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Abstract 
 

Training pilots for the USAF costs millions of dollars every year.  There are seven 

points of entry into Air Force Undergraduate Pilot Training (UPT).  Each source has its 

own selection process to screen candidates accepted into UPT.  The Pilot Candidate 

Selection Method (PCSM) seeks to ensure the highest possible probability of success at 

UPT.  PCSM applies regression weights to a candidate’s Air Force Officer Qualification 

Test (AFOQT) Pilot composite score, self-reported flying hours, and five Basic 

Attributes Test (BAT) score composites.  PCSM scores range between 1 and 99 and are 

loosely interpreted as a candidate’s probability of passing UPT.   

 The goal of this study is to apply multivariate data analysis techniques to validate 

PCSM and determine appropriate changes to the model’s weights.  Performance of the 

updated weights is compared to the current PCSM model via Receiver Operating Curves 

(ROC).  In addition, two independent models are developed using multilayer perceptron 

neural networks and discriminant analysis.  Both linear and logistic regression is used to 

investigate possible updates to PCSM’s current linear regression weights.  An 

independent test set is used to estimate the generalized performance of the regressions 

and independent models.  Validation of the current PCSM model demonstrated in the first 

phase of this research is enhanced by the fact that PCSM outperforms all other models 

developed in the research. 
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USE OF MULTIVARIATE TECHNIQUES TO VALIDATE AND IMPROVE THE 

CURRENT USAF PILOT CANDIDATE SELECTION MODEL 

 

I.  Introduction 
 
 
1.1  General Issue 

The cost of the initial phase of Undergraduate Pilot Training (UPT), T-37 and T-

38 phases, is approximately $137,446 per trainee (AFI 65-503, 2001).  It is essential, both 

fiscally and operationally, that those candidates selected for UPT successfully complete 

training.  The Air Education Training Command (AETC) currently uses the Air Force 

Officer Qualification Test (AFOQT) Pilot composite score, five Basic Aptitude Test 

(BAT) scores, and the number of self-reported Federal Aviation Administration (FAA) 

flying hours as inputs to the Pilot Candidate Selection Method (PCSM).  PCSM is one 

factor considered in the selection of UPT candidates.  Currently, the Air Force Academy 

(AFA) is the only selection source that does not incorporate PCSM.   The PCSM score is 

a weighted linear composite of the seven predictors described above.  The weights in the 

linear combination are regression based.  The linear combination is then transformed by a 

discrete approximation to a sigmoidal function.  It is unclear whether the current PCSM 

model is based on linear or logistic regression.   

 Recent work completed by Capt Ian Young at the Air Force Institute of 

Technology, Wright-Patterson AFB, OH, provided a pilot candidate selection model that 

apparently outperforms the current method employed by AETC (Young et al., 2003); 
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however, the performance is not demonstrated on a wholly independent data set.  There 

are several drawbacks that prevent the operational implementation of Capt Young’s 

model.  These include the use of predictors not deemed feasible by AETC based on actual 

or perceived discriminatory affects such predictors would have on certain sub-groups of 

the applicant population.  Despite equivalence in the model output and interpretation, 

implementation is further hampered because the model’s format would be foreign to the 

selection boards. 

This research focuses on three main objectives.  First, given the most up-to-date 

data provided by AETC/SAS, the current PCSM model is validated to ensure the current 

predictors continue to provide optimal validity for predicting the UPT pass/fail criterion.  

Second, logistic and linear regressions are used to investigate possible updates to the 

current PCSM regression weights.  Finally, an independent prediction model is 

developed.  Retention of a similar format and interpretation as PCSM is an objective of 

this model; however, it is derived using other multivariate data analysis techniques for 

improving predictive capability.  The new model may include, but is not limited to, the 

predictors included in the current PCSM model.  This will afford AETC the ability to 

identify candidates with the best probability of success during pilot training, while not 

changing the “look and feel” selection boards are accustomed to with the current PCSM 

model.   

 

1.2  Background 

Approximately half of nearly 1,500 non-Air Force Academy UPT applicants are 

selected for pilot training each year by selection boards (Young et al., 2003).  Although 
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not the sole basis for UPT selection, the PCSM score is used as a numeric discriminator 

between applicants.  Each UPT candidate that attends, but does not complete the initial 

phase of UPT training costs the United States Air Force an estimated $72,572 (AFI 65-

503, 2001).  Candidates are eliminated for any of seven reasons: flying deficiency, 

academic deficiency, military training, medical, fear of flying, self-initiated elimination, 

and “other reasons”.   

The method for determining the PCSM score, a numeric value of 1-99, is based 

on a linear regression of the seven predictors; AFOQT-Pilot score, FAA flying hours, and 

5 BAT scores.  These predictors were selected for inclusion in PCSM based on 

psychometric selection theory, and many studies based on correlations sponsored by the 

Air Force Research Laboratory’s (AFRL) Human Effectiveness Directorate and the 

Armstrong Laboratory’s Human Resources Directorate.  PCSM was commissioned in 

1985 and became operational in 1993 (Ness, 1996).  AETC sets minimum qualifying Air 

Force Officer Qualification Test (AFOQT) scores for UPT applicants by selection source.  

The current minimum AFOQT qualifying scores are presented in Table 1 (Carretta, 

2000).  PPL is an acronym for private pilot’s license. 

Table 1.  Minimum AFOQT Qualifying Scores By Commissioning Source 

Source Pilot Nav-Tech P + N Verbal Quantitative 

OTS w/ PPL 25 10 50 15 10 

OTS w/o PPL 50 50 60 15 10 

ROTC w/ PPL 50 10 60 15 30 

ROTC w/o PPL 25 10 50 15 10 

Active Duty 25 10 50 none none 

AFA (pre-1998) none none none none none 
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1.3  Problem Statement 

 AETC provided the most up-to-date data on UPT candidate performance for use 

in this research.  Validation of the current PCSM model and the development of an 

independent model that predicts UPT performance are sought using multivariate data 

analysis techniques.  The model is validated on a wholly independent data set, the 

“TEST” set, to determine predictive accuracy and overall capabilities. 

