

e the Yima-1 high-performance distributed file
system, and
e the Yima-1 media streaming server.

As Figure 2a shows, the distributed file system
consists of multiple file I/O modules located on each
node. The media-streaming server itself is com-
posed of a scheduler, a real-time streaming proto-
col (RTSP) module, and a real-time protocol (RTP)
module. Each Yima-1 node runs the distributed file
system, while certain nodes also run the Yima-1
media-streaming server. A node running only the
file /O module has only slave capabilities, while a
node that runs both components has master and
slave capabilities.

A master server node is a client’s point of con-
tact during a session. We define a session as a com-
plete RTSP transaction for a CM stream. When a
client wants to request a data stream using RTSP,
it connects to a master server node, which in turn
brokers the request to the slave nodes. If multiple
master nodes exist in the cluster, this assignment is
decided based on a round-robin domain name ser-
vice (RR-DNS) or a load-balancing switch. A
pseudorandom number generator manages the
locations of all data blocks.

Using a distributed file system obviates the need
for applications to be aware of the storage system’s
distributed nature. Even applications designed for
a single node can to some degree take advantage of
this cluster organization. The Yima-1 media stream-
ing server component, based on Apple’s Darwin
Streaming Server (DSS) project (http://www.open
source.apple.com/projects/streaming/), assumes that
all media data reside in a single local directory.
Enhanced with our distributed file system, multiple
copies of the DSS code—each copy running on its
own master node—can share the same media data.
This also simplifies our client design since it sends
all RTSP control commands to only one server
node.

Finally, Yima-1 uses a pause-resume flow-con-
trol technique to deliver VBR media. A stream is
sent at a rate of either Ry or zero megabits per sec-
ond, where Ry is an estimated peak transfer rate
for the movie. The client issues pause-and-resume
commands to the server depending on how full the
client buffer is. Although the pause-resume design
is simple and effective, its on-off nature can lead to
bursty traffic.

With the Yima-1 architecture, several major per-
formance problems offset the ease of using clus-
tered storage, such as a single point of failure at the
master node and heavy internode traffic. These
drawbacks motivated the design of Yima-2, which
provides a higher performing and more scalable
solution for managing internode traffic.

Bipartite design (Vima-2). We based Yima-2’s bipar-
tite model on two groups of nodes: a server group
and a client group.
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Figure 2. Client
session view of the
Yima server. (a) Data
is sent through the
master node in
Yima-1, and (b) data
is sent from all the
nodes in Yima-2.



With Yima-1, the scheduler, RTSP, and
RTP server modules are all centralized on a
single master node from the viewpoint of a
single client. Yima-2 expands on the decen-
tralization by keeping only the RTSP mod-
ule centralized—again from the viewpoint of
a single client—and parallelizing the sched-
uling and RTP functions, as Figure 2b shows.
In Yima-2, every node retrieves, schedules,
and sends its own local data blocks directly
to the requesting client, thereby eliminating
Yima-1’s master-node bottleneck. These
improvements significantly reduce internode
traffic.

Although the bipartite design offers clear advan-
tages, its realization imposes several new chal-
lenges. First, clients must handle receiving data
from multiple nodes. Second, we replaced the
original DSS code component with a distributed
scheduler and RTP server to achieve Yima-2’s
decentralized architecture. Last, Yima-2 requires
a flow-control mechanism to prevent client buffer
overflow or starvation.

With Yima-2, each client maintains contact with
one RTSP module throughout a session for control
information. For load-balancing purposes, each
server node can run an RTSP module, and the deci-
sion of which RTSP server to contact remains the
same as in Yima-1: RR-DNS or switch. However,
contrary to the Yima-1 design, a simple RR-DNS
cannot make the server cluster appear as one node
since clients must communicate with individual
nodes for retransmissions. Moreover, if an RTSP
server fails, sessions are not lost. Instead, the system
reassigns the sessions to another RTSP server, with
no disruption in data delivery.

We adapted the MPEG-4 file format as specified
in MPEG-4 Version 2 for the storage of media
blocks. This flexible-container format is based on
Apple’s QuickTime file format. In Yima-2, we
expanded on the MPEG-4 format by allowing
encapsulation of other compressed media data such
as MPEG-2. This offers the flexibility of delivering
any data type while still being compatible with the
MPEG-4 industry standard.

To avoid bursty traffic caused by Yima-1’s
pause/resume transmission scheme and still
accommodate VBR media, the client sends feed-
back to make minor adjustments to the data
transmission rate in Yima-2. By sending occa-
sional slowdown or speedup commands to the
Yima-2 server, the client can receive a smooth
data flow by monitoring the amount of data in
its buffer.
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CLIENT SYSTEMS

We built the Yima Presentation Player as a client
application to demonstrate and experiment with
our Yima server. The player can display a variety
of media types on both Linux and Windows plat-
forms. Clients receive streams via standard RTSP
and RTP communications.

Client buffer management

A circular buffer in the Yima Presentation Player
reassembles VBR media streams from RTP pack-
ets that are received from the server nodes.
Researchers have proposed numerous techniques
to smooth the variable consumption rate R¢ by
approximating it with a number of constant-rate
segments. Implementing such algorithms at the
server side, however, requires complete knowledge
of R¢ as a function of time.

We based our buffer management techniques on
a flow-control mechanism so they would work in
a dynamic environment. A circular buffer of size
B accumulates the media data and keeps track of
several watermarks including buffer overflow
WMo and buffer underflow WMy. The decoding
thread consumes data from the same buffer. Two
schemes, pause/resume and Ap, control the data
flow.

Pause-resume. If the data in the buffer reaches
WMo, the client software pauses the data flow
from the server. The playback will continue to con-
sume media data from the buffer.

When the data in the buffer reaches the under-
flow watermark WMy, the stream from the server
resumes. However, the buffer must set WMo and
WMy with safety margins that account for net-
work delays. Consequently, if the data delivery rate
(Rn) is set correctly, the buffer will not underflow
while the stream is resumed.

Although the pause/resume technique is a simple
and effective design, if pause and resume actions
coincide across multiple sessions, bursty traffic will
become a noticeable effect.

Client-controlled Ap. Ap is the interpacket delivery
time the schedulers use to transmit packets to the
client. Schedulers use the network time protocol
(NTP) to synchronize time across nodes. Using a
common time reference and each packet’s time
stamp, server nodes send packets in sequence at
timed intervals.

The client fine-tunes the delivery rate by updat-
ing the server with new Ap values based on the
amount of data in its buffer. Fine-tuning is achieved
by using multiple watermarks in addition to WMo
and WMy, as Figure 1 shows.
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When the level of data in the client buffer
reaches a watermark, the client sends a corre-
sponding Ap speedup or slowdown command to
maintain the amount of data within the buffer. The
buffer smoothes out any fluctuations in network
traffic or server load imbalance that might delay
packets. Thus, the client can control the delivery
rate of received data to achieve smoother delivery,

prevent bursty traffic, and keep a constant level of
buffer data.

Player media types

We have experimented with a variety of media
types for our Yima player. Figure 1 shows the
player’s three-threaded structure. The playback
thread interfaces with the actual media decoder.
The decoder can be either software- or hardware-
based. Table 1 lists some decoders that we incor-
porated.

The CineCast hardware MPEG decoders from
Vela Research support both MPEG-1 and MPEG-
2 video and two-channel audio. For content that
includes 5.1 channels of Dolby Digital audio, as
used in DVD movies, we use the Dxr2 PCI card
from Creative Technology to decompress both
MPEG-1 and MPEG-2 video in hardware. The
card also decodes MPEG audio and provides a 5.1-

channel Sony-Philips Digital Interface (SP-DIF) dig-
ital audio output terminal.

With the emergence of MPEG-4, we began
experimenting with a DivX software decoder.”
MPEG-4 provides a higher compression ratio than
MPEG-2. A typical 6-Mbps MPEG-2 media file
may only require an 800-Kbps delivery rate when
encoded with MPEG-4. We delivered an MPEG-4
video stream at near NTSC quality to a residential
client site via an ADSL connection."”

HDTV client

The streaming of high-definition content pre-
sented several challenges. First, high-definition
media require a high-transmission bandwidth. For
example, a video resolution of 1,920 x 1,080 pix-
els encoded via MPEG-2 results in a data rate of
19.4 Mbps. This was less of a problem on the
server side because we designed Yima to handle
high data rates.

The more intriguing problems arose on the client
side. We integrated an mpeg2dec open source
software decoder because it was cost-effective.
Although it decoded our content, achieving real-
time frame rates with high-definition video was
nontrivial because of the high resolution. On a
dual-processor 933-MHz Pentium III, we achieved
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Figure 3. Panoramic
video and 10.2-
channel audio play-
hack system block
diagram. One Yima
client renders five
channels of syn-
chronized video in

a mosaic of 3,600 x
480 pixels while
another Yima client
renders 10.2 chan-
nels of synchronized
audio (0.2 refers to
two low-frequency
channels, or
subwaofers).



approximately 20 frames per second using
unoptimized code with Red Hat Linux 6.2
and Xfree86 4.0.1 on an nVidia Quadro 2
graphics accelerator. In our most recent
implementation, we used a Vela Research
CineCast HD hardware decoder, which
achieved real-time frame rates at data rates
up to 45 Mbps.

Multistream synchronization

The flow-control techniques implemented
in the Yima client-server communications
protocol synchronize multiple, independently
stored media streams.

Figure 3 shows the client configuration for the
playback of panoramic, five-channel video and 10.2-
channel audio. The five video channels originate from
a 360-degree video camera system such as the
FullView model from Panoram Technologies. We
encode each video channel into a standard MPEG-2
program stream. The client receives the 10.2 chan-
nels of high-quality, uncompressed audio separately.

During playback, all streams must render in tight
synchronization so the five video frames corre-
sponding to one time instance combine accurately
into a panoramic mosaic of 3,600 x 480 pixels
every 1/30th of a second. The player can show the
resulting panoramic video on either a wide-screen
or head-mounted display. The experience is
enhanced with 10.2-channel surround audio, pre-
sented phase-accurately and in synchronization
with the video.

Yima achieves precise playback with three levels
of synchronization: block-level via retrieval sched-
uling, coarse-grained via the flow-control protocol,
and fine-grained through hardware support. The
flow-control protocol maintains approximately the
same amount of data in all client buffers. With this
prerequisite in place, we can use multiple CineCast
decoders and a genlock timing-signal-generator
device to lock-step the hardware MPEG decoders
to produce frame-accurate output. All streams must
start precisely at the same time.

The CineCast decoders provide an external trig-
ger that accurately initiates playback through soft-
ware. Using two PCs, one equipped with two
four-channel CineCast decoders and one with a
multichannel sound card, a Yima client can render
up to eight synchronous streams of MPEG-2 video
and 24 audio channels.

RTP/UDP AND SELECTIVE RETRANSMISSION

Yima supports the industry-standard RTP for the
delivery of time-sensitive data. Because RTP trans-
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missions are based on the best-effort user datagram
protocol, a data packet could arrive out of order at
the client or be altogether dropped along the net-
work. To reduce the number of lost RTP data pack-
ets, we implemented a selective retransmission
protocol.'! We configured the protocol to attempt
at most one retransmission of each lost RTP packet,
but only if the retransmitted packet would arrive
in time for consumption.

When multiple servers deliver packets that are
part of a single stream, as with Yima-2, and a
packet does not arrive, how does the client know
which server node attempted to send it? In other
words, it is not obvious where the client should
send its retransmission request.

There are two solutions to this problem. The client
can broadcast the retransmission request to all server
nodes, or it can compute the server node to which it
issues the retransmission request. With the broad-
cast approach, all server nodes receive a packet
retransmission request, check whether they hold the
packet, and either ignore the request or perform a
retransmission. Consequently, broadcasting wastes
network bandwidth and increases server load.

Yima-2 incorporates the wunicast approach.
Instead of broadcasting a retransmission request to
all the server nodes, the client unicasts the request
to the specific server node possessing the requested
packet. The client determines the server node from
which a lost RTP packet was intended to be deliv-
ered by detecting gaps in node-specific packet
sequence numbers. Although this approach re-
quires packets to contain a node-specific sequence
number along with a global sequence number, the
clients require very little computation to identify
and locate missing packets.

TEST RESULTS

In extensive sets of experiments, Yima-2 exhibits
an almost perfectly linear increase in the number
of streams as the number of nodes increases. Yima-
2’s performance may become sublinear with larger
configurations, low-bit-rate streams, or both, but
it scales much better than Yima-1, which levels off
early. We attribute Yima-1’s nonlinearity to the
increase of internodal data traffic.

We sent MPEG-4 data from the Yima servers in
our lab to the public Internet via the University of
Southern California campus network. The geo-
graphical distance between the two end points mea-
sured approximately 40 kilometers. We set up the
client in a residential apartment and linked it to the
Internet via an ADSL connection. The ADSL
provider did not guarantee any minimum band-



width but stated that it would not exceed 1.5
Mbps. The raw bandwidth achieved end-to-end
between the Yima client and servers was approxi-
mately 1 Mbps.

The visual and aural quality of an MPEG-4
encoded movie at less than 1 Mbps is surprisingly
good. Our test movie, encoded at almost full NTSC
resolution, displayed little degradation—a perfor-
mance attributable to the low packet loss rate of
0.365 percent without retransmissions and 0.098
percent with retransmissions. The results demon-
strated the superiority of Yima-2 in scale-up and
rate control. They also demonstrated the incorpo-
rated retransmission protocol’s effectiveness.

We colocated a Yima server at Metromedia Fiber
Network in El Segundo, California, to demonstrate
successful streaming of five synchronized video
channels. Also, as part of a remote media immer-
sion experiment (http://infolab.usc.edu/News/
NYT-RML.html). We successfully streamed HD
video at 45 Mbps from Arlington, Virginia, syn-
chronized with 10.2-channel audio at 11 Mbps
from Marina del Rey, California, to our lab at the
University of Southern California.

W strategies across both distributed and peer-

to-peer architectures in which multiple
Yima clusters would exist across geographically
dispersed areas.'? This distribution would allow a
wider range of serviceable clients. We also plan to
extend the support of data types to include haptic
and avatar data as part of the overall research in

immersive media at USC’s Integrated Media
Systems Center.

€ are exploring resource management
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Abstract

We presentthe design,and preliminary performanceesults,for a systemthat transportsuncom-
pressedHDTV contentover IP networks. Our systemis motivatedby the growth in useof digital video,
and the ever increasingcapacityof local- and wide-arealnternetlinks. We aim to demonstratehe
feasibility of IP asa transportfor very high quality video, andto highlight areaswhere performance
bottlenecksxist andfurther developmentis needed.To this end,our systemis constructedrom com-
modity componentsandwastestedover existing commercialP backbonenetworks. Performancevas
shawvn to be good,with the endsystembeingthe mainlimiting factor

1 Introduction

Thecorversionof broadcastelevisionfrom thelegag/ analogPAL andNTSCstandardso digital formathas
mary exciting implications.Thesencludethe possiblecorvergenceof television distribution andcomputer
network infrastructuresallowing interactve applications,andthe increasein quality possiblewith high

definitiondigital formats.

To date, the different aspectsof this corvergencehave beenstudiedin isolation: there hasbeenmuch
work onthetransporiof compressedtandardefinition TV over IP, andmuchwork definingprotocolsand
standardsor highdefinition TV (HDTV), but few have studiedthetransporiof HDTV over IP. In this paper
we presenpurinitial experimentswith asystemto deliver productionquality uncompressedDTV over IP

networks.

Why do we choseto deliver uncompressetiDTV? Several reasonsprimarily to maintainimagequality

andreducelateng. Thisis mostusefulin a productionfacility, whereimagedegradationdueto repeated
compressiortyclesis undesirablebut may alsobe appropriatefor very high quality telepresencapplica-

tions. Delivery of compressetiDTV, usingexisting MPEG-2over IP standardsmay be moreappropriate
for otherapplications.

The outline of this paperis asfollows: section2 coversbackgroundn HDTV technology protocolsfor
transportof videoover IP networks andnetwork performanceThis is followed, in section3 with adiscus-
sionof theoptionsfor protocoldevelopmentwith our designbeingoutlinedin section4. Section5 provides
preliminaryperformanceanalysisof our systemdemonstratingransmissiorof HDTV over awide-aredP
network, with section6 outlining directionsfor further development.Finally, we summarizerelatedwork
in section7, andprovide conclusions.

40



Format | PictureFormat| Ratio FrameRate
HDTV 1920x1080| 16:9 301, 30P 24P
HDTV 1280x720| 16:9 60P 30P 24P
SDTV 704x480| 16:9 | 301, 60P 30P 24P
SDTV 640x480| 4:3 | 301,60P 30P 24P

Tablel: Pictureformatsfor digital televisions,definedby ATSC standardd/53.

2 Background

Thetelevision industryis in the processof a major transformationfrom standardanalogPAL andNTSC
systemdo highdefinitiondigital formats.Thesenew formatsprovide significantlyhigherspatialandtempo-
ral resolution,andgreatercolourdepth thanthe existing formats. Thedigital natureof thenew formatsalso
allows for greaterintegrationwith computersystemsandnetworks, providing a moreinteractie system.