 

1.4  Research Objectives 

The ultimate goal of this research is to validate the current PCSM model as well 

as provide AETC SAS with an improved model, which is operationally implementable 

within the current selection process framework.  Implementation of such a model is 

expected to reduce UPT attrition rates and thus greatly reduce the costs associated with 

attrition.  Once the model is developed, its performance is validated on the TEST set in 

comparison to PCSM. 

 

1.5  Research Methodology 

The fundamental research methodology involves the use of multivariate data 

analysis techniques.  PCSM validation in this research is primarily accomplished via a 

combination of factor analysis and stepwise linear regression, partial correlations, and 

correlations corrected for range restriction.  The magnitude of correlations (validities) is 

viewed as a method of quantifying a set of predictor’s explanatory power for a criterion 

of interest.  There are many statistically based complexities that tend to confound studies 
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based on correlations.  Statistical artifacts such as range restriction, unreliability, 

dichotomization of criteria, group effects, factor invariance, and construct interpretation 

are considered.  Linear and logistic regressions are used to investigate updated weights 

for the 7 inputs in the current PCSM model. 

Three main techniques are utilized in development of an independent model.  

First, neural networks are investigated for their theoretically unlimited function 

approximating power.  Second, discriminant Analysis attempts to classify an individual 

into a particular category based on independent predictor variables.  The categories will 

be pass/fail for the T37 phase of UPT.  Classification thresholds for the model output can 

be set appropriately depending on the need to maximize identification of potential 

failures (probability of target detection) vs. minimizing the cost/risk of false alarms.  

Each technique is validated for accuracy, capabilities, and limitations on the independent 

TEST set.  Available predictors include current PCSM scores, its inputs, all AFOQT 

composites, BAT sub-test scores, and other demographic or quantitative variables.  

Although PCSM is theoretically a valid predictor, it is not considered for inclusion in the 

independent model.  This is because the research purpose is to develop a replacement for 

PCSM. 

 

1.6  Scope of Research 

This research is limited to data on individuals who have been selected for UPT 

and have received a PCSM score since its operational implementation in 1993.  Non-Air 

Force active duty officers are included in the data.  This research is limited to three areas.  

First, validation of the predictors or the latent constructs underlying those predictors 
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currently included in PCSM.  Second, updating the regression weights applied to the 

current PCSM model predictors.  Finally, developing an independent model whose output 

is interpreted as a probability of passing UPT or otherwise quantifies the likelihood of 

success. 

 

1.7 Outline of Thesis 

 This thesis is divided into the following five chapters:  Introduction, Literature 

Review, Methodology, Findings and Analysis, and Conclusions.  A brief description of 

each follows. 

 Chapter 1:  Introduction – This chapter discusses the background, focus of 

research, research objectives, and relevance of this thesis document. 

 Chapter 2:  Literature Review – This chapter begins with a description of PCSM 

and methods used to validate PCSM.   Methodological issues in ability research are 

discussed.  The pilot selection process is then reviewed.  Finally, a review of multivariate 

data analysis techniques used in this research is presented.   

 Chapter 3:  Methodology – The methodology chapter begins by describing the 

steps taken to prepare the data for analysis followed by a description of the software used 

in the analysis.  The methodology employed in the PCSM validation study is discussed.  

Next, the algorithms employed in the development of an independent PCSM model are 

reviewed.  Finally, methodologies utilized to compare the newly developed models to the 

current PCSM model are discussed. 

 Chapter 4:  Findings and Analysis – This chapter presents the results of the PCSM 

validation study, the updated PCSM models with new weights, and the new independent 
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model.  The validity of the models is discussed and model performance is compared to 

PCSM.   

 Chapter 5:  Conclusions and Recommendations – The research results are briefly 

reviewed.  The relevance of the research effort is presented.  Recommendations for 

further research are provided.  
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II.  Literature Review 
 
 
 
2.1 Introduction to PCSM Research 

The purpose of this chapter is to provide a thorough review of literature relevant 

to validation studies for ability research and predictive models, the Air Force PCSM 

model, and multivariate analysis methods.  First, this chapter provides a description of the 

terms and issues involved with ability research validation.  Second, the PCSM model is 

introduced.  Third, methodological issues related to ability research are addressed.  

Fourth, this chapter provides information on the research accomplished in the 

development and validation of the data used in the current PCSM model as well as 

research relevant to pilot training selection.  Additionally a discussion of the data 

available for analysis is presented.  Finally, this chapter reviews current multivariate 

analysis techniques used in the analysis of the data.  

 

 2.1.1 Validity in Predictive Research 

Formal validation of a predictive model is required to determine the utility of the 

constructs being measured and methods of recording those measurements “for predicting 

training and job performance” (Carretta & Ree, 2000a).  “The Pearson r (correlation) is 

often used as an index of validity in psychological and educational measurement and is 

particularly useful when the criterion and predictor have a bivariate normal distribution” 

(Duan, et al., 1997).  The terms validity, validity coefficient, and correlation are used 

interchangeably in the literature for the Pearson correlation.   
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A partial correlation is a correlation between a predictor and criterion conditioned 

on a set of predictors previously accounted for in a model.  A predictor’s partial 

correlation is dependent on the predictors included in the previously accounted for set, 

hence the conditional statement.  When used, partial correlations are identified in this 

research.  “The idea of partial correlation can be subsumed under ‘mediation,’ which 

means that one variable acts through another variable to exert its influence on a third 

variable” (Carretta & Ree, 2000a).  Partial correlations provide the ability to “partial out” 

the influence of a set of predictors from the relationship between the criterion and another 

set of predictors.  Ree, Carretta, & Teachout (1995) examined the influence of general 

cognitive ability and prior job knowledge on the acquisition of job knowledge acquired 

during different phases of pilot training.  Lord & Novick (1968) provide the following 

matrix notation in Equation 1 for computing partial correlations from a matrix containing 

the criterion and a set of predictor scores. 

 

   ( ) ( )|||||||||||| ijijij DiagDiagA σσσ ∗∗=    ( 1) 

 

where ||σij|| is the inverse of the covariance matrix of the criterion and predictors and 

Diag(M) is a diagonal matrix of the elements on the diagonal of a matrix M.  Equation 1 

results in 1=iia  and ....klijija ρ−= (partial correlation), for jilk ≠≠..., .  However, SPSS 

11.5 is used to calculate all partial correlations in this research. 

Carretta & Ree (2000a) review three historical types of validity; content, 

construct, and criterion (predictive).  Carretta & Ree (2000a) provide the following 
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definitions.  A predictor has content validity if it “clearly represents a knowledge area, 

skill, or ability.”  Construct validity implies the “attempt to scientifically determine what 

the predictor actually measures.”  Constructs are often given names or interpretations by 

the researcher.  General cognitive ability is a construct often referred to, but in reality 

general cognitive ability is simply the name that has been attached to an abstract measure.  

Criterion or predictive validity is the “ability of a predictor to predict performance on an 

external activity or criterion.” 

Once suitable predictors and criteria are selected, predictive validity is examined 

via correlations between the predictor scores and criterion measure(s).  The magnitude 

and direction of the correlations determine a predictor’s predictive validity.  In ability 

research for predicting success in job training, validity coefficients are usually in the 

small to medium range.  Predictive validity can be investigated with either a predictive or 

concurrent validation design.  In the predictive design, the criterion is only measured for 

those subjects selected from the sample based on performance on the predictors.  This 

research seeks to confirm the predictive validity of the individual predictor variables 

currently used in the PCSM model as well as the predictive validity of the entire model.   

Several predictors in a model can measure a common construct.  Construct is the 

statistical term used to describe what is actually being measured.  The term is most 

commonly used in factor analysis, where the underlying latent construct is interpreted 

through inspection of factor loadings in a factor analysis.  Factor analysis is discussed in 

section 2.6.  A very common construct within the arena of ability research is that of 

general cognitive ability, known simply as “g.”   
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When several variables are valid predictors of a common construct, the most 

significant predictor is used as the baseline for calculating incremental validities of other 

predictors in the model.  Incremental validity is the increase in predictive accuracy 

obtained by a predictor beyond that already accounted for with a current set of predictors 

(Carretta & Ree, 1994).  Incremental validity is measured using partial correlations.  

However, in the studies reviewed for this research, incremental validity is generally 

conditioned on the most significant predictor alone, not a set of predictors.  

Historical selection theory and studies show that measures of “g” or 

“psychometric g,” are the best predictors of job/training performance.  Waldman & 

Avolio (1989) summarize Gottfredson’s (1986) and Hunter & Hunter’s (1984) 

conclusions that “general cognitive ability not only predicts job performance moderately 

well but does so better than tests of any other single attribute.”  Morales & Ree (1992) 

found that general cognitive ability “was a better predictor than specific abilities or job 

knowledge” for prediction of 5 pilot related criteria (Carretta & Ree, 1994).  

In a study on the influence of job complexity on the validity of general cognitive 

ability, Jones & Ree (1998) show that “job ability differences did not moderate (affect) 

the relationship between the amount of g measured by a test and its score validity.”  This 

directly refutes the specificity doctrine, which hypothesizes that valid predictors of one 

job will not be valid for others (Jones & Ree, 1998).  Hence, Jones & Ree contend that 

for a test that measures a certain amount of g, that test can be expected to perform equally 

well at predicting job training success across a wide range of job skills or job complexity. 

One concern related to validation studies is the stability of the validity coefficient 

across a test’s score range.  In a study of 68,672 Navy recruits, Lee & Foley (1986) 
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argued that the corrected (for range restriction) “validity coefficient is not a constant 

value for all subjects, rather a varied degree dependent on the level of the predictor 

score.”  They suggest treating “validity, (regression) slope, and standard error of estimate 

as an average rather than a constant value for all subjects in a population” (Lee & Foley, 

1986).   

In an attempt to confirm the Lee & Foley results, Waldman & Avolio (1989) 

found starkly dissimilar results following a study of 24,219 General Aptitude Test 

Battery (GATB) observations.  They found that “the validity of the tests used in this 

study did not appreciably vary at different points along the test score range” (Waldman & 

Avolio, 1989).  Specifically, “the slope of the regression and standard error of estimate 

did not significantly vary across the predictor score range” (Waldman & Avolio, 1989).  

Waldman & Avolio (1989) question Lee & Foley’s conclusions due to the criterion 

selected by Lee & Foley.  “Their (Lee & Foley) study did not address whether scores at 

different range levels differentially predicted performance on the job” (Waldman & 

Avolio, 1989).  

 

2.1.2 Current Pilot Candidate Selection Method 

The PCSM program was initiated in 1985 from an AETC/CC Program Guidance 

Letter and became operational in 1993 (Ness, 1996 and Carretta & Ree, 2000a).   The 

current PCSM model is a weighted composite of seven items from three sources.  First is 

the AFOQT Pilot composite, which is comprised of 8 of the 16 AFOQT sub-tests.  See 

Table 3 for the specific sub-tests included in the AFOQT Pilot composite.  Second, the 

BAT provides five scores used in the PCSM model, which are discussed in section 2.3.2.  
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Finally, a self-reported number of FAA flying hours is included.  The weights for the 

seven PCSM inputs are based on a linear regression, which is then transformed by 

applying a discrete approximation of a sigmoidal function to the resulting linear 

combination.  This particular sigmoidal function’s origin is unknown by the author.  

PCSM scores range from 1-99.  Figure 1 presents the authors understanding of the PCSM 

model architecture. 
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Figure 1.  PCSM Model Representation 

 

The EQPMOT score is calculated by standardization of its four input scores and 

averaged so that each input is equally weighted.  This average is multiplied by –1.0 to 

account for the fact that the 4 inputs are pursuit tracking errors scores, hence larger scores 

imply worse performance.  Item recognition reaction time is assigned a maximal score of 

2,500 milliseconds if the percentage correct on the item recognition test is less than 75%.  