High definition TV definesa rangeof picture formatsdistinguishedoy frame size andrate, aspectratio,
and scanningtechnique(seetable 1). They encompas$iDTV formatswith 16:9 aspectratiosand both
progressie and interlacedscanning,and digital equivalentsof the standardPAL/NTSC picture formats
with both 16:9 and4:3 aspectratios. HDTV contentis broadcastat 19.34Mbps,using MPEG-2for both
compressiorandtranspor{11, 10].

Local areatransporiof uncompresseHIDTV is via coaxialcableor opticalfibre, usingthe SMPTE-292M
standard13]. Thisis theuniversalmediumof interchangdetweervarioustypesof HDTV equipmen(e.g.
camerasgncodersyVTRs, editing systemsgtc.) at dataratesof 1.485Gbps. It is widely usedin studios
and productionhousesallowing HDTV contentto be delivereduncompressethroughvariouscycles of

production,avoiding the artifacts that are an inevitable result of multiple compressiorcycles. If wide

areatransportis desiredthe 292M bit-streamis typically run over dedicatedibre connectionsbut a more
economicahlternatve is desirable We considerthe useof IP networksfor this purpose.

Standarddor real-timetransportof video over IP networks have reachedelatve maturity recently with

thedominantprotocolbeingthe Real-timeTransportProtocol RTP [20, 21]. RTP providesmediaframing,
identifiesthepayloadtypeandsource andallows for timing recovery andlossdetection It typically runson
UDP/IP networks, inheritingtheir limitations: unreliable besteffort delivery. Receversuseinformationin

theRTP headerso correctfor pacletloss,andto reconstructmediatiming. A key features applicationevel

framing,wherethe codecoutputis intelligently fragmentedandpacletized,accordingto a payloadformat,
sothateachRTP pacletcanbedecodedndependently4]. Thismakescarefuldesignof receversimportant,
sincethey have the primaryresponsibilityfor correctplayoutof mediadisruptedoy thevagrancie®f anlP

network.

IP networks provide a best-efort paclet delivery service. Thereis no guaranteehatthe network will not

discard,duplicate,delayor mis-orderpaclets. Applicationsandtransportprotocolsusing|P mustadaptto

theseissuesabstractinghe network behaiour to give a usableservice. RTP applicationshave developed
sophisticatedstratgies for dealingwith timing jitter and paclet loss[16]. It is expectedthat a system
for delivery of HDTV over IP will usetheseto provide a robustservice. A critical areawhereRTP based
systemsarelackingis congestiorcontrol;adaptingheirbehaiour to fit theavailablenetwork capacity The

implication hereis thatit is necessaryo eitherdevelop congestiorcontrol for RTP or to run applications
only on a network provisionedwith sufiicient capacityto supporttheir needs.Of course|f it is desiredto

transmituncompressedDTV over IP, thenetwork will needa certaincapacityaryway. For thisreasonywe

deferdiscussiorof congestiorcontrolto section6 andconcentraténsteadon theissueof finding anetwork

thatcansupportgigabitratelP flows.
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Thereare several networks that have demonstrateguficient capacityfor theseexperiments. Internet2s
Abilene network [17] andthe DARPA SuperNetestbed24] are examplesto which we have access.Su-
perNethasbeenusedto demonstratgerformanceof 740 Mbps of single streamTCP and 957 Mbps of
multi-streamT CPtraffic overacrosscountrypath[18].

Our initial testingwasconductedover SuperNetbetweenlSI East(Arlington, VA) andCMU (Pittshurgh,
PA). The pathincludesnine hopsin eachdirectionandhasan RTT of approximatelyl0 ms (seefigure
1). We alsoconductedestson a SuperNetpathwherethe paclets flowed from ISI Eastto ISI West(Los
Angeles,CA) andbackto ISI East.In this configurationboththe sendeandrecever wereat ISI East. This
pathhastwenty-two hopsandanRTT of approximately67 ms.

GigaE GigakE
SuperNet receiver
(Mixture of M160 and GSR routers)
R T U
cMuU

Figurel: Datapathover SuperNefrom ISI-Eastto CMU

ISI-East

Ourtestconfiguratiorconsistef senderandreceverswith gigabitEtherneNICs connectedo a switched
gigabit EthernetLAN infrastructure. The local areagigabit Ethernetconnectedo a site borderrouter

Dependingon the site, the borderrouterwaseithera Juniperor Ciscorouterwhich connectedo the wide
areanetwork via an OC48 POS connection. SuperNetusesa commerciallyavailable IP backbonefor

transportacrosghewide area.Thiswide areanetwork consistedf amix of JuniperandCiscorouterswith

0OC48andOC192POSinterfaces.

Prior to conductingthe HDTV experimentswe first desiredto ascertairthat sufficient capacitywasavail-

ableacrossthe wide areanetwork. We alsodesiredto accomplishthis in a mannerwhich would not sig-
nificantly disruptothertraffic. TCP’s congestioncontrol mechanisnprovidesa good gaugeof available
capacity We usedtheiperf application[9] to measurédoth TCP and UDP bandwidthperformance Run-
ning iperf betweenour sendmachineat ISI Eastandthe recever at CMU, we wereableto recorda 702
Mbps TCP stream.Lik ewise we carriedout the sameexperimentfor UDP flows andwereableto transfer
flows in excessof 600Mbps. Performancevasdependenbn network load, with throughputbeinglessat
busytimes.

Thesetestsshaw it is possibleto engineeran IP network to have low paclet loss andjitter, and support
gigabitrateflows. Fromthis, we concludethatthe network capacityshouldbe availableto conducttests
with HDTV over IP.

A systento transportHDTV over IP networkswill useRTP asits transportwith theimplicationbeingthat
anRTP payloadformatneedgo bedevelopedfor HDTV content.The optionsfor the developmentof such
aformatareoutlinedin section3, with the detailsof our designbeingpresentedn sectior4.

3 Optionsfor Transport of HDTV

A systemfor transportof HDTV over IP will accepta SMPTE-292Mdigital video signalandencapsulate
it within RTP for transmissiorover IP. At therecever, the SMPTE-292Msignalcanberegeneratedor the
video canbedisplayeddirectly. Therearea numberof optionsin how this canbe done,dependingn the
aimof thetransportlf theintentistolink existingequipmenthecorrectapproachmaybecircuit emulation,
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wherethe SMPTE-292Msignalis mappedonto IP irrespectie of its contents.The alternatve is a native
packetization, wherean RTP payloadformatis definedto transportthe video directly, with SMPTE-292M
usedonly locally.

Circuit emulationprovidestransparentelivery of the HDTV bit-stream suitablefor inputinto otherde-

vices. It supportsary formatthat SMPTE-292Msupportswithout having to be adaptedo the detailsof

thatformat. The maindisadwantages thatthe pacletizationis mediaunavare,andcannotoptimisebased
onthevideoformat. This makescircuit emulationsomevhatlossintolerant.

Native pacletizationlooks at the contentsof the SMPTE-292Mstream actingon the video datawithin it.

Hence,a native formatsneedto be definedfor every possiblevideoresolution,althoughthoseformatscan
be mademore optimal. It alsoexposesthe contentto manipulationby end systemsyratherthan hiding it

within anothedayerof framing.

We choseto usea native pacletization,sinceoneof our aimsis to displayandmanipulateHDTV content
on commodityworkstationswe do not necessarilyneedto regeneratehe SMPTE-292Moutput.

4 Design and | mplementation

In the designandimplementatiorof our HDTV system our priority wasto usecommercial off-the-shelf,
componentgatherthan to develop customhardware. Accordingly the core of our systemis a high-
performancd®C,with gigabitEtherneandanHDTV capturecard.

The PCis a Dell PrecisionWorkstation620 MT with dual 1GHz Pentiumlll processorstunning Linux
2.4.2. It hastwo 64 bit, 66MHz PCI slots andfour 32 bit, 33MHz PCI slots. The 64 bit PCI cardsare
locatedon a separatd>Cl busto the slover cards.The network interfaceis a3Com3c985gigabitEthernet.

For HDTV captureandplayout,we usean HDstationOEM[22] card, providing SMPTE-292Minput and
output. This cardcanoperatein seseral modes:captioning,captureand playback. We usedit to capture
HDTV into main memory andto regenerateSMPTE-292Moutputat the recever. Our systemcanalso
displayHDTV on the workstationmonitor, usinga software-basediecoder The capturecard supportsa
rangeof video formats,but our systemusesonly SMPTE-296M(1280x720pixels, progressie scan,60
framespersecondhatthistime.

TheHDstationOEMcardprovidesaccesso SMPTE-292Mcontentusinga FIFO API thattransferdrames
in orderbetweenthe hostanda capture/playougjueuein the cards on-boardmemory The API hastwo

modesof operation: Mappedmode mapsthe memoryon the card into the systemaddressspace. It is

primarily for captioningapplicationsallowing smallchangedo be madeasframesarefilteredthroughthe
card.In DMA mode,theapplicationsuppliesa pointerto a buffer in systemmemory andthe cardfills that
buffer with a completeframe. DMA modeis intendedprimarily for captureandplaybackapplications As

notedlater, we experimentedvith bothmodesof operation.

We usedan updatedversionof the RTP library from the UCL Rolust-Audio Tool [7] to provide the core
network functionsof our system.This aacompleteRTP implementationsupportingPv4, IPv6 andmulti-
cast.Transmissiorandreceptionvereimplementedastwo separat@rogramspecauseherequirementsf
the systemaresuchthatit is not possibleto transmitandreceve onthe samemachine.
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4.1 Transmission

A block diagramof the transmitteris shavn in figure 2. Thereare several partsto it: frame capture,
fragmentationto matchthe network MTU, pacletizationand transmission.The captureprocessrunsin
a separatdhreadto the other operationsbecauseéhe FIFO API provided by the grabberonly supports
blockingreadsthathave to be overlappedwith the otheroperations.

Onceframeshave beencapturedthey arefragmentedo fit within the network MTU andtransmittedin
separatdRTP paclets. Framesaresplit into equalsizedfragmentswith an RTP payloadheadelindicating
the offsetwithin theframe.

Ourinitial designsmoothedransmissionspacingpacletsacrosshe framingintenal, ratherthansending
themin a burst. This proved hardto implement:theinterpaclet spacingis on the orderof microseconds,
andsystemcallssuchasnanos! eep() operatewith a 10msschedulinggranularityunderLinux, unless
real-timeschedulingis used. It alsotakes approximately30us to senda paclet on our system,which is
comparablego the desiredpaclet spacingof 50us. For thesereasonswe revertedto a simple approach,
sendingpacletsbackto back.

We initially usedmemorymappedcapture sincewe do not manipulatehevideo beforetransmissionOur
hopewasthatit wasnot necessaryo transferthe datainto systemmemory Ratherwe could calculate
the fragmentsize,generatehe RTP headerseparatelyandpassa pointerto the on-boardmemoryon the
capturecarddirectlytothekernelviathesendmsg() systenctall. Thisperformedverybadly:thememory
accespatternausedto generatdJDP pacletsarenot optimalfor the capturecard.

Instead,we usedDMA mode,wherethe capturecard writes completeframesinto memory The restof
our systemwasunchangedwe calculatefragmentsizes,andusesendnsg() to sendthe pacletswith a
scatter/gathearray to avoid anothercopy in systemmemory Theresultis thatvideo datapasse®ver the
PCl bustwice: oncefrom the capturecardinto systemmemory andagainfrom the systemmemoryto the
gigabit Ethernetcard. We believe transmissiorperformancecould be greatlyimproved if the kernelwas
smartenoughto useDMA for large copiesin thesendnsg() systemcall.

4.2 Reception

A block diagramof the recever is shavn in figure 3. It operatesn a classicalsel ect () loop, with a
timeouton the orderof the interframetime. Eachiterationpulls a paclet from the RTP stack,performs
colourcorversionif neededandinsertsthecontentsnto aframestoreattheappropriatgoint. If thepaclet
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is thelastin theframe,renderings triggered.The systemalsocollectsperformancestatisticsandperforms
RTCPprocessing.

Thefirst stageof receptionoccursin the RTP stack.Pacletsarerecevedfrom thekernel,validatedasRTP,

andthenpassedo theapplication.The RTP library usedwasoriginally written for a voice-oser-IP system,
anddesignedor flexibility ratherthanspeedof operation. Despitethis, it worked reasonablywell at the
ratesneededor HDTV transport.Theareasvhereperformancevaslimited by thelibrary included:

e Buffer allocation,sincethe mal | oc() systemcall is slow. Ratherthanallocatea new buffer for
eachpaclet, thelibrary wasmodifiedto reusebufferswherepossible.

e Paclet validation,sincethe validity testsdefinedby RTP requirea passover the headelincludinga
numberof consisteng checks.This wasfoundto take approximatelyl 0% of thetotal runtimewhen
usinghardwarerendering sothelibrary wasmodifiedto checkonly the RTP versionnumber

e Sequenc@umbervalidation,asa furthervalidity check,alsousesa noticeabldraction of thesystem
runtime,andwe consideredemoving it. Insteadwe limited our changego arewrite thatimproves
thecachefootprint of the code.

A numberof systemparameterslso hadto be adjustedbeforethe full datarate could be sustainedas
discussedh sections.

Colour spacecorversionmay be neededdependingon the display device. The HDstationOEMcardcan
directly outputtheregenerateSMPTE-292Msignal,but to renderinto awindow it is necessaryo corvert
from YUV colour spaceinto the RGB spaceusedby the display Cornversionis straightforvard, but time
consumingsinceit requiresarithmeticon every sampleof the frame. We implementcolour cornversionin
optimisedC code yetit takesover 90% of thetotal runtimewhenrenderingnto awindow.

Onceary necessargolour corversionhasbeenperformed the fragmentis copiedto the correctlocation
in the frame buffer. The offsetis includedasan RTP payloadheaderwithin eachpaclet, makingthis a
straightforvard matter Sinceit is advantageouso reducethe numberof copies.this stepis integratedinto
the colourcorversioncodewherepossible.

The final paclet of eachframeis indicatedby a marler in the RTP header and this is usedto trigger
rendering.To regenerateSMPTE-292Moutput,the FIFO API of the HDstationOEMcardis usedin much
the sameway asfor frame capture. To renderinto a window on the display we usethe sharedmemory
extensionof the X window system. Sincerenderingis triggeredby receiptof the paclet with the RTP
marker set,our systemis vulnerableto threefailures:
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Figure4: Effectsof network MTU onthroughout

o If thepaclet containingthe marler is lost, theapplicationwill discardtheframe.

o If the paclet containingthe marker is reordered somefragmentswill be lost (they arrive after the
framehasbeendisplayed).

o If thepaclet containingthe marleris delayedthe framewill beoffsetfrom its true playouttime.

For our proof of conceptsystem,theseissuesare consideredan acceptabldrade-of for implementation
simplicity. A robustimplementationwould usea more sophisticateglayoutbuffer algorithm,to smooth
network jitter andto compensatéor pacletloss.

We have conducteda numberof testsof the systemperformancewhich we describenext, andbasedon
thesewe proposea numberof enhancement® our designin section6.

5 Experimental Performance

5.1 Local areatests

Ourinitial trialswereconductedetweertwo hostsonthesameEthernesggment,connectedia anExtreme
5i gigabit Ethernetswitch. The aim wasto demonstratéhat our systemcould supportHDTV delivery on
anunloadedhetwork, free from the effectsof competingtraffic. Thetestsweresuccessfulwhencorrectly
tuned,our implementatioris lossfreein the local areatests. The tuning processwvassignificant,however,
requiringadjustmentso the network maximumtransferunit (MTU), soclet buffer sizeandnetwork driver.

With the default 1500 0ctetMTU, the systemthroughputis 535 Mbps. This is insufiicient for our needs,
but gigabit Ethernetinterfacessupportthe jumbo-framesextension,allowing us to increasehe MTU to
9000octets.Increasinghe MTU affectsthroughputasshawvn in figure4: largerMTU sizesresultin higher
throughout.Theincreasads dueto thereductionin theheadeprocessingverheadelative to theamountof
data,andthereductionin interruptloadon the host.We chosea 44700octetMTU for our tests,eventhough
thatdoesnot give bestperformancesinceit is the maximumsupportedy thewide areanetwork, andwe
desiredto compareour local andwide arearesults.

The default 64k soclet buffer wasinsuficient, and causedpaclet lossin the receving host. Experience
shaws thatthe buffer may needto be large enoughto storethe pacletsfor an entireframeof video. This
becausedhe recever is not able to processpaclets continually: thereare someperiodswhenit is busy
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processinghe video, andcannotreceve paclets. Thisis a particularproblemwith our software decoder
sincecolourconversiontakesasignificantamountof time. Multithreadingthereceveris expectedo reduce
the buffering requirementssinceit will allow concurrenpaclet receptionandmediaprocessing/decodin
ondualprocessosystems.

ThegigabitEthernedriver performsinterruptcoalescingandchecksunoffloading,andhaddelayedpaclet
notificationenabled. Adjusting theseparametersloesnot appeatrto significantly affect performanceand
aftermuchexperimentatiorwe settledon the default values.