Finally, the five BAT inputs are transformed by way of equating tables.   
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Equating is necessary due to differences in equipment configuration of the 

experimental and operational forms of the BAT test.  An analysis was done “to determine 

differences and where differences existed to equate the experimental and operational 

BAT tests” (Carretta & Ree, 1993).  Equating is required so that operational BAT scores 

can be used in the current PCSM model, which was developed on data from the 

experimental BAT test configuration (Carretta & Ree, 1993).  BAT scores have not been 

re-normed to the operational test.  Therefore, the current PCSM model is still 

implementing equating tables, based on the equating study performed by Carretta & Ree 

(1993), to transform raw operational BAT scores prior to applying the regression weights.   

 “The validity of PCSM has been shown to come mostly from the measurement of 

cognitive ability (g), psychomotor ability, pilot job knowledge, and flying experience” 

(Carretta, 2000b).  Generally, validity research for PCSM has focused on finding 

predictors that provide incremental validity to the AFOQT Pilot composite.  The Pilot 

composite is highly g loaded.  Flying experience validity has been found to decrease as a 

function of training phase (Carretta & Ree, 1995).  Thus, flying experience is most 

predictive of success early in pilot training.   

This has prompted current interest at AETC in the effects of updating the PCSM 

model to baseline all applicants at a minimum of 50 hours of flying experience.  

Currently each selected applicant has the opportunity to receive 50 hours of flight 

training to earn a private pilot license prior to entering UPT, but the current PCSM model 

uses the applicants FAA flight hours reported at the time of application.  No such 

baseline is implemented in this research.  The data for this research is based on each 
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applicant’s actual self-reported FAA flying hours at the time the PCSM score was 

calculated. 

 

2.2 Pitfalls in Ability Research and Pilot Selection 

Carretta & Ree (2000a) detail 9 commonly overlooked methodological issues in 

ability research.  They are (1) range restriction, (2) unreliability, (3) dichotomization of 

the criterion, (4) subgroup effects, (5) weighting of variables, (6) misunderstanding 

constructs, (7) misinterpreting factor analytic results, (8) lack of statistical power, and (9) 

failure to cross-validate.  Each is discussed separately in this section.  For this research, 

range restriction is perhaps the most critical of the methodological issues reported by 

Carretta & Ree (2000a).  Significant attention is given to range restriction in section 

2.2.1.  The other pitfalls are addressed to a lesser extent. 

 

2.2.1  Range Restriction    

The Pearson correlation, “r is a consistent and efficient estimate of population rho 

only under the condition that r is obtained from a random sample of the population” 

(Duan, et al., 1997).  Range restriction is a term used when the population correlation 

between a predictor and criterion is underestimated in a pre-selected subset of the 

population.  After reviewing 700 criterion- related validity studies, Linn et al. (1981) 

state, “Procedures for correcting correlations for range restriction are desperately needed 

in highly selective situations.”  A graphical presentation of the effects of range restriction 

is provided by Sackett & Yang (2000).  Burnham, Paulson, Andrews (1950) and Bryant 

(1972) present numerical examples of the correction procedure.  
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Several formulas exist for correcting range-restricted correlations.  These are 

generally attributed to Pearson (1903) in the univariate case and Lawley (1943) in the 

multivariate case.  Although Pearson (1903) is credited with developing the first 

correction formulas for range restriction for three univariate cases, (Ree et al., 1994) 

Thorndike (1949) popularized Pearson’s work by describing the three “cases” in which to 

apply Pearson’s formulas correctly.  The three cases “require hard-to-obtain estimates of 

population variances, which account for their infrequent use” (Ree et al., 1994).  Several 

authors present the univariate correction formulas (Linn et al., 1981, Ree et al., 1994, 

Sackett & Wade, 1983, and Sackett & Yang, 2000). 

Lawley (1943) is usually credited with developing a general multivariate 

correction formula that allows for a scenario involving selection on multiple predictors 

(Ree et al., 1994); however, it is less commonly noted that Lawley extended work by 

Aitken (1934) (Sackett & Yang, 2000).  The multivariate correction performs poorly for 

small samples, but has been shown to be more accurate (robust) for large samples even in 

the presence of assumption violations (Held, 1996).   

The general assumptions underlying the application of the correction formulas 

provided below are taken from Duan et al. (1997), although they are commonly cited in 

the literature.  The Lawley (1943) multivariate correction relaxes the normality 

assumption, which makes it appealing to researchers.   

1.  Linearity of regression of the criterion on the predictor 
 
2.  Homoscedasticity of the criterion error variance for all values of the predictor 
 
3.  Bivariate normality among the predictors 
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Lawley’s multivariate correction formula differentiates between selection 

variables and incidental variables.  Selection variables are those variables for which 

selection is based and are available for an unrestricted population (AFOQT scores, BAT 

scores, & other available predictors).  Incidental variables are measured only in the 

restricted sample (i.e. UPT criterion).  Ree et al. (1994) present and develop matrix 

equations for the multivariate correction formula.  Sackett &Yang (2000) state that the 

multivariate correction should be used in cases where simultaneous or sequential 

selection is made on multiple variables.  This is the case with the USAF UPT selection 

process; however, the criteria is either different across selection sources or is not 

specifically defined. 

Carretta & Ree, who have been involved in a significant portion of PCSM 

research, opt for Lawley’s (1943) multivariate correction in their work on PCSM.  

Lawley’s (1943) multivariate correction is popular due to its relaxed set of assumptions.  

Where corrected correlations are used in this research, both the uncorrected and corrected 

correlations are reported.  Furthermore, in keeping with past research by Carretta, Ree, & 

others who have done significant PCSM research, Lawley’s (1943) multivariate 

correction technique is used in this research.  A Windows based application developed 

by Johnson & Ree (1994) named RANGEJ makes calculating the Lawley (1943) 

multivariate correction straightforward.  The RANGEJ application is used in this 

research. 