With thesechangesn place,the systemcansustaina transferrateof 615 Mbps, with no pacletloss. This
allows usto send1280x720pixel video at 45 framesper secondusing8 bits per colourcomponentOnce
paclet losswas eliminated,we madetwo setsof measurementselatingto the network timing jitter: the
interpaclet timing andrelative transitdelay

Figure 5 plots inter-paclet timing againstrelative frequenyg of occurrencefor both local and wide-area
tests.It shouldbe comparedvith Figure6, which shavs timing measure@tthesenderAs canbeseenthe

interpaclet timing is stronglybi-modal,a resultwhich surprisedus sincethetransmittersendshe paclets

that compriseeachframein atight loop (thereis a muchsmallerpeakat the location of the interframe
intenal, whichis notvisiblein thefigure). Thebimodalityseemslueto the sendeblockingin thetransmit
call, perhapsdue to limited buffering in the network card. If the on-boardbuffer is full, we expectthe

systemblocksuntil the paclet is sent,causingsomepacletsto be delayed.The effect of network transitis

to smearthis secondpeakoutin time. Therecever seegheinitial peakin theinterpaclet timing, with the

sameintenal asthe senderbut a broadetrtail to the distribution.

The relative transitdelay the differencebetweenthe arrival time in RTP clock units andthe sendtime in
the sameunits, is illustratedin Figure 7. We note variation of approximatelylOms,equalto the Linux
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Losseventduration Frequeng
No loss 24697400
Singlepaclet 85797
Two consecutie paclets 587
Threeconsecutie paclets 7
Four or morepaclets 0

Table2: Obsered pacletlossrates

schedulingntenal, andbelieve thesemeasurementare heaily influencedby the time taken to wake the
recever on arrival of the first paclet in a frame, andthat suchlarge variationin network transittime is
largely ameasuremerdrtifact. Furtherstudyis neededo confirmthis result.

Surprisingly our testsalso revealedthe presenceof a small amountof paclet reorderingbetweenhosts
on the sameEthernetsggment. Typical measurementshaving approximatelyl in 10000 paclets being

deliveredout of order Reorderingpersistavhenthetwo hostsareconnectedackto backusingcross-wer

fibre,andcanalsobedemonstratedith theiperftool [9]. We have nogoodexplanationfor this, but suspect
araceconditionin theLinux 2.4 kernel,triggeredby our useof dual processosystems.

Video quality was excellentduring the tests,although45 framesper seconddoesnot resultin optimally
smoothmotion (every 4th frameof the original is dropped sotheframetiming is not uniform).

5.2 Wideareatests

We conducteda numberof wide areatestsof our system usingvariouspathsacrosshe DARPA SuperNet
testbed Thefirst factorevaluatedwvaspaclet losson thewide-areanetwork path. This waspartly to ensure
thatwe werenot causingnetwork congestionandpartly to determingheeffectsof pacletlossonthevideo
quality Packetlosswasdifficult to measuresincethe network commonlyoperatedvithout loss. Table2
shaws typical measurementwhenthe network wasloaded:approximately0.3%of pacletswerelost, with
mostlosseventsbeingof isolatedpaclets. More commonwasthe casewhereno losswasobsenred.

Thedistribution of interpaclet arrival timesandrelative transitdelayfor thewide areanetwork path,shavn
in Figuress and7, is almostidenticalto thatfor thelocal areatests. Thenetwork is lightly loaded andhence
thereis no significantqueueingitter to impactthe paclettiming.

As to be expected,somesmall degreeof paclet reorderingwas presenton the wide areapath. Typical
resultsshaved 0.05%o0f pacletsdeliveredout of order with the vastmajority of reorderingeventsbeing
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of adjacenpaclets. In rarecaseswe obsered pacletsbeingdeliveredtwo or threeout of sequenceThis
degreeof reorderings not unusual similar valueshave beenreportedby [2, 3, 15]

Videoquality for thewide-areaestswassubjectvely identicalto thatobseredin thelocal tests.

In additionto the closelymonitoredtestsover DARPA’s SuperNetwe alsodemonstratethe systemat the
SuperComputin@001 conferencan Derver, November2001. In this demonstrationthe systemwasrun
over a pathfrom WashingtonD.C to Derver. The network pathfor his demonstrationutilised Internet2s
Abileneandthe WashingtorD.C. areaMAX gigapop.This pathwas10routerhopswith aRTT of approx-
imately 43 ms. The backbondinks alongthis pathwere OC48 POSandtherewasno adwanceresource
reseration. We have no formal measurementsf the systemperformanceover this path,but informal ob-
senationsof thesystemshavednegligible pacletlossandijitter. Very high quality videowasreceved,with
no apparenproblemsfor a periodof severalhours.

6 Limiting Factorsand Future Directions

Our experimentswere conductedusing 615 Mbps mediastreams.comprising1280x720pixel imagesat
45 framesper secondwith 8 bits percolourcomponent.This is insufficient for true uncompressetiDTV,
which requiresd50Mbpsto increasegheframerateto 60 framespersecondand1.03Gbpsfor full colout

PCl bus contentionappearasthe mainlimiting factor We initially putthe HDTV capturecardandthegi-
gabitEtherneinto thetwo 64 bit/66 MHz PCl slotsonthe PC, but testsshavedthat performancencreased
whenwe movedthe Ethernetcardontoa slower 32 bit/33 MHz PCl slot. Investigationshavedthatthefast
PClslotssharedasinglebus,distinctfrom thatusedby theslower slots,leadingusto believe thatcontention
onthebuswasanissue.We have underdevelopmenta systemusinga PCwith dual64 bit/66MHz PCI bus
architecturewhich we expectto reachthe850Mbpsdatarateneededor full frame-rateHDTV, subsampled
to 8 bits percomponent.

To supportthefull colourdepth— 10 bits percomponent- we needa fasternetwork interface,for example
a PCl-basedOC-48interface. Our initial experimentswith suchinterfaceshave beendisappointingwith
the availablecardsbeingunableto exceedthe transferratesachiezableusinggigabitEthernet.Useof dual
gigabitEthernetmayalsobe possible but we mayagainruninto thelimitations of the PCI bus.

An alternatve to fasternetworks may be useof losslessvideo compressionto reducethe bandwidthre-
quirementf the system.This is anareato be exploredin future, althoughit is not clearthatcommodity
systemgancompresgjigabitratestreamsn real-time.

Memory bandwidthalso limits performancethe systemhasbeenrefactoredsereral timesto reducethe
numberof copies,increasingoerformance.This is especiallyanissuefor the software decoderrendering
into a window, dueto the needfor colour corversion. Use of MMX extensionsis expectedto help, as
will off-loading corversionusingthe hardware acceleratioravailablein somedisplay adaptors.Interrupt
processingoverheadsare alsoa factor evidencedby increasedhroughputwhenlarger paclets are used.
Thisis anareawherewide areanetworkslimit performancesincethey limit theMTU to 44700ctets.

Our implementatiorhasa simple playoutroutine,and doesnot dealwell with jitter or lossaroundframe
boundariesWe planto implementan adaptve playoutbuffer, to compensatéor jitter andto correctframe
playouttime. Oncethis is done,we plan to study more sophisticatecerror correctionand concealment
algorithms.At presentpacletlossis concealedy repeatingpartof the previousframeto cover themissing
data. If framesare buffered beforeplayout, it will be possibleto usesomeform of FEC (e.g. [19]) or
retransmissiomo correctlost paclets.
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Congestioncontrol is a seriousissuefor high rate UDP applicationson the currentinternet. Our imple-
mentationis not currentlycongestiorcontrolled,raisingthe issuesof fairnesgo othertraffic andpotential
congestiorcollapseof the network. Beforewe deplo/ our systemoutsidea controlledervironment,we
needto implementsomeform of ratelimiting or congestiorcontrol. The TFRC protocol[5] might be an
appropriateneansof congestiorcontrol, but morework is neededo implementandevaluatethis.

Our implementationusesa simplistic RTP payloadheader consistingonly of the fragmentoffset within
a frame (the fragmentlength beinginferredfrom the paclet length). A more generalpayloadformat for
uncompressedideo, betterpreservingframe metadatashouldbe defined. The RTP payloadformat for
BT.656video[25] maybesuitableasa basedesign althoughit will needextensionfor HDTV formats.

7 Reated work

A productfrom 2netFX[1] deliverscompressetiDTV over IP. The systemusesSMPEG-2compressiorat
19.2Mbpsusingthe standardRTP payload[8]. Theuseof compressiomddslateny andmakesthis system
unsuitablgfor ervironmentswherevideoeditingis performed pr wherefull quality is needed.

The University of Washingtonhave demonstrated systemfor transportof HDTV over IP [14]. This
systemusesSory HDCAM compressiomt270Mbps. Thisis a proprietaryproductionquality compression
schemesupportinga limited numberof edit cycleswithout significantquality degradation.

A prototypedevelopedby Tektronix [23] usescustomhardware to deliver HDTV over an OC-48 POS
interface. The systemperformscircuit emulationof SMPTE-292Mover IP at 1.5 Gbpsusing an RTP
payloadformat[6] developedin conjunctionwith the University of Washingtorandourselhes. This system
wasalsodemonstratedt the SuperComputing2001conference.

Most similar to our work is the systembuilt by NTT Laboratorieswhich was demonstratedn Tokyo,
October2001[12]. This systemis built arounda multi-processoiPC runningLinux, with a commercial
HDTV capturecard,but usesa customnetwork interface.

Theselattertwo systemssuffer from beingimplementedusingcustomhardware. This makesthemexpen-
sive andinflexible, comparedo a systembuilt usingoff the shelfcomponentsTheir advantagds thatthey
have betterperformancet presentalthoughwe expectthatMoore’s law will closethis gaprapidly.

8 Conclusions

We have successfullydemonstratea prototypesystemfor transportof uncompressetiDTV over IP net-

works, which we believe is the first built usingcommoditycomponents.The systemcurrently supports
SMPTE-296Mformat picturesat a reducedrate of 45 framesper secondwith colour sub-sampledo 24

bits. An enhancedersionis underdevelopmentwhich we expectto supportthefull 60 framespersecond,
andwe furtherplanto extendthe systemto deliver full quality uncompressedideo.

Therearea numberof challengego supportingfull uncompressetiDTV, primarily dueto limitations of
the endsystem.We have describeca numberof areasvhereperformancanay be improved; furtherwork
will implementsomeof theseideas. Many of thesetechniquesrealsovalid for high bit ratecompressed
video, transportof HDTV over IP pravidesan appropriategested but is not the only applicationthat may
benefitfrom this work.
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Abstract

Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the
computing facilities for processing. Ensuring that the data is there in time for the computation in today’s Internet is a
massive problem. From our work developing a scalable distributed network cache, we have gained experience with
techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper,
we discuss several hardware and software design techniques and issues, and then describe their application to an
implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using
these techniques, which were obtained at the Supercomputing 2000 conference.

1.0 Introduction

Large distributed systems such as Computational/Data Grids [10] require large amounts of datato be co-located with
the computing facilities for processing. Ensuring that the data is there in time for the computation to start in today’s
Internet is a massive problem. At LBNL we developed a high-performance striped data cache called the Distributed
Parallel Storage System (DPSS)[29]. The idea behind the striped server is shown in Figure 1. several disks on several
hosts operate in parallel to supply a very high-speed data stream to one or more clients. The DPSS was specifically
optimized for access to large data objects by remote clients over a wide area network.

Logical Block
Requests

data server

data blocks forwarded

3
Parallel
*7 data block
C_ requests
data blocks — —— q
Disks

data server

Client Application

data blocks

Parallel
Disks

data server

Figure 1: Striped Data Server Architecture

In the course of designing and using the DPSS we have gained experience with some techniques to achieve high data
throughput over the WAN. In addition, some general lessons have been learned on the proper configuration of
hardware. The following is a brief summary of these techniques, several of which are described in more detail in later
sections of this paper:
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* use parallel everything (i.e.: servers, disks, SCSI controllers, network cards)

» use tuned TCP buffers, optimally set for each client

» use parallel streams, but only if the receive host is powerful enough

* use asynchronous and overlapped network and disk 1/O

* No user-space data copying allowed (manipulate all data buffers via pointers)

* provide asimple client API that is as similar to the POSIX /O interface as possible.

LBNL and ANL worked together to abstract these techniques from the DPSS and apply them to the development of

a high-throughput striped server which interfaces to the outside world using an enhanced version of the File Transfer
Protocol (FTP)[21] called GridFTP [11]. In this paper, we will use both the DPSS and GridFTP to illustrate
implementation issues related to the techniques, and the preliminary results from a very high bandwidth WAN test of
both storage servers at SuperComputing 2000.

1.1 Motivation

In scientific computing environments, small clusters of PC's running Linux are becoming more common, and these
will likely become an important part of the future data intensive computing landscape. Large PC clusters running data
intensive applications will likely use a Storage Area Network (SAN) with multiple high performance Redundant Array
of Inexpensive Disk (RAID)[20] systems as data servers. Although considerably cheaper than the previous large
RAID-based solutions, this type of hardware configuration is still relatively expensive because it requires the purchase
of Fibre Channel switches and interface cards[7]. For large clusters the costs will be amortized over many nodes, and
perhaps their required performance will be unattainable by other means, but sites with small clusters will probably not
be able to afford this.

Although small clusters most likely cannot afford an expensive SAN/RAID system, they do need better performance
than that provided by the typical solution today, which is a medium strength (e.g. 4 CPU) NFS server connected to a
single RAID system. This is certain to be a bottleneck for some data intensive applications. In order to attain the
necessary performance at a low cost, we argue that a set of striped servers composed of commodity hardware and
software, and running over the existing high-speed LAN, should be used. The scalability and price/performance ratio of
striped commaodity servers make them an excellent solution for this environment

For example, a one terabyte data set might be staged from a tape system such as HPSS to a striped cache system. If
the dataiis striped across 8 data cache hosts, then a 32 node cluster would receive up to 8 times more 1/O bandwidth than
it would using a single data server.

In addition to high-throughput from data cache to cluster, high-throughput from data cache to data cache across a
WAN is also very important. There are several scientific research communities that need the ability to copy and/or
replicate data quickly between disk caches at multiple sites [5][14]. A striped data server that is optimized for WAN
datatransfersisideal for this environment.

2.0 Techniques for High Performance

Several techniques for achieving high-performance from storage servers in a WAN environment are presented
below. It is important to note that these techniques are not additive, but rather complementary. Applying a single
technique may have little or no effect, because the absence of any one of the techniques can create a bottleneck.

2.1 Tuned TCP Buffers

The standard transport layer in use today is the Transport Control Protocol (TCP) [27]. TCP uses what it calls the
“congestion window”, or CWND, to determine how many packets can be sent before waiting for an acknowledgement.
The larger the congestion window size, the higher the throughput. This follows directly from Little's Law[17] that
(average throughput)* (delay) = window size. The TCP “slow start” and “congestion avoidance” algorithms determine
the size of the congestion window [16]. The maximum congestion window is proportional to the amount of buffer space
that the kernel allocates for each socket. For each socket, thereis a default size for this buffer, which can be changed by
the program (using a system library call) just before opening the socket. There is also a kernel-enforced maximum
buffer size. The buffer size can be adjusted for both the send and receive ends of the socket.

To get maximal throughput it is critical to use optimal TCP send and receive socket buffer sizes for the link you are
using. If the buffers are too small, the TCP congestion window will never fully open up. If the buffers are too large, the
sender can overrun the receiver, and the TCP window will shut down. The optimal buffer size of alink is (bandwidth) *
(round trip time (RTT)), where RTT equals twice the one-way delay on the link. For an explanation of why thisistrue,
see[22] and [29].

For example, if your RTT is 50 ms, and the end-to-end network consists of all 100BT ethernet or higher, the TCP
buffers should be 0.05 sec * 10 MB/sec = 500 KBytes. Two TCP settings need to be considered: The default TCP send
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and receive buffer size, and the maximum TCP send and receive buffer size. Note that most of today’s UNIX operating
systems ship with a maximum TCP buffer size of only 256 KB (and the default maximum for Linux is only 64 KB!).
The maximum buffer size need only be set once. However, since setting the default TCP buffer size greater than 128
KB will adversely affect LAN performance, the UNIX setsockopt call should be used in your sender and receiver to set
the optimal buffer size for the link you are using. For more information on setting the default, maximum, and optimal
TCP buffers, consult the LBNL “TCP Tuning Guide”[26].

2.2 Parallel Streams

The design of TCP has been influenced much less by the high-performance community than by the demands of the
Internet, and in particular by the need to enforce fair sharing of precious network resources. For this reason, TCP's
behavior is unnecessarily conservative for data-intensive applications on high bandwidth networks.

TCP probes the available bandwidth of the connection by continuously increasing the window size until a packet is
lost, at which point it cuts the window in half and starts “ramping up” the connection again. The higher the
bandwidth-delay product, the longer this ramp up will take, and less of the available bandwidth will be used during its
duration. When the window of the bottleneck link is large enough to keep the pipe full during the ramp up, performance
does not degrade. However this requires large buffers on all intervening routers. Furthermore, when there is random

loss on the connection, it has been shown [16] that the link utilization is proportional to q(mt )2 , Where ¢ is the
probability of lossand nt isthe bandwidth-delay product.

In order to improve this situation where the network becomes the bottleneck, parallel streams can be used. This
technique is implemented by dividing the data to be transferred into N portions and transferring each portion with a
separate TCP connection. The effect of N parallel streams is to reduce the bandwidth-delay product experienced by a
single stream by a factor of N because they all share the single-stream bandwidth ( m ). Random packet losses for
reasonable values of ¢ (<0.001) will usually occur in one stream at a time, therefore their effect on the aggregate
throughput will be reduced by a factor of N. When competing with connections over a congested link, each of the
parallel streams will be less likely to be selected for having their packets dropped, and therefore the aggregate amount
of potential bandwidth which must go through premature congestion avoidance or slow start is reduced. It should be
noted, however, that if the bandwidth is limited by small router buffers in the path, al the streams are likely to
experience packet loss in synchrony (when the buffer fills, arriving packets from each stream are all dropped) and thus
gain little advantage over a single stream.

Experience has shown that parallel streams can dramatically improve application throughput, (see [23] and [29]),
and can also be a useful technique for cases where you don’t have root accessto ahost in order to increase its maximum
TCP buffer size. However, paralel streams can drastically reduce throughput if the sending host is much faster than the
receiving host. For example, we have seen a 50% loss in aggregate throughput of 2 streams versus 1 stream on a Linux
2.2.14 receive host with a NetGear 1000BT card using a multi-threaded receiver.

2.3 Striped Disks and Servers

In order to aggregate the potential throughput of numerous hosts, each with one or more disk controllers and several
disks per controller (see Figure 2), the data being transferred should be subdivided into “stripes” and spread evenly
across the servers and disks. Different software or hardware systems may be responsible for striping at different levels
of the storage hierarchy. For example, a RAID system may stripe across the file system on a host, while a separate
server stripes across all the hosts. The important point is to make sure that the striping occurs at all levels. Thus the
disks can saturate the disk controllers, the disk controllers can saturate the network interface card (NIC), and the NICs
can saturate the router.

Placement algorithms affect the parallelism of the system. A good stripe placement for sequential operations, i.e. for
data access patterns with a high temporal locality, is round-robin. For random-access data sets with a high spatial
locality (i.e. several widely spaced areas of the dataset are accessed in parallel), partitioning the file into one contiguous
sequence of stripes per disk may improve performance.

The size of the stripe must balance the need to evenly distribute the data across the storage resources (smaller is
better) with the need to perform efficient low-level 1/0 to both disk and network (bigger is better). Although the exact
size of the stripe may not be critical, small numbers might lead to a horrible bottleneck. For example, see the resultsin
Table 1. For random access, large disk reads can dramatically improve disk throughput.

It is important to have enough parallel disks on each server to saturate the network under non-sequential access
patterns. For example, if you are using a 64K B stripe size and the same SCSI disk that was used for the resultsin Table



1, and your server network card has a maximum throughput of 40 MB/s, then you will need 8-9 parallel disksto saturate

the NIC.
Table 1
Access Method 1 KB blocks 8 KB blocks 64 KB blocks 128 KB blocks
sequential 18.2 MB/s 18.5 MB/s 22.7 MB/s 22.7 MB/s
random .08 MB/s 2.2 MB/s 4.6 MB/s 8.0 MB/s
speedup 231 13.3 4.9 2.7

3.0 Hardware Configuration Issues

The simple employment of these techniques in an application does not guarantee the absence of performance
bottlenecks. Interaction patterns across the hardware can play an important role in creating performance problemsin an
application. In the following sections we will try to examine and summarize some of the technical issues that were
encountered during the development of the techniques.

data

Figure 2: Disk, controller, and network parallelism

3.1 Disks and Controllers

In today’s high-speed computing environment it is important to ensure that both your disks and controllers are not
simply fast enough, but well matched (properly configured and tuned). Improperly configured hardware can cause
unnecessary thrashing of system resources. In a bottom up approach to tuning the I/O subsystem one should first start
by testing the disks, then the controllers and then move up through the system till you reach host adapters.

The disks should be of equal size and speed. The state of the system islimited by its slowest component, therefore a
slower disk will constrain the performance of a striped file system. Smaller disks will skew the striping performance
because the larger disk will be accessed more often, instead of striping the data equally across all the disks.

Once a decision has been made on the which hardware to use, each component of the system should be tested. First,
test the speed of asingle disk, in isolation. Next, add a second disk and check the speed of the two disks being accessed
simultaneously. With the addition of each disk, the aggregate speed should increase by the speed of asingle disk. Once
the aggregate throughput stops increasing, the limit of the disk controller has probably been reached; if the throughput
is not enough to saturate the NIC, another disk controller will need to be added, and the process of adding disks should
continue.

For example, with a NIC on Gigabit Ethernet (~300Mb/s), a SCSI controller at 160Mb/s, and SCSI disks as shown in
Tablel above, to saturate the NIC for random access reads there will have to be 2 controllers and at least 2 disks per
controller.

3.2 Networking and Processors

Asthe network, disk and memory speeds all increase, the speed, power and number of CPU’ s in the system become
an increasingly important factor. Many of the newer high-speed network cards now require a significant amount of
CPU power to drive them. The number of interrupts that are delivered to the OS when running at gigabit speeds can
overwhelm slower CPU’s. There are several ways to lower the load on the CPU:

* Interrupt coalescing; the network card packages several TCP packets together before interrupting the OS
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* TCP checksumming on the network card, instead of in software on the host computer
* Larger Maximum Transmission Unit (MTU)

All three of these techniques attempt to accomplish the same goal: reduce the per-packet processing overhead. From
[6], “Smaller frames usually mean more CPU interrupts and more processing overhead for a given data transfer size.
Often the per-packet processing overhead sets the limit of TCP performance...”.

It should be noted that not all gigabit network interfaces support all these options, or will interoperate with other
cards or switches. Most notably when using alarger MTU (sometimes referred to as a Jumbo Frame) packets may not
be able to cross some networks or interoperate with some switches.

We tested several different vendors' cards, and found a large degree of variance in how they performed, depending
on variables such as the PCI bus width (64 vs. 32bit), how much memory was on the card, what driver/OS were used to
drive the card. For instance, by changing from Linux kernel version 2.2 to version 2.4, our local area iperfthroughput
values rose from approximately 320 Mb/s to just over 500 Mb/s using the same hardware. In conclusion, one should
always test out the specific cards in the environment that will be used in production.

3.3 Implementation

We have made two very different implementations of the various techniques that we have described in this paper.
The first one is the DPSS, which uses a custom APl and was created especialy for use in a WAN environment.
Secondly, groups at ANL and LBNL worked together to design a system that uses techniques learned while devel oping
the DPSS and applies these techniques to build a more general purpose high-performance FTP server. This ‘enhanced’
version of FTP. called GridFTP, supports striped servers, paralel streams, and tuned TCP window buffers, and was
developed in conjunction with ANL’s data transfer libraries [8].

Both the DPSS and the GridFTP server operated on an identical hardware configuration. Typical striped server
implementations consist of several low-cost Unix workstations as data block servers, each with several disk controllers,
and several disks on each controller. A four-server system with a capacity of one Terabyte (costing about $10-$12K in
late-2000) can produce throughputs of over 70 MB/s by providing parallel access to 20-30 disks.

3.4 DPSS

The main features of the DPSS are described in the first section and include but are not limited to: highly parallel,
tunable TCP buffers, and asynchronous I/O. During DPSS usage, requests for blocks of data are sent from the client to
the “DPSS master” process, which determines which “DPSS block servers’ the blocks are located on, and forwards the
reguests to the appropriate servers. The server then sends the block directly back to the client.

The application interface to the DPSS is through either a low level “block” API, or a higher level POSIX-like API.
The data layout on the disks is completely up to the application, and the usual strategy for sequential reading
applications is to write the data round-robin, striping blocks of data across the servers. The DPSS client library is
multi-threaded, where the number of client threads is equal to the number of DPSS servers. Therefore, the speed of the
client is scaled with the speed of the server, assuming the client host is powerful enough.

3.5 GridFTP

GridFTP consists of extensions to the FTP protocol to provide features necessary for a Grid environment. Use of a
common protocol provides interoperability: GridFTP can communicate with any existing FTP server, or any new
implementation that follows the extended FTP protocol.

Most current FTP implementations support only a subset of the features defined in the FTP protocol and its accepted
extensions. Some of the seldom-implemented features are useful to Grid applications, but the standards also lack
several features Grid applications require. We selected a subset of the existing FTP standards and further extended
them, adding the following features. Security (both Grid Security Infrastructure (GSI) and Kerberos support),
Parameter set/negotiate, which allows interoperability with existing FTP implementations, Third party transfers (server
to server), paralel transfers (multiple TCP streams per transfer), striped transfers (multiple host to multiple host),
partial file transfers, and flexible reliability / recovery functionality via a plug-in interface. The actual protocol
extensions are beyond the scope of this paper, but a proposed draft submitted to the Grid Forum may be reviewed at
http://www.gridforum.org.

GridFTP can be used for bulk data transfer as in this application, or can be used as a data access mechanism with
semantics very similar to Unix open/close/seek/read/write from an application perspective. For thisimplementation, the
physical mechanism employed is essentially a map of the file into a pool of 64KB blocks. The distribution of these
blocks is user selectable and may be either partitioned (the file is divided into »n pieces and one piece is stored on each
node, where r is the number of nodes) or round robin.
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To initiate a transfer, third party in this case, a control connection is established between the application and the
master server at each site. These master servers form control connections to the back end servers. Once these
connections are established, afairly standard FTP protocol exchange takes place between the application and the master
servers. The master forwards the commands to the back end servers and condense the individual responsesinto asingle
response that is then sent to the application. The back end servers check alocal database to determine which blocks, if
any, they have, they then establish data connections with the appropriate source/destination server, with the specified
level of parallelism, and execute the transfer.

4.0 Results

Gaining access to the next generation of high-speed networks in order to explore the techniques outlined above is
difficult. We were able to participate in a contest called the “Bandwidth Challenge” at SuperComputing 2000, which
used a time-shared OC-48 (2.4 Gb/s) network path over NTON [19] and SuperNet [24] from LBNL in Berkeley, CA to
the conference show floor in Dallas, TX, as shown in [3]. Both the DPSS -- as a server for an application called Visapult
[3] -- and GridFTP participated in the contest, and each had exclusive access to this network path for a one hour run. We
were able to monitor the router in Berkeley during both runs. In this section, we will briefly describe each application,
and analyze their results. Due the transient nature of the network, we did not have time to run more controlled
experiments, so the degree to which these results characterize general performance characteristics of either the DPSS or
GridFTP is uncertain, and will be the subject of future work.

SC 2000 Network Visapult Visualization
Challenge Application Application

8 node Storage
Cluster

File Transfer
Application

Compute Cluster
(8 nodes)

85 ms RTT
_2x1000 ax m
BT -
‘_00.43—‘—0(:.43_..1,5 Gbls 10008 ASCI Booth:
NTON HSCC Qwest SGI Origin (8 CPU
Berkeley Lab: ANL Booth
.75 TB, 8 striped data 4. inux Cluster
X
servers TonaaT

Figure 3: SC2000 Network Challenge Application Configuration

The servers for both the DPSS and GridFTP were identical hardware, which consisted of: 4 dual-processor Linux
boxes and 4 single-processor Solaris boxes, all with SCSI disks and a single controller, running over Gigabit Ethernet.

4.1 Visapult / DPSS Results

The LBNL entry in the challenge was a visualization application, Visapult, that transforms scientific simulation data
in paralel on a compute node, then transmits it in parallel over the network for rendering. The dataset, 80GB in size,
was stored on the DPSS at LBNL and the compute cluster, an 8-processor SGI Origin with 4 Gigabit Ethernet
interfaces, wasin Dallas. This process of parallel reading of alarge dataset from a distant location while transforming it
on a powerful compute node is common in high energy physics (HEP) applications. During the course of the contest,
background DPSS get operations were run to use up the spare DPSS bandwidth (roughly 500 Mb/s) due to a bottleneck
at Visapult's rendering engine. The DPSS obtained a peak of 1.48 Gb/s and sustained throughput of 582 Mb/s, as
measured at the ingress router to the show floor.

A graph of 5-second polls of the router packet counts is shown in Figure 4. The graph shows the router throughput
over time. Because the test had 64 streams (8 nodes x 8 processors on the SGI), the CWND was only about 200K B,
instead of the 13MB a single stream would have required. This allowed us to better utilize the network and adapt to it.
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4.2 GridFTP Results

The ANL entry in the network challenge was a climate modeling application. This application is representative of a
wide range of data intensive applications. These applications require large amounts of data and, to reduce network
overhead, often employ replication to make the data access more efficient and less costly. ANL, through the Globus
project, provides the infrastructure required for such applications. During our hour of dedicated network access we were
transferring data to create a new replica of climate data at LBNL. We were able to transfer 230.8 GB of data, for an
agregrate data transfer rate of 512.9 Mb/s, with peaks of greater than 1 Gh/s over 5 second intervals.

On the show floor we had an eight node single CPU Linux cluster each equipped with 4 SCSI disks and a Gigabit
Ethernet adapter. These were connected to a Cisco switch with dual bonded GigE out to the show floor routers, then via
OC-48 to LBNL. The data files were 2 GB in size and were arranged using the partitioned layout on both source and
destination. Each node used a parallelism of four (4 TCP streams for its share of the data), and there were as many as
four files being transferred simultaneously. This resulted in a maximum of 128 total data streams (8 nodes x 4 streams X
4files).

We performed 5-second polls to the LBNL router. A graph of the router throughput, smoothed with a 10-point
averaging window to make trends in the data clearer, is shown below in Figure 5

The data transfer for this application was very uneven and “bursty” for two reasons. One is the nature of the transfer.
A 2 GB file can be transferred in about 20 seconds and then the data connections must be torn down and a new transfer
started. This causes spikes in the data transmission rate, especially when all four files ended at approximately the same
time. We also had a several minute period where one of the receiving servers had crashed and we had to reboot, and
restart the transfer.

5.0 Conclusions

The techniques described in this paper and implemented in both GridFTP and the DPSS will be needed to realize the
potential of next generation high bandwidth networks. However, use of these techniques still requires extra effort and
knowledge usually not available to the application programmer. We feel that the example implementations here show
not only how to use these techniques, but also how these techniques can be accessed in a fashion that is not much
different then that of alocal standard file access, while at the same time taking full advantage of a high speed wide area
network.

The basic functionality of GridFTP is currently in place. The code isin late alpha testing and should be going to beta
soon. When released it will be available under the Globus public license at http://www.globus.org. As a result of our
experiences at SC 2000 we have already made 2 small, but important improvements to our current implementation. We
have added 64 hit file support for larger than 2 GB files, and we have added data channel caching. The data channel
caching will be particularly useful since it will avoid the overhead of setup and tear down of the sockets, which can be
significant, particularly when authentication is enabled on the data channels. We are also going to explore the
possibility of implementing our striped server on top of a parallel virtual file system.

The DPSS project is now fully functional and can be downloaded from http://www-didc.Ibl.gov/DPSS. While we are
still making minor adjustments to the DPSS, we are mostly interested in looking at how high bandwidth data transfer
needs can be integrated with higher-level services. We are investigating integration efforts in the areas of file
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replication, staging, caching, and location transparency. In addition, we are considering the use of dynamic data from
performance monitoring as a feedback mechanism to a live transfer. We feel that monitoring data can contribute on
several levels, such as what link to use, what storage resource to use in a replicated data set, and whether to move the
data to the computation or vice-versa.
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Abstract

Many high performance distributed applications use
only a small fraction of their available bandwidth. A
common cause of this problem is not a flaw in the
application design, but rather improperly tuned net-
work settings. Proper tuning techniques, such as set-
ting the correct TCP buffers and using parallel
streams, are well known in the networking commu-
nity, but outside the networking community they are
infrequently applied. In this paper, we describe a
service that makes the task of network tuning trivial
for application developers and users. Widespread
use of this service should virtually eliminate a com-
mon stumbling block for high performance distrib-
uted applications.

1.0 Introduction

Internet backbone speeds have increased considerably in
the last few years due to projects like Internet |1 and NGI.
At the same time, projects like NTON [25] and SuperNet
[34] are providing a preview of the near future of wide area
networks. Unfortunately, distributed applications often do
not take full advantage of these new high-speed networks.
Thisis largely due to the fact that the applications use the
default parameters for TCP, which have been consciously
designed to sacrifice optimal throughput in exchange for
fair sharing of bandwidth on congested networks. In order
to overcome this limitation, distributed applications
running over high-speed wide-area networks need to
become “network-aware” [32][36], which means that they
need to adjust their networking parameters and resource
demands to the current network conditions.

This paper published in the proceedings of the Tenth |IEEE
International Symposium on High Performance Distributed
Computing, August, 2001, San Francisco, CA.

There exists a large body of work showing that good
performance can be achieved using the proper tuning
techniques. The most important technique is the use of the
optimal TCP buffer size, and techniques for determining the
optimal value for the TCP buffer size are described in [35].
Another important technique is to use parallel sockets, as
described in [31]. Using a combination of these techniques,
applications should be able to utilize al the available
network bandwidth, which is demonstrated in [4], [1], and
[16].