Correction for range restriction is suggested if the sample does not accurately 

represent the population for which prediction is needed.  The need for range restriction 

corrections is common in ability research because information about the applicant 
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population is often lost or unavailable.  For example, it is impossible to collect criterion 

scores for those not selected.  The goal of this research is to create a model using 

predictor and criterion data on a pre-selected sample of those who previously attended 

UPT and use that model to predict the success of future pilot training applicants prior to 

selection for UPT.  Since UPT selection is not done randomly, range restriction occurs.   

Range restriction can occur as a result of many different selection scenarios.  The 

two most common are direct and indirect (incidental) selection from the population.  

Under direct selection, applicants are selected based strictly on a cut-off score for a 

predictor.  Under indirect selection, applicants are selected based on a cut-off score of a 

predictor or some combination of predictors not included in the available set.  This causes 

range restriction in the predictor set, which is related to the magnitude of the correlation 

between the predictor on which selection occurred and the predictors in the predictor set.  

Range restriction can also occur when the selection process is unknown or based on 

immeasurable predictors.   

 
2.2.1.1  Robustness and Accuracy of Corrections 

 
Correction accuracy is a function of the degree to which the underlying data 

assumptions have been met, direct vs. indirect (incidental) selection, and the correction 

formula (univariate or multivariate) (Sackett & Yang, 2000).  Historically, selecting a 

correction formula has been based on whether the data is univariate or multivariate alone.  

Sackett & Yang (2000) state “Thorndike correction formulas for range restriction can be 

shown to be special cases of a multivariate correction formula developed by Aitken 

(1934) and extended by Lawley (1943).”   
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Sackett & Yang (2000) discuss multiple scenarios under which range restriction 

commonly occurs and their effects on the restricted correlation and regression 

coefficients.  They investigate a total of 11 different range-restriction scenarios based on 

combinations of three facets.  The three facets are: (a) the variable on which selection 

occurs, (b) whether unrestricted variances for the relevant variables are known, and (c) 

whether a 3rd variable (indirect selection), if involved, is measured or unmeasured 

(Sackett & Yang, 2000).  This significantly expands the menu of correction formulas 

available to the researcher.   

Sackett & Yang (2000) found that “the Aitken-Lawley multivariate correction 

formula consistently reproduced population correlations closely, with precision 

decreasing as the sample size and the selection ratio decreased.”  Selection ratio is the 

proportion of applicants selected from the population.  A small selection ratio could 

imply a highly selective process.  Sackett & Yang’s results confirm previous results by 

Lee et al. (1982) and Greener & Osburn (1980); however, the “closeness” of the 

corrected correlation was shown to degrade rapidly as selection ratio decreased in 

Greener & Osburn (1980). 

Sackett & Yang’s (2000) last case is most germane to this research in lieu of the 

differences in selection processes across selection sources found by Weeks (1998).  The 

Weeks (1998) study is discussed in section 2.3.3.  Sackett & Yang (2000) endorse more 

caution in using correction processes when the “range restriction processes are not fully 

understood, such as those in which unmeasured variables play a large role.”  Given the 

inaccuracies of correction formulas when applied to the incorrect range restriction 

scenarios, the researcher must take caution in selecting the appropriate correction formula 
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(Sackett & Yang, 2000).  Such is the case with the selection process for UPT since the 

AFA and ROTC account for the majority of pilot candidates selected across the entire Air 

Force (Weeks, 1998).  Weeks (1998) cautions researchers considering corrections for 

range restriction related to this research. 

The results discussed to this point and those discussed in the next several sub-

sections suggest that the range restriction does occur as a result of UPT selection; 

however, simply meeting the theoretical criteria known to induce range restriction does 

not guarantee corrected correlations are appreciably more desirable.  Despite the 

generally positive results obtained through correcting correlations for range restriction, 

the true unrestricted population correlation is known in most studies on the accuracy 

and/or robustness of correlations corrected for range restriction.  Unfortunately, 

unselected pilot applicants never go to UPT; therefore, no information on their criterion 

scores is available.  Therefore, the accuracy of such corrections cannot be estimated. 

Lord & Novick’s (1968) text, Statistical Theories of Mental Test Scores” is often 

cited in literature related to the range restriction problem.  “Lord & Novick (1968) 

indicated that there is a tendency for test score data to violate both assumptions (linearity 

& homoscedasticity) ... at both extremes of the distribution and expressed serious 

reservations regarding the probable accuracy of the corrections under conditions of 

extreme selection” (Greener & Osburn, 1980).  To that end, Greener & Osburn (1979, 

1980) specifically address the accuracy & robustness of corrected correlations.   

Greener & Osburn (1979) performed an empirical study of the corrections in the 

case of direct selection.  Greener & Osburn (1980) studied accuracy in the case of direct 

selection in the presence of differing degrees of either heteroscedasticity or non-linearity 
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of regression.  Greener & Osburn (1979) also found the correction “was very sensitive to 

moderate departures from linearity (of the regression) but was quite robust in the face of 

rather substantial departures from homoscedasticity” (Greener & Osburn, 1979).   

Greener & Osburn (1979) found that the accuracy of the correction is a function 

of the magnitude of unrestricted correlations in the population.  Noting a difference in 

results, Duan et al. (1997) makes the opposite statement about the relationship between 

correction accuracy and magnitude of the unrestricted correlation.  In Greener & Osburn 

(1979, 1980), the corrected sample correlation typically was more accurate than the 

uncorrected sample correlation when the unrestricted population correlation, rho, was 

moderate.  However, Greener & Osburn (1979) found that the corrected correlation was 

no more accurate than the uncorrected one when the population rho was small (.10 to 

.25)” (Duan et al., 1997).  This case is likely to hold for many of the predictors available 

in this research.  Duan et al. (1997) point out that the discrepancy in results could be 

related to the fact that Greener & Osburn (1979) used empirical distributions, which may 

have violated the linearity and/or homoscedasticity assumptions.  Greener & Osburn 

(1980) further studied corrections under assumption violations. 