However, determining the correct tuning parameters can
be quite difficult, especially for users or developerswho are
not network experts. The optimal TCP buffer size and
number of parallel streams are different for every network
path, vary over time, and vary depending on the
configuration of the end hosts. There are several tools that
help determine these values, such asiperf [14], pchar [26],
pipechar [27], netspec [23], and nettest [22], but none of
these include a client API, and all require some level of
network expertise to use. Another tool is NWS [38], which
applications can use to determine upper bounds on
throughput from the network, but it does not tell the
applications how to achieve that throughput. Other groups
are addressing this problem at the kernel level, such as the
web100 project [37], Linux 2.4 [17], and others [9], as
described below. Still others are addressing this within the
application. The autoftp file transfer service from NCSA
[19] attempts to determine and set the optimal TCP buffer
size for each connection.

In this paper we describe a service which provides
clients with the correct tuning parameters for a given
network path. We call this service Enable, because it
enables applications to optimize their use of the network
and achieve the highest possible throughput. The goal of
the Enable service is to eliminate what has been called the
“wizard gap” [21]. The wizard gap is the difference
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between the network performance that a network “wizard”
can achieve by doing the proper tuning, compared to the
performance of an untuned application. The Enable service
can act as that wizard. Enable hides the details of gathering
the data from multiple network monitoring tools behind an
intuitive, easy to use interface. From the application
developer’s perspective, Enable provides advice on the
correct tuning parameters without requiring knowledge
about how these are obtained. Thus, the selected algorithms
and tools for computing these parameters can be changed
transparently to the application. This frees the distributed
application devel oper from needing to understand the wide
variety of available monitoring tools.

The Enable service works as follows: An Enable server
is co-located on every system that is serving large data files
to the wide-area network (e.g.: an FTP or HTTP server).
The Enable service is then configured to monitor the
network links to a set of client hosts from the perspective of
that data server. Network monitoring results are stored in a
database, and can be queried by network-aware distributed
components a any time. The Enable service runs the
network tests on some pre-configured time interval (e.g.:
every 6 hours, or whenever a new client connects). The
Enable service APl makes it very easy for application or
middleware developers to determine the optimal network
parameters. To take advantage of the Enable tuning service,
distributed applications must be modified to be support
network tuning such asthe ability to set the TCP buffer size
[35] or the ahility to create and use multiple data streams to
transfer datain parallel.

The network tuning parameters that the Enable service is
initially concentrating on are those required by large bulk
data transfer applications, such as the various “Data Grid”
[5] projects. These include the Particle Physics Data Grid
[28], GriPhyn [10Q], the Earth Systems Grid [7], and the EU
DataGrid [12]. These projects all require the efficient
transfer of very large scientific data files across the
network. We are not yet addressing the tuning reguirements
of other types of applications, such as latency-sensitive
applications.

2.0 Background

TCP uses what it calls the “congestion window” to
determine how many packets can be sent at one time. The
larger the congestion window size, the higher the
throughput. The TCP “dow start” and “congestion
avoidance” algorithms determine the size of the congestion
window [20]. The maximum congestion window is related
to the amount of buffer space that the kernel allocates for
each socket. For each socket, there is a default value for the
buffer size, which can be changed by the program using a
system library call just before opening the socket.

The buffer size must be adjusted for both the send and
receive ends of the socket. To get maximal throughput it is
critical to use optimal TCP send and receive socket buffer
sizes for the link you are using. If the buffers are too small,
the TCP congestion window will never fully open up. If the
buffers are too large, the sender can overrun the receiver,
and the TCP window will shut down. The optimal TCP
window size is the bandwidth delay product for the link.
For more information, see section 5, and [30] and [36].

As network throughput speeds have increased in recent
years, operating systems have gradualy changed the
default buffer size from common values of 8 kilobytesto as
much as 64 kilobytes. However, thisis till far too small for
today’s high speed networks.

For example, there are several hostswhich are part of the
Particle Physics Data Grid [28] with 1000 BT network
interfaces which are connected viaan OC12 (622 Mbit/sec)
WAN, with typical round-trip network latencies of about 50
ms. For this type of network, the bandwidth delay product,
and hence the TCP buffer, should be roughly 3.75 MBytes.
Using a default TCP buffer of 64 KB, the maximum
utilization of the pipe will only be about 2% under idea
conditions. Furthermore, 10 Ghit/sec ethernet and OC192
WAN'’s (9.6 Gbhit/sec) are just becoming available, which
will require TCP buffer sizes of roughly 62 MBytes per
connection to fully utilize the link! (However, typical
workstations today can, at best, drive the network at about 1
Ghit/sec, so TCP buffers requirements of this size are ill a
couple of years away)

As the awareness of the importance of TCP buffer
tuning has increased, several data transfer tools now
include the ability for the user to set this value. For example
the gsiftp [1][11], bbftp [3], SRB [2], HPSS[13], and DPSS
[36] al provide this ability. Additionally, some systems,
such as DPSS and gsiftp, also support the ability for users
to request parallel data streams. The psockets library from
the University of Illinois makes it easy for applications
developersto add parallel socketsto their applications[31].

Figure 1 shows the advantage of using tuned TCP
buffers and parallel streams in the gsiftp program for 100
MByte data transfers between Lawrence Berkeley National
Lab in Berkeley, CA, and CERN in Geneva, Switzerland.
Theround trip time (RTT) on the connection was measured
with ping to be 180 ms and the bottleneck link was
measured with pipechar to be 45 Mbit/sec. With different
tuning parameters, actual measured transfer speeds spanned
more than an order of magnitude. Tuned TCP buffers alone
provided a 9x performance increase, and parallel sockets
alone yielded a 12x performance improvement. Using
parallel streams with tuned TCP buffers we were able to
saturate the network. This combination of techniques
provided a 15x performance increase, which was an
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additional 40% improvement over just tuned buffers and a
26% improvement over just parallel streams.
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Figure 1: gsiftp results using tuned TCP buffers
and parallel streams

The use of parallel streams provides an increase over
optimally tuned single stream TCP because TCP is rather
senditive to any loss or congestion, and slows down
whenever any lossis detected. Our testing has shown that it
is extremely rare that a TCP stream keeps its congestion
window at the optimal bandwidth delay product size for
very long. The use of multiple streams allows one to utilize
a greater fraction of the network. Note that this may be
considered a “rude” thing to do, depending on how
congested the network is and whether or not you are
slowing down others by doing this.

However, as with all systems that provide the ability to
tune the TCP buffer size or the number of parallel streams,
the gsiftp user must set these values by hand, and
determining what values to use is not simple. In general,
using large TCP buffers and parallel streams improves
throughput, so it may be tempting for users or developersto
simply use big buffers and some parallel streams by default.
However thisis not a good idea. Besides wasting operating
system resources, under certain circumstances overly large
TCP buffers or too many parallel streams can significantly
decrease performance, as shown in the Tables 1 and 2.

Table 1 shows the result of tests between two 333 MHz
Sun Ultra 1 hosts running Solaris 2.7, connected by a
Gigabit Ethernet LAN with a 1500 byte MTU (maximum
transmission unit). Note that setting the TCP buffer too
large results in a large performance loss. This is because
when the buffers are too large, the sender can overrun the
receiver, and the TCP window will shut down. Not all
operating systems have this behavior (e.g.: Linux does not),
but this reemphasizes that taking the simple approach of
just setting large buffers everywhere is not a good idea.
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Table 2 shows the result of tests between a Sun Ultra 1
(333 Mhz) sender and a 450 MHz Pentium |1 Linux 2.2
receiver also over aOC-12 WAN with a1500 byte MTU. In
this case we see a large performance penalty using parallel
data streams. This is because a 450 MHz PlI processor is
not powerful enough to handle load from the Gigabit
network interface card. It requires most of the CPU just to
read one stream, and multiple streams just step on each
other.

The Enable service makes it easy for applications to use
the correct settings and avoid these types of problems.

Table 1 : Sender overruns receiver

TCP Buffer Throughput
Size (MB) (Mbits/sec)

0.125 246

1 195

4 105

8 32

Table 2 : Parallel streams

Number of | 0
(M bits/sec)

250

100

50

3.0 Related Work

There are a number of tools to help determine the
optimal TCP parameters for a given network path. For
example, one can run a series of iperf tests with a range of
buffer sizes and numbers of parallel data streams to
determine the optimal values. Other tools such as pchar
[26], pipechar [27], and pathrate [6] can be used to
estimate the bandwidth and latency characteristics of the
network, providing information needed to estimate the
optimal TCP buffer size. However, these tools do not
include a client API, and require some level of network
expertise to use. The Enable service can be used to run any
of these tools, collect and store the results, and make the
results avail able to network-aware applications.

Additionaly, there are some other projects that are also
working on eliminating the “wizard gap”. The webl00
project is developing a version of the Linux kernel which
will perform dynamic, transparent, automatic TCP tuning
for user level processes. If successful, this has the potential
to eliminate the TCP buffer tuning issue. Fisk and Feng [9],
have also demonstrated promising results with Linux kernel



modifications that autotune the TCP buffer size by
estimating link bottleneck bandwidth for each socket
connection.

The Linux 2.4 kernel aso includes an option for TCP
buffer autotuning, and initial testing shows that this helps
quite a bit, but is till not as good as hand tuning (see the
results section below). Unfortunately the developers of this
code are not part of the IETF or any TCP research
community, and any solution they come up with is not
likely to be standardized or adopted very quickly.

Therefore, while there is some hope that automatic TCP
buffer tuning will be built into some operating systems in
the future, it will probably not be built into most operating
systemsin the near future.

4.0 TheEnable Service

The Enable service has three distinct components. First,
there is the Enable Server, which keeps an up-to-date record
of network parameters between itself and other hosts. The
second component is a protocol for clients to communicate
with the servers. Finally, there is a simple API that makes
querying the Enable Servers trivial for application
developers. A primary design goa for the Enable service
was ease of installation, configuration, and use.

Network tests are run between
servers and clients (but not
between clients), e.g.: ping,
pipechar, pehar, iperf
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Figure 2: Enable Service Architecture

The architecture of Enable is shown in Figure 2. The
simplicity of the design isits strength. An Enable Server is
installed on every data server host, such as an FTP server,
and that Enable server is responsible only for determining
the optimal network parameters between clients and itself.
Other monitoring systems, such as NWS, can be configured
to monitor an arbitrary mesh, or “clique” of hosts. This
design, while very powerful, makes these systems more
complicated to deploy and configure, asit requires software
to beinstalled on every host in the clique. We have decided
to sacrifice this functionality for ease of deployment and
configuration. In return, we avoid the problems of

centralized coordination and location of the Enable servers,
as they are always co-located with the data server.

The following section describes the functionality and
implementation of the Enable Service.

4.1 Functionality

The Enable Server will periodically run tests between
itself and a number of “client hosts’. These client hosts may
have been read at start-up from a configuration file,
manually added using an APl or command-line utility, or
automatically added by monitoring log files from the data
server, such as HTTP or FTP logs. The results of the
network testswill be stored in a database. The selection and
scheduling of tests for each client is dynamically
configurable.

Clients can query the Enable server, which is listening
on a well-known port, for network parameters, also called
“network advice”. The protocol for doing thisis XML-RPC
[39], a standard XML-based protocol that performs remote
procedure calls over HTTP. Use of a standard protocol
means that third parties can easily interface with Enable
without using the Enable API or libraries.

There is a simple API that clients can use to query the
Enable Server. For example:

tcp_buffer_size =
Enabl eGet Buf f er Si ze(ft p_host nane)

returns the optimal buffer size between itself and the

FTP server host, and:
net _info =
Enabl eGet Net | nf o(ft p_host nane)

returns the result of all network tests for that network
path. One could also wrap an application in a script that
called the Enable Server, and then set the buffer size via a
command line argument. For example, we have written a
script that automatically finds and setsthe “-B” flag (which
sets the TCP receive buffer) for the ncftpget FTP client
program [24].

Currently the Enable server supported network tests are
ping, pipechar, pchar, and iperf, but only ping and pipechar
arerun by default.

Since the network tests are run periodically, there is the
possibility that one of the tests will be run during some
unusual network problem, and the results of this test will
not lead to useful results for tuning applications. Therefore,
a trimmed mean, in which the top and bottom 10% of
values are discarded before calculating the mean of the
most recent N values (N is configurable, default is 10), is
reported to the client.

In order to more quickly detect a long-term shift in
network behavior, the mean and standard deviation of the
last N values if also calculated. If three successive values
are farther than 2.5 standard deviations from the mean, it is



assumed that the network behavior has changed, and the
older N-3 values are discarded. This approach is based on
the assumption that the distribution of test results closely
approximates a normal distribution. More testing is needed
to validate this method for handling data fluctuations.

4.2 Use-case

In this section we illustrate the use of the Enable service
with asimple use-case in a Data Grid application. Inthe EU
DataGrid project [8], huge volumes of high-energy physics
data must be replicated at several sites around the world.
For example, five sites may wish to create a replica of a
particular set of datathat is stored on adata server at CERN
in Geneva, Switzerland. In this project, gsiftp, a data
transfer utility based on FTP that provides TCP buffer
tuning and parallel stream support is used to transfer data
between CERN and each of the other sites.

In this environment, there is a large variability in delay
and bandwidth to each of the replication sites, as shown in
Figure 3. Note that no statically configured TCP buffer size
will work well for al the clients: a buffer of 256 KBytes
will penalize clients A, B and E while a buffer of 1-2
MBytes will penalize A, C, and D (due to effects shown in
Table 1). Data Grid file transfer tools such as gsiftp alow
the users to specify a buffer size. However this solution is
far from optimal, as it requires too much knowledge and
work on the part of the users. Instead, the gsiftp client can
be wrapped in a script that uses the Enable service find the
optimal TCP buffer size for each path.
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20ms RTT — ¢ “-.{ Enable |
buffer = 500KB \‘ i server |

2 |
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site A buffer = 1250KB
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Figure 3: DataGrid Use Case

4.3 Implementation

The Enable server is implemented using the Python
language [29], and uses XML-RPC [39] for client-server
communication. The use of Python with XML-RPC greatly
simplified the development of the server, as Python
includes very powerful built in modulesfor threads, queues,
databases, regular expressions, configuration file parsing:
i.e. almost everything required by this service. XML-RPC

was chosen rather than SOAP [33] because the current
SOAP implementations are still evolving, and because
XML-RPC issimpler and provides everything we need.

The server uses a thread pool of worker threads for
running the network tests, and a scheduler thread to feed
jobs to the workers. By limiting the number of worker
threads it is easy to limit the amount of load generated by
the testing. There is also athread for scanning log files (e.g.
FTP logs) for new hosts to monitor. We have developed
client APIs for the Python, Java, and C languages.

Enable was designed for the easy addition of new tests,
and each test is readlized by a class instance in Enable.
Enable requires only 3 specific methods in the new class to
be implemented: “init”, “can_|_run” (is it safe to start this
test), and “run”.

We have tested an Enable server that was configured to
monitor 500 hosts, running each test every 4 hours using 8
worker threads, on a 500 MHz PIII Linux host. While
running tests, the Enable server consumed at most 9% of
the CPU, and used an average of only 130 Kbits/sec of
network bandwidth. (By default, 10 ping tests are run in
parallel, and use 12 Kbits/sec each, and only 1 pipechar can
run at a time, which generates only about 100 Kbits/sec of
network traffic). There are still some scalability issues to
address, as discussed in the section on future work below.

5.0 Reaults

To test the results of the Enable service, we used iperf as
a client/server pair over four different network paths: LBL
(Berkeley, CA) to CERN (Geneva, Switzerland); LBL to
ISl (Arlington, VA) over SuperNet; LBL to the University
of Kansas (Lawrence, KS), and ANL (Chicago, IL) to SRI
in Menlo Park, CA. Characteristics of these network paths
are summarized in Table 3. iperf was chosen for testing
because it is a simple tool that only performs network
transfers, thus ensuring that we are only measuring network
performance, and not some combination of network, disk,
and application performance.

Table 3 Test network path characteristics.

Path R_ound Trip Bottlenecl_< Link
Time (RTT) Bandwidth
LBL-CERN 180 ms 45 Mbits/sec
LBL-ISI East 80 ms 1000 Mbits/sec
LBL-ANL 60 ms 45 Mbits/sec
LBL-KU 50 ms 45 Mbits/sec

The results are shown in Table 4. All testing used Linux
2.4 as a sending host. The first row is the results with no
tuning (with the default TCP buffers set to 64 KBytes, and
Linux 2.4 autotuning disabled). The second row shows
results for the Linux 2.4 autotuning option, with autotuning
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Table 4 . Experimental throughput using four tuning methods.

Tuning Method LBL-CERN LBL-ISI east LBL-ANL LBL-KU
No Tuning 2 Mbits/sec 5 Mbits/sec 5 Mbits/sec 6 Mbits/sec
Linux 2.4 Autotuning 6 Mbits/sec 110 Mbits/sec 12 Mhbits/sec 9 Mbits/sec
Hand Tuning 18 Mbits/sec 266 Mbits/sec 17 Mbits/sec 27 Mbits/sec
Enable Tuning 18 Mbits/sec 264 Mbits/sec 16 Mbits/sec 26 Mhits/sec

parameters set to allow up to 4 MByte TCP buffers. The
third row is hand-tuned iperf, meaning that iperf was run
with a range of TCP buffer settings, and the setting which
gave the maximum throughput is shown here. The fourth
row is the result from iperf using the TCP buffer size value
returned by the Enable service, which used ping and
pipechar to estimate the optimal TCP buffer size using the
following standard formula, as described in [35]:

optimal TCP buffer = RTT x (speed of
bott! eneck Iink)

The Enable server runs a ping test, sending a 1500 byte
packet 5 times. The round trip time is estimated to be the
average time for ping packets 2-5. The Enable server aso
runs pipechar with the -bot option, which gives the speed of
the bottleneck hop in the network path between the Enable
server host and the client.

From this table one can see that Linux 2.4 autotuning
helps considerably, but not as much as hand tuning and
Enable tuning. Hand-tuned and Enable-tuned clients both
had nearly identical results. Note that when doing this type
of testing on production networks, the variability of the
results is very high, and these numbers are al just rough
estimates. However, the overall improvements from tuning
are quite clear.

6.0 Scalability Issues

We are currently addressing a number of scalability
issues that arise when running active network test tools.

6.1 Aggregation for M easurement Efficiency

In order to scale the Enable service to networks with
many clients, measurements need to be aggregated to avoid
redundant tests for hosts on the same subnet. Aggregation
involves the abstraction of a set of individual pairwise
performance behaviors by a single performance
characteristic. Thisis awidely used method to improve the
scalability of routing and quality of service schemes.
Unfortunately, there is a fundamental trade-off between
precision and scalability in any such aggregation technique.
The Enable service is implementing several schemes,
discussed below, which may be selected based on the
preferred policy.

The default, and likely most precise, approach is to
measure each pairwise path with a reasonably high rate of

repetition. The approaches that follow attempt to improve
efficiency while maintaining a reasonable level of
precision.

A fairly conservative policy is to measure al clients at
least once to insure precision. This approach allows a
reasonably reliable database of paths and bottlenecks to be
developed. By measuring the pairwise behavior at least
once, some network pathologies can be avoided. For
exampl e, two clients might appear to be on the same subnet,
but one might be directly connected via Ethernet, while the
other is connected via a (relatively slow) dialup server. The
bottleneck in the former case would likely be somewherein
the wide area network, while the dialup link would be the
constraint in the latter case. Direct measurement would
clearly identify the differing bottleneck locations.

Once the performance of aclient/server pair is measured
and a bottleneck link is identified, a table of clients and
bottlenecks can be crested. The Enable service then
suppresses additional redundant testing to clients with the
same bottleneck link, and sets a time after which further
pairwise testing might be performed. Tests to one of the
clients behind the bottleneck can still be performed more
frequently to update the state of the constraining link.

An example appears in Table 5. In this example, it can
be seen that the bottleneck for clients 129.237.116.6 and
129.237.127.152 is the same, that is, 164.113.232.202.
Occasional testing to one of 129.237.116.6 or
129.237.127.152, but not both, would be performed to
update the state of the performance constraint.

Table 5 Bottlenecks to Clients

Client Bottleneck Router
129.237.116.6 164.113.232.202
129.237.127.152 164.113.232.202
131.243.2.12 131.243.128.100
131.243.2.91 131.243.128.100
192.195.6.68 144.232.0.171

The Enable service also implements more aggressive,
less precise schemes for aggregation of measurements.

A simple approach is to base the decision on the
bottleneck characteristics. Tools such as pipechar provide
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both bottleneck identification and traceroute information
from server to client. If pipechar indicates that a host is
behind a known bottleneck with particular characteristics
(perhaps below a certain bandwidth threshold), any
subsequent clients appearing behind that bottleneck might
receive like treatment. For example, if the bottleneck is
below T1 rates, it might be assumed that all other clients
behind that bottleneck, as determined by traceroute, are
limited by that particular link and that no additional tests
are necessary within a certain time frame.

Another scheme is based upon identification of subnets.
In particular, a client sharing an IP address prefix with
another client already in the table gets similar treatment.
The extent of the client network might be based on routing
advertisements, and determined by querying a Looking
Glass [18] server. This obviously abstracts away the
internal details of the client networksin favor of simplicity.

The choice of aggregation policies can be determined
when the serviceis configured.

6.2 Measurement Frequency

Sophisticated mechanisms for controlling the test
frequency are also needed to provide scalability.

The Enable service can base these decisions on the
measurements themselves and on the client requests. In
particular, the measurements on a particular path will likely
be correlated in time. The degree of time correlation can be
used to determine the valid period for a particular
measurement, and hence the time at which testing should be
resumed. This can also be combined with the client requests
(specificaly the size of transfer requested) to determine if
additional measurements need to be derived from the
transfer itself and the parameters need to be updated
accordingly.

In addition, it is necessary that the service implement an
aging and purging mechanism to remove old clients so that
the database size does not increase monotonically.

6.3 Other Scaling Issues

There are other ways in which scalability can be
improved. For example, the Enable service should have the
ability to monitor the load that all itstests are placing on the
network, to ensure that its total load does not exceed some
predefined threshold. The Enable architecture allows a
single server to implement thisin a straightforward fashion.
Future work might investigate ways in which Enable
servers on the same network might coordinate to control
testing loads on shared paths.

7.0 FutureWork

A great deal of work remains to be done on the Enable
service. The next scheduled addition is the ability to give
advice on the number of parallel streams to use. Our tests

have shown that the optimal number of streams depends on
anumber of factors, including host load / processing power,
and congestion of the network. The Enable server will base
its estimate on both the client library’s estimate of the host
CPU speed and the server’s network testing results.

We aso plan to do more detailed analysis of the results
of the various network tests, so that we can detect
anomalies and make better TCP window estimates. When
we can accurately identify results that lie outside the realm
of normal measurement error, we might throw out the
value, flag the result as a“temporary anomaly”, generate an
email message to a network administrator, and so on.

Another issue we need to address is that of asymmetric
paths. Internet routing data has shown that as many as 20%
of the paths are asymmetric, especially very long paths
[15]. Any measurements or tuning based on round-trip time
on an asynchronous path may be meaningless. We want to
explore thisissue further.

The other future work that we have planned is to add
support for providing network Quality of Service (QoS)
advice. There are many predictions that soon networks will
support various levels of QoS, and applications will be able
to request a given QoS level depending on application
requirements. We envision that the decision of which QoS
level to request will be even more difficult than determining
the optimal TCP buffer setting, and we believe the Enable
service has the potentia to help applications with this
decision.

8.0 Conclusions

Network tuning is critical for applicationsto fully utilize
high-speed networks, yet determining the proper tuning
parameters can be quite difficult, especially for users who
are not network “wizards’. The Enable service described
here can help applications achieve the same performance as
hand-tuned applications. We believe the most valuable use
of the Enable Service will be in Data Grid applications,
where by installing an Enable Server on each Data Grid file
server, applications can easily maximize their throughput to
or from those servers.

The Enable server and client libraries are available for
download at http://www-didc.Ibl.gov/ENABLE/.
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Using High-Speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization

Wes Bethel, Brian Tierney, Jason Le® Dan Guntet, Stephen Lal
Lawrence Berkeley National Laboratory
University of California, Berkeley
Berkeley, CA 94720

1.0 Abstract

Visapult is a prototype application and framework for remote visualization of large scientific datasets. We
approach the technical challenges of tera-scale visualization with a unique architecture that employs high
speed WANSs and network data caches for data staging and transmission. This architecture allows for the
use of available cache and compute resources at arbitrary locations on the network. High data throughput
rates and network utilization are achieved by parallelizing I/O at each stage in the application, and by pipe-
lining the visualization process. On the desktop, the graphics interactivity is effectively decoupled from the
latency inherent in network applications. We present a detailed performance analysis of the application,
and improvements resulting from field-test analysis conducted as part of the DOE Combustion Corridor
project.

2.0 Introduction

As computing power increases, scientific simulations and instruments grow in size and complexity, result-
ing in a corresponding increase in output. During recent years, the increases in speed of infrastructure com-
ponents that must absorb this output, including storage systems, networks and visualization engines, has
not paced the increases in processor speeds. In response, solutions have tended toward parallel aggrega-
tions of slower, serial components, such as file systems striped across disk units.

FIGURE 1. Visualization and Rendering Pipeline
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In particular, visualization and rendering pose interesting challenges as data sizes increase. In the visual-
ization and rendering pipeline (Figure 1), abstract scientific data is first transformed into renderable data,
such as geometry and image-based data, through the process of visualization. The resultant, renderable
data is then transformed into a viewable image by a “draw” or rendering process. The challenges posed by
large-model visualization stem from the sheer size of the data; it often won't fit within the confines of pri-
mary or secondary storage on a typical desktop workstation. Movement of large amounts of data to the
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workstation over typical network links is impractically slow, but even if practical, the graphics systems of
even high-end workstations quickly become overwhelmed.

Traditionally, visualization of large models has been approached using one of two strategies. In the first
strategy, which we’ll call “render remote,” images are created on a large machine, preferably the same
machine that has direct access to the data source (local filesystem), then transmitted to the user who views
them on a workstation. In Figure 1, the link betwBemderingandUserwould be over a network connec-

tion. In this configuration, a high-capacity resource has the potential to be applied to larger-sized problems
than could be addressed with desktop resources, but graphics interactivity suffers due to the combination

of latency and high bandwidth requireménmw the second strategy, which we’ll call “render local,”
smaller portions of the data, subsets or decimated versions of the raw data, are sent to the workstation
where visualization and rendering take place. The network connection in this case is Dettae®ource

and Visualization.Increasing graphics capacity mitigates concerns about interactivity, but the constraints
encountered when moving remote data to the local workstation are exacerbated by limited network band-
width and local storage capacity.

In recent years, two key developments have motivated us to explore a slightly different approach. One
development is a network data cache that is tuned for wide-area network access, called the Distributed Par-
allel Storage System [1], or DPSS. The DPSS is a scalable, high-performance, distributed-parallel data
storage system developed at Lawrence Berkeley National Laboratory (LBL). The DPSS is a data block
server, built using low-cost commodity hardware components and custom software to provide parallelism
at the disk, server, and network level. This technology has been quite successful in providing an economi-
cal, high-performance, widely distributed, and highly scalable architecture for caching large amounts of
data that may potentially be used by many different users. Current performance results are 980 Mbps
across a LAN and 570 Mbps across a WAN.

The other key development is a proliferation of high-speed, testbed networks. There are currently a number
of Next Generation Internet networks whose goal is to provide network speeds of 100 or more times the
current speed of the Internet. These include NSF’'s Abilene [2], DARPAs Supernet [3], and the ESnet test-
beds [4]. Sites connected to these networks typically have WAN connection at speeds of OC12 (622 Mbps)
or OC48 (2.4 Gbps); speeds that are greater than most local area networks (LANS). Access to these net-
works enables new options for remote, distributed visualization.

The combined capabilities of emerging high speed networks and scalable network storage makes it possi-
ble to consider remote, distributed scientific visualization from a new perspective, one which combines the
best of both traditional methods.

3.0 Visapult: A Remote, Distributed Visualization Application Prototype

The Visapult application and framework consists of two distributed components (Figure 2): a viewer and a
back end. In the following sections, we discuss the architecture of these components. The rendering por-
tion of the viewer is built upon a scene graph model that proves useful for both asynchronous updates, as
well as acting as a framework for the display of divergent types of data. The back end is a parallelized soft-
ware volume rendering engine that uses a domain-decomposed partitioning, including the capability to
perform parallel read operations over the network to a storage cache as well as parallel I/O to the viewer.
Together, the viewer and back end implement a novel form of volume visualization that is fast but effec-
tive. More importantly, this novel form of volume visualization has been completely parallelized through

3. 1K by 1K, RGBA images at 30fps requires a sustained transfer rate of 960Mbps.
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the visualization and rendering pipeline, from the data source to the display. We describe our use of the
DPSS as a network storage cache, as well as our methodology for obtaining performance data from the
application.

FIGURE 2. Visapult Architecture
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3.1 Visualization and Rendering Pipeline Architecture

The fundamental goal of Visapult, from a visualization perspective, is to provide the means to visualize
and render large scientific data sets with interactive frame rates on the desktop or in an immersive virtual
reality (VR) environment. In our design, we wanted the best of both worlds: performing as much visualiza-
tion and rendering as possible on a parallel machine with either tera-scale data storage capacity, or a high-
speed network link to such a storage resource, while leveraging the increasing graphics capacity of desktop
and deskside workstations. A primary Visapult design goal, graphics interactivity, is a crucial, but subtle,
part of the visualization process; studies have shown that motion parallax and a stereo display format
increase cognitive understanding of three dimensional depth relationships by 200%, as compared to view-
ing the same data in a still image [7].

One troublesome dilemma is the speed difference between the infrastructure components and the problem
size: disk transfer and network bandwidth rates are typically on the order of tens of megabytes per second,
but data sizes are on the order of hundreds of gigabytes. How does one achieve interactivity on the desktop
without moving all the data to the desktop?

Considering the visualization and rendering pipeline from Figure 1, we observe that in order to deploy a
visualization tool on the desktop which is capable of rendering large data sets at interactive rates, the
“object database” used by the renderer must be small enough to fit on the display platform. To that end, we
have implemented a relatively new technique for volume rendering with a unique architecture that pro-

duces a relatively small object database, or scene”grAthiII be discussed later in the paper, we use a
unique combination of task partitioning and parallelism to perform interactive volume visualization of
large scientific data sets. Since visualization and rendering are pipelined and occur asynchronously, the
viewer, which is “downstream” from the parallel software volume renderer, can interact with the render-
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able objects at interactive rates. Updates of the scene graph through the visualization pipeline asynchro-
nously from rendering, and occur at whatever rate the underlying infrastructure can provide.

A scene graph interface provides not only the means for parallel and asynchronous updates, but also an
“umbrella” framework for rendering divergent data types. The scene graph system used in our implementa-
tion [8] supports storage and rendering of surface-based primitives (triangles, triangle strips, quads, poly-
gons, etc.), vector-based primitives (lines, line strips), image-based data (volumes, textures, sprites and
bitmaps), and text. The flexibility of this underlying infrastructure layer allows us to perform simultaneous
rendering of volume and geometric data. Figure 3 is an image containing both volume rendering of density
data, along with vector geometry (line segments) representing the adaptive grid created and used by the
combustion simulation.

FIGURE 3. Visapult Rendering of Combustion Da

ta and Adaptive, Hierarchical Grids
]

3.2 Parallel Volume Rendering Algorithm Taxonomy

Since volume rendering [9] is a computationally expensive and time consuming operation even with mod-
est amounts of data, it is a likely candidate for parallelization. Algorithms for parallel volume rendering
can be classified into two broad categoriegge orderandobject orderbased upon how the volume ren-

dering task is decomposed across the pool of processors [10]. In an object order algorithm, the volume data
is distributed across the processors using one of a number of different domain decomposition strategies
(Figure 4). Each processor then renders its subset of the volume, producing an image. After all processors
have finished rendering, the images from each processor must be gathered, then recombined into a final
image. Recombination consists of image compositing using alpha blending [11], and must occur in a pre-
scribed order (back-to-front or front-to-back). Note that each processor in an object order algorithm pro-
duces an intermediate image that may overlap in screen space with the images produced by other
processors.

4. The ternscene graphefers to a set of specialized data structures and associated services that provide manage-
ment of displayable data and rendering services.
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FIGURE 4. Slab, Shaft and Block Decomposition

Image order algorithms, on the other hand, assign some region of screen space to each processor. The
resulting images produced by each processor do not overlap, so recombination is not subject to an ordered
image composition step. Depending upon the view, image order algorithms require some amount of data
duplication across the processors, so do not scale as well with data size as the object order algorithms. The
performance of image order parallel volume rendering algorithms is more sensitive to view orientation
than the object order counterparts. In some views, there may be some processors with little or no work. In
addition, as the model moves, the source volume data required at a given processor will change, requiring
data redistribution as a function of model and view orientation.

3.3 Image Based Rendering Assisted Volume Rendering

Image based rendering (IBR) methods [12, 13] have been the subject of much attention in recent years.
IBR methods are used primarily for generating different views of an environment from a set of pre-
acquired imagery. The properties of IBR which make it attractive include interactive viewing with low
computational cost irrespective of scene complexity, and the ability to use images from either digitized
photographs or rendered models. Common among IBR methods is a process of warping and blending
images from known views to represent what would be seen from an arbitrary view.

The concepts and principles of IBR model were recently applied to volume rendering [14]. Like the more
conventional IBR counterparts, IBR assisted volume rendering (IBRAVR), seeks to achieve interactive
rendering by avoiding the time-consuming process of completely rerendering the volume data for each
frame. Instead, renderings of a model at arbitrary orientations are “computed” from “nearby” prerendered
images. The prerendered images for the IBRAVR algorithm are obtained by volume rendering subsets of
the entire volume. Using a slab decomposition, each source image would be obtained by volume rendering
the slab of data. The total number of source images is equal to the number of data slabs created by data par-
titioning.