  Duan et al. (1997) investigated the accuracy of several methods of estimating 

standard error of correlations corrected for Thordike’s Case 2 range restriction via Monte 

Carlo simulation.  Duan et al. (1997) found four main results, which follow.  First, in 

every case investigated (5 < N < 50) “the correlation coefficient corrected for range 

restriction always was a more accurate approximation of the population rho than the 

correlation calculated from the restricted sample.”  This is consistent with Lin et al 

(1981) and Mendoza (1991).  Second, Duan’s et al. (1997) results suggest, “when the 
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selection ratio is very small the corrected Pearson correlation is not accurate in estimating 

population rho.”  Nevertheless, corrected estimates are still overly conservative in this 

case.  Third, for a given range restricted rho and selection ratio, the corrected correlation 

became more accurate as sample size increased.  This result agrees with Bobko’s (1983) 

findings.  The largest sample size in the Duan et al. study was N = 50.  Finally, “the 

accuracy of Rc (corrected correlation) has no apparent relation to population rho (Duan et 

al., 1997).   

Extending their research, Greener & Osburn (1980) simulated 9 bivariate 

distributions with correlations ranging from 0.10 to 0.90.  From each one of these 

distributions, 7 samples (N = 40,000) were obtained for 5 different replications.  The 7 

samples included a bivariate normal distribution with equal means and variances and two 

each of three distributions, which violate one of the assumptions to differing degrees.  

The first type violated linearity of regression via a sigmoidal shape.  The second type 

violated homoscedasticity with an increasing trend in variance (fan shaped).  The last 

type, violated homoscedasticity by displayed an increasing, then decreasing variance 

trend (football shaped).  Greener & Osburn (1980) simulated varying degrees of range 

restriction by truncating the lower portion of the sample with increasing proportions.   

Greener & Osburn (1980) found that “violation of one or both of these 

assumptions can lead to serious errors in estimating the unrestricted population 

correlation.”  This suggests the need to verify assumptions whenever the correction 

formulas are used.  Such has not been the case in PCSM related studies reviewed in this 

research.   
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Greener & Osburn (1980) found that correction accuracy is a function of both 

selection ratio (in a strict truncation fashion) and unrestricted population correlation.  As 

selection ratio decreases and/or population correlation increases, the accuracy of the 

correction decreases.  The correction accuracy for the sigmoid shaped samples (non-

linear in regression) did not tend to be a function of the population correlation (Greener 

& Osburn, 1980).  With one exception, the corrected correlations tended to be negatively 

biased across the Greener & Osburn (1980) study; however, in terms of percentage of 

error reported by Greener & Osburn the errors tended to be quite large.  Lee et al. (1982) 

comment on the “gross underestimation” they witnessed.  Over correction was seen in 

only in the football shaped samples when 60% or more of the sample was truncated from 

the lower end.  Over correction tended to be less than the underestimate of the 

uncorrected correlations for all but the most severe truncation (80% to 90%).  Greener & 

Osburn (1980) report the following results.   

1. No tendency in the bivariate normal distributions to underestimate or 
overestimate population correlations regardless of the magnitude of 
population correlation and degree of truncation.   

 
2. The corrected correlations for the sigmoid (non-linear) distributions were not 

affected by the magnitude of the population correlation, but were increasingly 
underestimated as the degree of truncation increased.   

 
3. The corrected correlations for the fan-shaped (monotonically increasing 

heteroscedasticity) distributions increasingly underestimated the population 
correlation as a function of both the magnitude of the population correlation 
and the degree of truncation.   

 

It appears the results of Greener & Osburn (1980) do not fully support the 

conclusions of Greener & Osburn (1979).  Greener & Osburn (1979) noted the robustness 

of the correction “in the face of rather substantial departures from homoscedasticity.”  
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For the heteroscedastic samples, the negative bias in the corrected correlations was as 

large or larger than those found in the non-linear samples.  Although, all corrections 

generally tended to be negatively biased across the range of population correlations, the 

instances of over corrections found for the football shaped samples were smaller in 

magnitude than the bias in the uncorrected estimates for all but the most sever range 

restriction.   

Lee et al. (1982) found a slight overestimation in corrected correlations.  The 

correction changed the correlation from 0.59 to 0.75 when the true population correlation 

was 0.68.  This occurred while implementing both triple and double correction 

procedures to correct for both range restriction and unreliability.  Lee et al. (1982) point 

out that their use of split-half reliability may not be an optimal estimate for criterion 

reliability in the process of the correction.  Thus, using the split-half reliability estimates 

for predictor and criterion to correct for unreliability in the multi-correction procedure 

could be the cause of inconsistent results compared to Greener & Osburn (1980). 

Lee et al. did confirm that “uncorrected coefficients grossly underestimate the true 

validity ... and that the magnitude of the underestimate is inversely related to the selection 

ratio” (Lee et al., 1982).  This agrees with Greener & Osburn (1980).  Lee et al. (1982) 

used selection ratios that ranged from 0.50 to 0.10.  Although in some cases, corrected 

correlations overestimated population correlations, their results for the corrected 

correlations confirm this inverse relationship as the bias in corrected correlations 

decreased from about 9% overestimation to more than 10% underestimation when 

selection ratio decreased from 0.20 to 0.10.  
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Gross & Fleischman (1983) investigated simultaneous violation of distributional 

and selection assumptions using actual test score data.  In previous studies on the effects 

of distributional violations, selection was assumed to be explicit (i.e. performed on a 

single variable).  Primarily, Gross & Fleischman (1983) make two conclusions.   

 
First, it is unreasonable to assume that the correction formula can exactly 
reproduce or even closely approximate the total group correlation when neither 
the underlying distribution nor the selection assumptions are violated.  At best 
reasonably small percentage errors in the range of 15% to 20% can be assured 
only when the degree of selection is quite modest.  