The per-frame, incremental rendering, or IBR component of IBRAVR, is implemented by using the pre-
computed imagery as two dimensional textures which are texture-mapped onto geometry derived from the
geometry of the slab decomposition, then rendered in depth order. In the basic algorithm, a single quadri-
lateral representing the center of the slab is used as the base geometry, and the computed imagery is texture
mapped using alpha blending upon that geometry. With multiple slabs, there are multiple, overlapping,
base geometries that are textured by the graphics hardware with the semi-transparent textures. As the
model is rotated, the multiple textures correspondingly rotate in three dimensions, producing the impres-
sion of interactive volume rendering. As nearly all graphics hardware supports two-dimensional texturing,
the IBRAVR viewer can be deployed on a wide variety of graphics platforms. An extension to this algo-
rithm, described in [14], is replace the single quadrilateral with a quadrilateral mesh using offsets from the
base plane for each point in the quad mesh. This enhancement will add a depth component to each of the
IBR images, thereby enhancing the visualization process. We have included this extension in the Visapult
implementation, but the details are omitted in this paper.
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FIGURE 5. IBR Assisted Volume Rendering

The source volume is subdivided into some number
of slabs, each of which is volume rendered. The
resulting images, along with geometric information
derived from the original volume, are used as the ) . )
source data for an IBR rendering engine. The final IBR model can be interactively
transformed without the need to perform
costly volume rendering on each frame.

As described in [14], the IBRAVR model exhibits visual artifacts as the model is rotated away from an
axis-aligned view (Figure 6). These artifacts result from volume subdivision along an axis-aligned view,
but rendered using a view or orientation that is not “closely” axis aligned. As the model rotates away from
an axis-aligned view, the artifacts become more pronounced. [14] reports that objects viewed within a cone
of about sixteen degrees will appear to be relatively free of visual artifacts.

FIGURE 6. IBRAVR Atrtifacts

Using a nearly axis-aligned view, the IBRAVR method produces a high-fidelity image (left). When the
model is rotated off-axis, visual artifacts can be seen (right). For the right image, we disabled axis-switch-
ing within Visapult, otherwise we would be viewing slices along the X-axis of the data.

Our implementation does not provide any remedies to this fundamental artifact of IBRAVR, but extends
the base algorithm in a different manner that is useful for the purposes of visualization. On a per-frame
basis, the Visapult viewer computes the best view axis, and transmits this information to the back end. The
back end uses this information in order to select from either X-, Y-, or Z-axis aligned data slabs for use in
volume rendering.
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3.4 Visapult: Parallel and Remote IBRAVR

Visapult is a parallel and distributed implementation of an IBR assisted volume rendering engine. Our
implementation can be thought of as a blend of an object-order parallel volume rendering engine with an
IBRAVR viewer that uses a parallel, network-based data gathering model as an image assembly frame-
work. The fundamental IBRAVR algorithm decomposes nicely into a distributed, pipelined and parallel
architecture: a parallel object-order, parallel I/O capable volume rendering engine that produces images,
and a parallel viewer that uses IBR techniques to assemble the individual images into a final display.

The Visapult back end reads raw scientific data from one of a number of different data sources, and each
back end process performs volume rendering on some subset of the data, regardless of the viewpoint. The
resulting images are transmitted to the Visapult viewer for final assembly into a model (scene graph), then
rendered to the user. Owing to the IBRAVR design, the raw scientific data is distributed, or partitioned,
amongst the back end processors using a slab-based decompaosition (Figure 4). During the partitioning pro-
cess, data is read into each processor in parallel. Each processor then performs software volume rendering
upon its subset of the data. The resulting image from each processor is transmitted over the network to a
peer receiver in the Visapult viewer, where it is inserted into the scene graph as a 2D texture.

On the viewer side, graphics interactivity results from a combination of the IBRAVR viewer model with a
decoupling of scene graph updates from rendering. The amount of viewer-side data to be rendered is much

smaller than the size of the raw volume dago even software-only graphics systems are not over-
whelmed. To implement the decoupling of rendering from scene graph updates, the viewer itself is a multi-
threaded application, with one thread dedicated to interactive rendering, and other threads dedicated to
receiving data from the Visapult back end visualization processes over multiple simultaneous network con-
nections (implemented with a custom TCP-based protocol over striped sockets). Except for a small amount
of scene graph access control with semaphores, 1/0 and rendering occur in an asynchronous fashion, so all
pipes are full, making effective use of network and computational resources. Additional architectural
details of the Visapult back end and viewer are presented in Appendix A.

3.5 Visapult’'s Use of the LBL DPSS as a Data Cache

In its role as data collector, the Visapult back end fetches raw scientific data for the purpose of visualiza-
tion. One source of data is the DPSS, which is used as a storage cache for data sets that are too large to fit
on the workstation. These data sets, generated on supercomputers or clusters of workstations, are typically
on the order of 30 to 100 GB, and are often stored on archival systems such as HPSS [15], a high perfor-
mance tertiary storage system. Clearly, it is impractical to transfer data sets of this magnitude to a local
disk for processing. Also, archival systems such as the HPSS are not typically tuned for wide-area network
access, and only provide full file, not block level, access to data. The DPSS addresses both of these issues;
it is optimized for wide-area access to large files, and provides block level access, eliminating the need to
transfer the entire file across the network. Therefore, we can migrate the files from HPSS to a nearby DPSS
cache.

The DPSS provides several important and unique capabilities for data intensive distributed computing
environments. It provides application-specific interfaces to an extremely large space of logical blocks. It
offers the ability to build large, high-performance storage systems from inexpensive commodity compo-
nents. It also offers the ability to increase performance by increasing the number of parallel disk servers.

5. Where the size of the raw volume data is¥p(the amount of data to be rendered in the viewer i§)O(n
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Typical DPSS implementations consist of several low-cost workstations as DPSS block servers, each with
several disk controllers, and several disks on each controller. A four-server DPSS with a capacity of one
Terabyte (costing about $15K in mid-2000) can thus deliver throughput of over 150 megabytes per second
by providing parallel access to 15-20 disks. The overall architecture of the DPSS is illustrated in Figure 7.

FIGURE 7. DPSS Architecture
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The application interface to the DPSS cache supports a variety of I/O semantics, including Unix-like 1/0
semantics, through an easy-to-use client API library (e.g., dpssOpen(), dpssRead(), dpssWrite(), dpssL-
Seek(), dpssClose()). The DPSS client library is multi-threaded, where the number of client threads is
equal to the number of DPSS servers. Therefore the speed of the client scales with the speed of the server,
assuming the client host is powerful enough. This parallelism is leveraged by the parallel volume rendering
performed by the Visapult back end.

3.6 Profiling and Performance Analysis - NetLogger

Profiling and analysis of an application’s behavior and performance is an important part of the develop-
ment process, but can prove challenging when the application consists of cooperative, distributed compo-
nents. In our project, we made use of the NetLogger profiling toolkit for obtaining performance data from
the application [16]. NetLogger includes tools for generating precision event logs that can be used to pro-
vide detailed end-to-end application and system level monitoring, and for visualizing log data to view the
state of the distributed system. NetLogger has proven to be invaluable for diagnosing problems in net-
works and in distributed systems code. This approach is novel in that it combines network, host, and appli-
cation-level monitoring, providing a complete view of the entire system.

The NetLogger system has a procedural interface: subroutine calls to generate NetLogger events are placed
inside the source code of the application. Prior to running the application, a NetLogger daemon is launched
on a host accessible to all components of the distributed application. During the course of application exe-
cution, the NetLogger subroutine calls communicate with the daemon host, where events are accumulated
into an event log. This event log is then used as input for NetLogger visualization and analysis tools.

NLV, the NetLogger visualization tool, generates two dimensional plots from the raw data accumulated
during a run. NetLogger and NLV were used extensively in Visapult field testing, and numerous examples
of NLV output appear later in upcoming sections.
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4.0 Visapult Field Testing and Evolution

In this section, we present several field testing experiments along with performance enhancements sug-
gested by subsequent analysis. An early Visapult implementation was first presented at SC99 as part of a
Research Exhibit. Since then, Visapult has become the reference application for a research program spon-
sored by the U.S. Department of Energy calieé Combustion Corridpand has been field-tested using
several configurations of high speed testbed WANs using several different facilities. Research projects
such as The Combustion Corridor seek to harness distributed resources for the purpose of scientific com-
puting, such as high speed testbed networks, network storage systems, computational resources and large
scale scientific data.

4.1 SC99 Research Exhibit

A preliminary version of Visapult was demonstrated at the SC99 conference in Portland, Oregon, reflect-
ing a collaborative effort involving several research institutions: LBL, Sandia National Laboratory (SNL)
and Argonne National Laboratory (ANL). Data from a cosmology hydrodynamic sim§latizha reac-

tive chemistry combustion simulatibwere transmitted over a WAN and visualized on the show floor at

SC99. The demonstration required the use of NTON (National Transparent Optical Network) and
SciNet99, the SC99 show floor network, to connect all of the resources (Figure 8).

FIGURE 8. Visapult SC99 Configuration
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During the course of SC99, we used several different configurations of data sources, computational
engines and networks as illustrated in Figure 8. Cosmology data was stored on DPSS systems at LBL and
in the Argonne National Laboratory booth. Combustion data was stored on a parallel file system on the
Cray T3E at the National Energy Research Scientific Computing Center (NERSC), located in Berkeley at
LBL. Cosmology data was processed by a Visapult back end on the SNL CPlant [17] located in Livermore,
California, or on the Babel Cluster [18] located in the LBL booth at SC99. The combustion data was pro-

6. Cosmology data courtesy of Julian Borrill, Scientific Computing Group, National Energy Research Scientific
Computing Center (NERSC), Lawrence Berkeley National Laboratory.

7. Combustion data courtesy of Vince Beckner and John Bell, Center for Computational Sciences and Engineering,
National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory.
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cessed by a Visapult back end running on the Cray T3E at NERSC in Berkeley. We also used multiple dis-
play devices for final rendering at SC99, including an ImmersaDesk located in the LBL booth, and a tiled
surface display, located in the SNL booth. The ImmersaDesk allowed us to render the results in stereo. The
tiled display system allowed us to demonstrate Visapult using a large-screen, theater-sized output format
suitable for larger audiences.

We performed some preliminary analysis of the behavior of the system at SC99 using different network
topologies and facilities. Our preliminary results showed that the majority of communication was between
the DPSS (the network data cache) and the Visapult back end, with the link between the Visapult back end
and viewer requiring much less bandwidth. This behavior is expected from the architecture of the system.
Since the Visapult back end performs parallel volume visualization to reduce the data down to a small sub-
set of images, it is expected that the amount of data resulting from the visualization and transmitted
between the back end and viewer will be significantly less than the amount of data moved to the back end
from the data source.

FIGURE 9. Visualization of Hydrodynamic Co

smology Simulation Results at SC99

We were capable of sustaining a data transfer rate of 250Mbps between the DPSS located at LBL and
CPlant, and a rate of 150Mbps between the DPSS at LBL and the LBL cluster at SC99. The difference in
transfer rates was based upon the different network topologies. The link between the SC99 show floor and
LBL required resource sharing over SciNet.

4.2 Combustion Corridor First Light Campaign

More recently, we have undertaken field testing using many of the same resources as for the SC99 project,
but with an eye towards careful instrumentation and profiling analysis, and with larger data sets. This work
is part of a project callefihe Combustion Corridpsponsored by the U. S. Department of Energy, which

is a collaborative research effort that includes LBL, ANL and SNL-CA. The @mbustion Corridor

refers to theprocessof remote and collaborative visualization of large, scientific data sets for the Combus-
tion Research community. The term “corridor” has been coined to refer to the metaphorical path from data
source to human consumer, where the path spans geographical and system boundaries. A theme common
across “corridor” projects is that many endeavors that were once possible only over LANs are how possi-
ble over WANSs using a wider array of distributed resources. To a large extent, the needs and requirements
of the Combustion Corridor are sufficiently general to be applicable to a wide variety of problem domains,
including medicine, physics, and the geosciences.

Within the Combustion Corridor effort, we have performed several end-to-end runs using differing net-
work topologies and platform configurations, which we refer to as “campaigns.” The first such campaign
took place on 12 April 2000, and was a collaboration between LBL and SNL-CA. In this campaign, we
used resources connected by NTON, a high speed testbed network. For this example, the raw scientific
data was located on a DPSS at LBL in Berkeley, while the Visapult back end was located on the CPlant
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Linux/Alpha cluster at SNL-CA. The Visapult viewer was running on a desktop machine at SNL-CA. The
combustion simulation used for this example was from a 640x256x256 grid, and each grid value was rep-
resented with a single IEEE floating point number, for a total of 160 megabytes of data per time step for
each of the 265 time steps. The theoretical limit of the network link is 622 Mbps, or the OC-12 connection
between LBL and NTON.

FIGURE 10. NetLogger Instrumentation/Profiling of Visapult
LBL/CPlant (NTON) April 12, 2000
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For this image, profile data was collected from both the Visapult back end and viewer. The top row of traces, in
green, represent the profile data from the viewer, while the bottom row of traces were obtained from the back
end. The horizontal axis represents elapsed time from the start of the application. Each of the entries along the
vertical axis of the code are strings associated with specific events, which occurred in order from bottom to
top. The viewer events are prefixed with “V_", while the back end events have a “BE_" prefix. Refer to
Appendix A for additional details that will aid in interpretation of this data.

In Figure 10, we wish to draw attention to the performance profile of the Visapult back end performance
shown by NetLogger instrumentation. The time required to load 160 megabytes of data into the back end

from the DPSS over NTON was approximately three sebofmisan approximate throughput rate of 433
megabits per second, which is in excess of the network performance realized during the SC99 demonstra-
tion over the same network link, reflecting improvements in the underlying Visapult implementation. The
improvement in raw network performance was the result of a change to data staging and communications
streamlining within Visapult. This amounts to a respectable 70% utilization rate of the theoretical band-
width limit of the network while data was being transferred. The software rendering then consumed about
eight or nine seconds on four processors of the CPlant cluster.

From this campaign, one significant design modification is suggested by the performance data - overlap-
ping network transfers with rendering could have a significant positive impact upon the overall application
performance. NetLogger performance profiles, such as that shown in Figure 10, are invaluable for identify-
ing potential performance bottlenecks in distributed applications.

8. Displacement along the horizontal axis, time, between the tags BE_FRAME_START and BE_LOAD_END,
which bracket the process of moving data from the DPSS into the Visapult back end on CPlant.
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4.3 Overlapped I/0 and Rendering

Each processing element (PE) in the Visapult back end loads a subset of a large scientific dataset, then vol-
ume renders it's subset of data. The resulting image is then transmitted to the viewer for use as a two-
dimensional texture in a scene graph. Then, the process repeats, looping over time. If loading and render-
ing were overlapped, so as to occur simultaneously, then we would expect the overall application perfor-
mance to significantly increase.

FIGURE 11. Overlapped I/O and Rendering Timing Diagram
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In the discussion that follows, we refer teaxial implementation as one in which, in each PE of the paral-

lel Visapult back end, rendering and data loading occur in a serial fashion. Note that even though we use
the termserial, the back end is in fact a parallel job. Serial refers to how rendering and data loading are
executed within each back end process. On the other tvaerdppedmeans that the process of rendering

and data loading is implemented in a pipeline-parallel fashion, and occur simultaneously. Also, note that
while the data for framH is being rendered, data for fraiNe 1 is being loaded.

We can capture the behavior of both serial and overlapped versions, and estimate overall improvement as
follows: letR be the time spent in each PE performing rendering for ealhtiafesteps of data (the red

zones in Figure 11, above), and llebe the time spent by each PE loading data for each time step. The
amount of time, T, required for N time steps’ worth of data using the serial implementation

is:Tg = NL(L+ R). In contrast, the time required fdrtime steps using an overlapped implementation
is: T, = NOmax L, R+min(L R).

For illustrative purposes, if we assume thandR are approximately equal, then the theoretical speedup
realized using an overlapped implementation over one that is séliidl,jsor 2N/(N+1), which is nearly a

100 percent improvement. As the difference betwleemdR increases, the effective speedup resulting
from an overlapped implementation will diminish. At one extreme, the overlapped implementation could
be as much as nearly twice as fast as a serial implementation. At the other extreme, they will be nearly
equal in performance.

The following two figures show the profiling results that compare serial and overlapped implementations
of the Visapult back end data loading and rendering tasks. These tests were run using an eight processor

Sun Microsystems E4500 serveonnected to the LBL DPSS via gigabit ethernet (LAN), and were per-
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formed using ten timesteps from a large scientific data set. The serial implementation required approxi-

mately 265 seconds, while the overlapped version required approximately 169 seconds. In each case,
was approximately 15 seconds, wHia&vas approximately 12 seconds.

FIGURE 12. Execution Profile of Non-Overlapped 1/0 and Rendering
Serial L+R (diesel)
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Figures 12 and 13 were created using the NetLogger visualization tool, NLV, and graphically depict and
contrast the performance of serial and overlapped implementations of the Visapult back end. In these Fig-

ures, the profile traces for the back end are colored according to data frame number; odd frames are blue
while even frames are red.

FIGURE 13. Execution Profile for Overlapped 1/0O and Rendering
Overlapped L+R (diesel)

V_FRAME_END |
V_HEAVYPAYLOAD_END }
V_HEAVYPAYLOAD_START |
V_LIGHTPAYLOAD_END |
V_LIGHTPAYLOAD_START |
V_FRAME_START |
BE_HEAVY_END |
BE_HEAVY_SEND |
BE_RENDER_END}
BE_RENDER_START}
BE_LOAD_END }

BE_LOAD_START

0 20 . 60 80 100
time/sec.
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-even—— backend-master-odd——-

Note that in Figure 13, data loading for fralel and rendering for framl commence simultaneously.
In both the serial and overlapped tests, the time required for edcanafR are approximately equal. As

9. Eight, 336Mhz UltraSparcll processors.
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we shall see in the next section, the time required for edclaodR in serial and overlapped implementa-
tions can vary as a function of the underlying architecture. Details of the overlapped implementation are
presented in Appendix B.