 

Thus, if the unrestricted correlation estimate requires a high degree of accuracy, “the 

correction formula will be inadequate, especially as the proportion of missing y 

(criterion) scores increases.”  Such accuracy is required when selecting predictors during 

model development.  Inaccuracy in the corrected correlations may cause more problems 

than the uncorrected correlations themselves.  The corrections are not robust to violations 

of both assumptions and errors found were reasonably small, “only for very modest 

degrees of selection” (Gross & Fleischman, 1983).  “As the proportion selected (from the 

population) decreases, the accuracy of the formula deteriorates” (Gross & Fleischman, 

1983).   

Secondly, Gross & Fleischman (1983) found accuracy to be highly dependent on 

the distribution form underlying the data when both assumptions are violated.  

Specifically, distributional forms “where the regression curve is exponential in form, and 

the variance of y (criterion) is a decreasing function of X1 (the predictor)” results in a 

substantial overestimate (Gross & Fleischman, 1983).  Furthermore, Gross & Fleischman 
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(1983) state that in some cases, the uncorrected correlation is a better estimate of the 

unrestricted population correlation. 

 
2.2.1.2  Conditions Resulting In Conservative Corrections 

 
Linn et al. (1981) examined over 700 criterion-related validity studies in an 

attempt to investigate:  

 
1.  The relationship between the standard deviation of the predictor and the 

magnitude of the predictive validity (correlation). 
 
2.  Estimate the effect of corrections for range restriction assuming explicit 

(direct) and incidental (indirect) range restriction.   
 

A strong positive relationship was found between the standard deviation of the 

predictor and the magnitude of the predictive validity (Linn et al., 1981).  As the standard 

deviation in the predictor decreases as a result of range restriction, the validity of the 

predictor also decreased.  Linn et al. (1981) found that the corrections reduced the 

strength of this relationship, thus they are considered better than the uncorrected 

validities, but “still apt to provide a conservative estimate.”  This agrees with Greener & 

Osburn’s (1979,1980) findings that corrected correlations tend to increasingly 

underestimate population correlations as a function of selection ratio, despite violations 

of the linearity or homoscedasticity assumption.   

The goal of studying these relationships was to ultimately investigate “the 

combined effects on corrections of violations of assumptions (linearity in regression and 

homoscedasticity) and selection on an unspecified variable (direct or indirect selection)” 

(Linn et al., 1981).  Linn et al. (1981) cite Brewer & Hills (1969) for finding that 

“inaccuracy of the corrections increased with increasing skewness and increasing 
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selectivity (decreasing selection ratio).”  Linn et al (1981) cite earlier work by Linn 

(1968) that suggest corrections are negatively biased under the indirect selection scenario 

when there exist strong correlation between the true selection variable and the available 

predictor variable.  Strong correlations have not been shown in the case of PCSM.  This 

is evidenced by the fact that USAF selection processes have resulted in selecting 

applicants whose combined PCSM scores from 1993-2001 (N=18,927) that are fairly 

uniformly distributed across the PCSM score range.  In fact, more applicants have been 

selected with low PCSM scores than high scores.  Figure 61 in chapter 5 presents a 

histogram of all valid PCSM scores in the data provided for this research. 

Table 2 summarizes Sackett & Yang’s (2000) findings for several range 

restriction scenarios a when positive correlation exists between a predictor and the 

criterion in the population.   

 

Table 2.  Sackett & Yang (2000) Study Findings 

Range Restriction 
Scenario 

Unrestricted 
Correlation 

Regression 
Coefficient 

Direct on predictor underestimated unaffected 
Direct on criterion underestimated affected 
Direct on extremes overestimated unaffected 

Indirect on a 3rd 
predictor underestimated affected 

 

The following are three considerations for correcting correlations for range 

restriction suggested by Sackett & Yang (2000).   

1. Sampling error of corrected correlations   
 
2. Robustness of correction formulas against violations of linearity and 

homoscedasticity   
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3. Using maximum likelihood methods as an alternative for dealing with missing 
data. 

 
The second consideration, robustness to violations of assumptions, was discussed 

in section 2.2.1.1.  Furthermore, conditions that result in conservative corrections were 

discussed earlier in this section.  The first consideration, sampling error, is discussed in 

the next section.  The reader can go to Sackett & Yang (2000) for a more information on 

maximum likelihood methods. 

 
2.2.1.3 Sampling Error of Corrected Correlations 

 
Gross & Kagen (1983) stated that very little is known about the standard error and 

sampling distribution of corrected correlations.  Mendoza et al. (1991) and Greener & 

Osburn (1980) both cite Forsyth (1971) stating that the traditional calculation for standard 

error of the Pearson product moment correlation coefficient is not appropriate for 

confidence intervals about corrected correlations.  More recently, Ree et al. (1994) state 

that corrected correlations do not have a known sampling distribution and standard error; 

therefore, statistical significance tests are theoretically not possible with corrected 

correlations.  Other methods of establishing confidence intervals around corrected 

correlations had not been investigated when Forsyth (1971) was published.  Since then, 

Bobko (1983) used Talyor series expansion to develop standard error estimates, thus 

making confidence intervals possible for correlations corrected for both range restriction 

and attenuation.   

Bobko (1983) showed that although standard error increases for doubly corrected 

correlations (corrected for both range restriction and unreliability), “the proportionate 

increase in standard error is less than the gain in magnitude in correlation, thus, 
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confidence intervals for double corrected correlations, though wider, are narrower than 

one would expect from the increase in magnitude of the point estimates.”  Bobko’s 

development depends on large sample sizes and assumes the ratio of the “applicant to 

restricted variance is fixed and known” (Mendoza et al., 1991).  The criterion variance in 

the unrestricted applicant population is not known in the case of UPT applicants.  

Furthermore, due to changes in pilot production quotas reported by Weeks (1998), this 

unknown variance is most likely not constant.    

Bobko (1983) also demonstrated that estimates of double corrected correlations 

are negatively biased, which is “in direct contrast to the empirical conclusion of Lee et al. 