4.4 Further Combustion Corridor Testing

In this section, we present performance results obtained while executing Visapult over two different WANs
and using two different compute platforms on the back end. One of the WANs, NTON, is a high-speed test-
bed network that includes an OC12 path from LBL to SNL-CA. The other network, ESnet, is built atop an
OC-12 backbone between LBL and ANL, but is a shared resource. The two compute platforms consist of a
distributed memory Linux-Alpha cluster, and a large SMP. Each cluster node contains a pair of network
interfaces: one for inter-node communication, and the other for external network access. The SMP uses a
single gigabit ethernet interface for external network access, which is shared amongst all processors of the
SMP. Our goals in the following tests are to obtain an estimate of network bandwidth utilization, and to
compare the effect of serial and overlapped implementations of the Visapult back end on two different
compute platforms.

4.4.1 LBL to CPlant over NTON

In the following two tests, we read data from a DPSS at LBL into CPlant nodes over NTON, performed
parallel volume rendering on CPlant, then transmitted the resultant imagery to a viewer at LBL over ESnet.
In the earlier campaign that used the LBL DPSS/CPlant/NTON combination (Figure 10), the back end did
not yet support overlapped data loading and rendering. The profiles that follow compare and contrast the
effect of serial and overlapped data loading and rendering. Figure 14 shows the performance profile of a
serial implementation.

FIGURE 14. Serial L+R on Eight CPlant Nodes
LBL/SNL-CA/LBL (NTON) Serial L+R
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In this example, we used eight nodes of CPlant, a Linux-Alpha cluster. Note that the time required to load
160 MB of data using eight nodes is approximately equal to the time required when using four nodes. From
this, we observe that the use of additional nodes will not necessarily improve data throughput, as we have
completely consumed all available network bandwidth. On the other hand, rendering time has been
reduced to approximately half the time required when using four processors. Given the domain decomposi-
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tion of the volume data, we expect linear speedup in the rendering process as the number of processors
increases.

FIGURE 15. Overlapped L+R on Eight CPlant Nodes
LBL/SNL/LBL (NTON) Overlapped L+R
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The performance profile in Figure 15 was obtained by running a Visapult back end with overlapped data
loading and rendering. One feature in Figure 15 that was expected, but difficult to characterize, is the
increased time required for data loading, and the variability in load times from time step to time step. We
can presume, based upon the results shown in Figure 15, there may be a relationship between the variabil-
ity in completion times of transmission of image data from the back end to the viewer and the variability in

data loading timé$. The results indicate that as completion of transmission of outbound images becomes
more staggered, inbound data loading is delayed. Another area of interest is CPU contention between the
rendering and data loading processes. On CPlant, both rendering and data loading activities share a single
CPU. While the render task is CPU intensive and the data loader is an I/O process, there appears to be a
significant CPU demand incurred by the data loading process. This may be due in part to implementation
details of the underlying network interface card (NIC) driver. It is widely known that some NIC drivers
generate more interrupts than others, and these interrupts incur a cost in terms of CPU load. Some gigabit
ethernet cards provide the option for using “jumbo frames” (9KB MTUs vs. 1.5KB MTUSs), which incur
lower interrupt overhead. However, using jumbo frames over a WAN is problematic.

4.4.2 LBL to ANL over ESnet

The following two tests contrast serial and overlapped load and render operations on a large symmetric

multiprocessing platform with shared memory (SMH()cated at ANL. The Visapult back end, running

on the SMP at ANL read data from the DPSS at LBL over ESnet, then transmitted partial volume render-
ing results to a viewer located at LBL, also connected via ESnet. The ESnet link in these tests has a higher
latency than the NTON link between LBL and SNL, and delivers an average bandwidth of approximately

100Mbps as measured with commonly available network tools, SLiphrﬂg.

10.BE_LOAD_START and BE_LOAD_END bracket movement of data from the DPSS into each back end PE,
while BE_HEAVY_SEND and BE_HEAVY_END bracket image transmission from the back end to the viewer.

11.A sixteen processor SGI Onyx2.
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Figure 16 shows the performance profile of a serial Visapult back end running on eight processors of the
SMP. We observe that approximately ten seconds is required to move 160 megabytes of data per data frame
from the DPSS at LBL to ANL over ESnet, yielding a bandwidth consumption of about 128Mbps. Note
that data loading time dominates in this case, owing to the significantly lower network capacity. We are
able to achieve slightly better bandwidth utilization than a toolifikef owing to the highly parallelized

nature of our data loading.

FIGURE 16. Serial L+R on an SMP
LBL/ANL/LBL (ESnet/Clipper) Serial L+R
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Performance profile for the overlapped Visapult back end is shown in Figure 17. Similar to the NTON/
CPlant tests, average elapsed time for overlapped data loading is slightly higher than the serial implemen-
tation. After the first time step’s worth of data was loaded and the TCP window fully opened, we were able
to steadily consume in excess of 100Mbps between the LBL DPSS and ANL over ESnet.

FIGURE 17. Overlapped L+R on an SMP
LBL/ANL/LBL (Clipper/ESnet) Overlapped L+R
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BE_RENDER_START}
BE_LOAD_END |

BE_LOAD_START

0 20 40

. 0

time/set’
backend-worker-even—— backend-worker-odd—— viewer-master
backend-master-evenr—— backend-master-odd——

12.http://dast.nlanr.net/Projects/Iperf/
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It appears that the SMP platform is better suited for the Visapult back end than a distributed memory plat-
form: when each back end process, consisting of a rendering and a data loading thread, map directly onto a
CPU, there appears to be less contention and context switching. In contrast, on the cluster, each of the two
components of a single back end process must share a single CPU. In addition, the multiple NIC interfaces
present on clusters present the possibility of achieving higher aggregate bandwidth utilization than the
common SMP configuration of a single NIC shared by all nodes.

5.0 Future Work

We have obtained performance numbers for only a subset of contemporary architectures and available high
speed testbed networks: large SMPs over a relatively slow and high latency network, and distributed mem-
ory systems with single CPU nodes as the compute platform over NTON, a high speed, low latency testbed
network. Testing on additional compute platforms, particularly distributed memory architectures with mul-
tiple CPUs and shared memory on a single node, as well as an MPI-only implementation of the back end
would serve to explore a significant portion of the platform-specific parameter space, and would serve to
reveal additional strengths and weaknesses in the overall Visapult architecture.

Access to additional testbed networks is not a trivial task, and often requires the coordination of divergent
research and operational groups. From the performance numbers shown in the previous section, it is clear
that Visapult completely saturated all of the networks tested, and application throughput will be a function
of the capacity of the underlying network. Despite completely using all available network bandwidth, the
networks we tested do not have sufficient capacity to meet the challenges of terascale visualization. To put
the problem into perspective, the time required to move our 265-timestep dataset (a total of 41.4 gigabytes)
over NTON is on the order of eight minutes (a new timestep every 3 seconds), while over ESnet, the time
required is on the order of 44 minutes (a new timestep every 10 seconds). A reasonable target rate would
be, for this problem, five timesteps per second, requiring effective bandwidth on the order of fifteen times
faster than our OC12 connection to NTON; approximately a dedicated OC192 link. This application points
out the importance of having Quality of Service (QoS) (including bandwidth reservation) capabilities in
future networks. In our testing we were able to completely saturate the WAN link in each network configu-
ration. QoS is needed to insure that this application does not adversely affect other bandwidth-sensitive
applications using the link, and to provide some minimum bandwidth guarantees to a Visapult session.

As a parallelized and pipelined implementation of IBRAVR capable of performing interactive volume
visualization of large scientific data sets, Visapult's use of IBR-like rendering techniques corroborates the
experiences of others who have sought to apply IBR to large model visualization. One such effort used IBR
representations of complex geometry as the basis for distance-based model switching as a rendering accel-
eration aid for navigation through complex CAD models [19]. From a graphics perspective, an architecture
built around an embedded scene graph core has proven to be successful in this project. As scene graph
technology has been targeted at retained mode rendering of primarily geometric-based data, the question
remains as to the applicability of this technology to general IBR techniques. More importantly, the Visapult
implementation highlights the relevance of embedded rendering technology within the context of network-
based 3D graphics and visualization. Although there are many examples of emerging commercial 3D web-
based applications, these tend to use VRML [20] as a medium for data exchange. VRML is a data storage
format with an emphasis upon surface and vector geometry. More recently in the VRML97 and Web3D
efforts, the VRML base extends geometric modeling to include sound and asynchronous “sensors” that
generate events to be consumed and processed by the VRML browser. VRML as a data format doesn’t
appear to readily lend itself for use by distributed IBR applications: IBR allows for navigation through
environments where the source is either precomputed or acquired imagery. We envision interesting future
3D, web-based applications that use the notion of navigating through environments constructed from
acquired, rather than computed imagery.
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In our experience, remote resource access and management can be a troublesome and tedious endeavor.
One of the appealing themes in Corridor projects is the ability of a user to transparently take advantage of
remote and distributed resources, such as network storage caches and computational facilities, without spe-
cialized knowledge about the distributed resources: access to testbed networks may require modifications
to routing tables; the ability to launch a parallel job likely requires shell access to the remote resource; and
access to DPSS systems is typically provided on an as-needed basis. In order for research scientists to suc-
cessfully use a tool like Visapult, they may need detailed technical knowledge of networks, knowledge of
the existence of and access to the remote resources, and must be capable of diagnosing the inevitable diffi-
culties that arise when attempting to launch multiple components of a distributed application. Users want
tools that are easy to use and help them accomplish their work. A good deal of our future work will be
focused upon simplifying the access to and use of the remote and distributed resources upon which
Visapult is built.

In this project, the DPSS has proven to be a useful tool. Storage systems of this type present an economical
and scalable storage solution that will assume an increasingly important role in a network-centric comput-
ing environment. We expect that by augmenting the block data services with additional processing capabil-
ities, the DPSS will become even more useful. For example, “wire level” compression would benefit a
wide array of applications. In the case of lossy compression techniques, the degree of lossiness could be a
function of network line parameters and under application control. Additional possibilities include off-line
visualization services, such as the offline and automatic creation of thumbnail representations of datasets
or metadata.

6.0 Conclusion

Remote and distributed visualization and rendering algorithms increasingly depend upon a foundation of
data management and data movement. As a Corridor project, Visapult has demonstrated the feasibility of
using combinations of distributed resources, such as parallel network data caches and computational
resources. A unique combination of data staging, parallel rendering and parallel I/O has produced a proto-
type application and framework that is capable of performing interactive visualization of large scientific
data sets. Several instrumented test cases have shown that Visapult is capable of saturating the fastest high
speed testbed networks available today. Despite these results, we conclude that these networks are still
inadequate for the purposes of tera-scale visualization. Access to the networks can be troublesome, and
applications such as Visapult can benefit from related research projects, such as QoS and bandwidth reser-
vation to streamline access to and use of these emerging resources.
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9.0 Appendix A - Visapult Internal Architecture

In this Appendix, we provide technical details about the internals of both the Visapult back end and viewer
relevant to interpreting the plots of NetLogger profile data.

We begin with a flowchart-like depiction of the Visapult viewer and back end. The flowchart highlights
coarse-grained tasks for both the viewer and back end, as well network communication between the coop-
erative processes.

FIGURE 18. Visapult Architecture
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The following two tables provide additional detail about each of the tags present in the profile graphs gen-
erated by NetLogger. These tags are used in Figures 10, 12, 13, 14 and 15.

TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures

Tag Remarks

V_FRAME_START Top of loop inside each thread that services an 1/0 connection with the back
end. In the current implementation, the number of time steps, or loops, is set
before each of these threads is launched at initialization time.

V_LIGHTPAYLOAD_ START Beginning of receipt of visualization metadata. Visualization metadata con-
sists of texture size, bytes per pixel, and geometric information used to place
the texture in a 3D scene. Visualization metadata is on the order of 256
bytes, hence the name “light payload.”

V_LIGHTPAYLOAD_END Visualization metadata received.

V_HEAVYPAYLOAD_START  Beginning of receipt of visualization data. This data consists of raw pixel
data, as well as any geometric data, such as triangles, boxes, and so forth. In
our tests thus far, the size of this data is also relatively small compared to the
size of the source volume. In this implementation, each thread receives a sin-
gle texture, and while the size of the texture is a function of the resolution of
the source volume, a typical size is on the order of 0.25 to 1.0 megabytes per
texture. Geometric data is typically tens of kilobytes for the AMR grid data
per timestep.

V_HEAVYPAYLOAD_END All visualization data received.
V_FRAME_END End of processing of this time step’s worth of data.

TABLE 2. Visapult Back End NetLogger Tags in NLV Figure$

Tag Remarks

BE_LOAD_START Each back end PE is about to load it's subset of volume data.

BE_LOAD_END Volume data load and format conversion completed. In our examples, this
step includes loading of AMR species and grid data.

BE_LIGHT_SEND Start transmitting visualization metadata to the viewer.

BE_LIGHT_END Metadata transmission complete.

BE_RENDER_START Start of parallel volume rendering process.

BE_RENDER_END All rendering complete.

BE_HEAVY_SEND Start transmitting visualization data. In this implementation, the visualiza-

tion data consists of a single texture per back end PE, and optional geometric
data representing the grid, and an optional elevation/offset map which the
viewer will use to create a quadmesh.

BE_HEAVY_END End of visualization data transmission.

a. There are many more NetLogger tags present in the Visapult back end. Many were omitted from this table,
and from the figures, for brevity. These additional tags are useful for more detailed analysis of execution
profiles within each large-grained task (e.g., “load data”).
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10.0 Appendix B - Overlapped Visapult Back End Implementation Details

The Visapult back end is implemented using MPI as the multiprocessing and IPC framework. Each PE of
the back end is responsible for reading a subset of the volume data, for rendering its subset of data, and for
transmitting the rendering results to the Visapult viewer.

To implement overlapped data loading and rendering in each back end PE, the base MPI code was
extended to launch a detached execution thread. We chosepthiesdsas the threading API due to its
portability and wide availability. In the discussion that follows, we refer to the combination of a single MPI
process and its associated detached, reader threapraseas grougor the sake of clarity. Theeader

threadis the detached, freely-running pthread, andréheer processs the MPI process. A flowchart of

these cooperative processes is shown in Figure 19.

Upon entry, each MPI PE launches a detached, freely-running execution thread (reader thread). This thread
logically executes concurrently with the MPI proceSencurrent logical executiomeans that we yield
scheduling control to the host system. On distributed memory systems, such as Linux clusters, both reader
thread and render process share a single CPU, thereby inviting contention. On SMP systems with a suffi-
cient number of CPUSs, in our experience, CPU contention appears to be minimized, if not eliminated.

In our implementation, the reader thread is a worker, and controlled by the render process. Each back end
render process creates a pair of SystemV shared memory semaphores prior to launching the reader thread.
Each of the semaphore pairs is shared by each render/reader process group, with one such pair for all MPI
PEs. One of the semaphores, which we’ll sathaphore Ais considered as an execution barrier from the
perspective of the reader thread, while the oemaphore Bis considered as an execution barrier from

the perspective of the render process.

Upon entry to the reader thread, after some internal initialization occurs, the reader thread blocks waiting
to gain access teemaphore AThe render process will request that either data from a specific time step
will be read, or will request reader thread termination due to completion of all time steps. Once the reader
thread gains access semaphore Ait will examine the control variable (in shared memory) and take the
appropriate course of action, either reading more data or exiting. Upon completion of the requested activ-
ity, the reader thread will post semaphore Bthen block awaiting accessgemaphore A.

On the render process side, data from time step zero is first requested from the reader thread. Once that
data has been loaded and is available, data from time step one is requested, and the render process begins
to render data from time step zero. Once rendering is complete, results are transmitted to the viewer, then
the render process will block while attempting to gain accesentaphore BUpon gaining access to
semaphore Bthe render process requests the next time step’s worth of data, and pestaphore A

This process continues until all the time varying data has been read, rendered and results transmitted to the
viewer.

In addition to the control semaphores, a large block of memory is shared between reader thread and render
process. The reader thread will load the raw scientific data into this large memory block during reading.
This memory is considered to Heuble-bufferedits size is twice that of a single time step’s worth of data,

and the reader thread will use one half of the buffer for writing into, while the render process reads from
the other half. Access control is implicit as a function of the time step using an even-odd decomposition.
Due to the control architecture of the reader thread and render process, we are guaranteed that reader and
render threads will not access the same odd/even data buffer at the same time.

We chose to extend the MPI base using pthreads in order to take advantage of the shared-memory model
employed by threaded code. An alternative would be to use MPI-only constructs. For example, even-num-
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bered processes would render, while odd-numbered processes would read data. The synchronization
between the two would be similar, but using MPI constructs rather than SystemV semaphores. Of greater
concern would be the need to transmit large amounts of scientific data between reader and render pro-
cesses. We consciously chose to avoid incurring this additional cost by using a threaded model. In doing
so, we may have incurred a penalty in the form of increased contention on distributed memory architec-
tures with single-CPU nodes.

FIGURE 19. Architecture of Overlapped Visapult Back End
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