(1982).”  This follows from Bobko’s interpretation of the individual impacts of three 

multiplicative terms in the bias equation he presents.  Bias increases as criterion 

reliability decreases for the first term of the equation.  Bias increases as the selection ratio 

decreases for the second term.  Bias approaches zero as sample size (n) becomes 

sufficiently large for the last term.  The multiplicative effect of these terms is that the 

overall correction is expected to have a negative bias.  The reader is directed to Bobko 

(1983) for a proof that the double corrected correlation bias is negative.   

Mendoza et al. (1991) demonstrated a Bootstrap method for obtaining confidence 

intervals on the unrestricted population correlations from four simulated distributions.  

These distributions are normal, mixed, positively skewed, and negatively skewed.  

Mendoza et al. (1991) found positive results compared to other confidence interval 

building methods.  “The corrected correlation coefficient yielded accurate bootstrap 

intervals over the four distributions” (Mendoza et al., 1991).  Although population rho 
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(correlation) had little affect on confidence interval accuracy, small population rho (R = 

0.1) coupled with small sample size affected stability (Mendoza et al., 1991).   

Mendoza’s (1991) bootstrap method for calculating a confidence interval around 

the unrestricted correlation requires only general assumptions, which makes it more 

applicable for selection studies with small to moderate sample sizes than Bobko’s (1983) 

Taylor series based method.  Mendoza et al. (1991) “found that the size of population rho 

(correlation) did not affect the accuracy of the confidence interval.”   

 
2.2.1.4  Multiple Correction Procedure 

 
Although Bobko (1983) & Greener & Osburn (1980) do not substantiate Lee’s et 

al. (1982) results, Lee et al. (1982) provided a discussion and comparison of two “double 

correction” methods, which correct for both range restriction and unreliability of the 

criterion.  Lee et al. (1982) cite Schmidt et al (1976) and Nunnally (1978) for suggesting 

“it would be inappropriate to correct for unreliability in both the criterion and the 

predictor.”  Bobko (1983) provide the following conclusions about double corrected 

correlations under the assumptions of underlying bivariate normality and adequate 

sample size.   

1.  Bias is inversely proportional to sample size.   
 
2.  Standard error is inversely proportional to the square root of the sample size.   
 
3.  Overall bias is negative.   
 

The first two properties listed here are also true of uncorrected correlations 

(Bobko, 1983).  The expressions for bias and the variance of the corrected correlation are 

inversely proportional to the square root of the criterion reliability and the selection ratio, 
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thus the corrected correlation is less accurate with smaller reliability and/or selection ratio 

(Bobko, 1983).  Confidence intervals can be reported for corrected correlations, which 

are narrower than one would expect from the increase in the point estimates (Bobko, 

1983).   Bobko & Rieck (1980) “have indicated that Taylor series approximations of 

single corrected correlations are precise if n is greater than 100.”  In a study on the 

validity of AFOQT test scores, Carretta & Ree (1993b) found that range restricted 

correlations further corrected for unreliability resulted in “trivial” changes.  Therefore, 

only the correction for range restriction is employed in this research. 

 
2.2.1.5 Sign Changes As A Result of Corrections 

 
Ree et al. (1994) discuss sign changes that they have witnessed in corrected 

correlations using Lawley’s multivariate formula.  They explain these sign changes by 

close examination of the Lawley (1943) multivariate correction, which assumes selection 

is based on p predictor scores available in the unrestricted population.  The correction 

involves estimation of a variance-covariance matrix that is divided into a 2 x 2 matrix of 

variance-covariance sub-matrices.  In the development, Ree et al. (1994) show that 

unknown variance-covariance sub-matrices can be estimated from distributional 

information estimated for the unrestricted population.  See Ree et al. (1994) for the full 

development of the Lawley (1943) multivariate correction. 

Held (1996) provided further explanations for the sign changes discussed by Ree 

et al. (1994).  Held states that under the assumption that all selector variables and the 

criterion are positively correlated, a negative to positive sign change in the corrected 

correlation is a “function of the inter-correlations of the selectors and criterion in the 

restricted data set, and cannot be viewed as an abnormal outcome.”  On the other hand, a 
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positive to negative sign change “may be a function of small and/or inadequate data set, 

and should be viewed as an unrealistic outcome” (Held, 1996). 

 
2.2.1.6  Arguments Against Corrected Correlations 

 
Damos (1996) is among the few authors who flatly reject correcting for range-

restricted correlations.  Although Damos points out some pertinent issues that are likely 

to combine with the range restriction phenomenon in causing correlation shrinkage in a 

sample, she does not provide evidence for her claim that “range restriction is a red 

herring.”  She seems to base her opinion on the fact that many corrected correlations are 

appreciably greater than the uncorrected correlations in the range-restricted sample.  

Although corrections resulting in overestimates of the population correlation are 

uncommon, they have been discussed in previous sections of this research.  Damos 

(1996) does not offer any of those results as evidence of her case. 

With that said, Damos points out several causes of low correlations in samples 

that are germane to the PCSM data available for this research.  Carretta, Ree, & others 

who have performed PCSM research have not addressed several of these.  The following 

examples cause greater concern for a researcher’s ability to find variables that are truly 

capable of effectively predicting pilot training success.  These include (1) sudden changes 

in pilot production quotas, (2) changes in pass/fail criteria and/or selection criteria as a 

result of changes in pilot production quotas, and (3) severe dichotomization of the criteria 

(Damos, 1996).     
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2.2.2  Reliability of Predictor Scores 

The extent to which a predictor score is unreliable affects the magnitude of the 

criterion/predictor correlation.  Reliability quantifies measurement error and ranges from 

zero to one.  Reliability of a predictor score defined as “the ratio of true variability to 

total variability” (Ree & Carretta, 2002).  Ree & Carretta (2002) state that false 

conclusions and interpretations can result from ignoring the consequences of using 

predictors with less than perfect reliability.   

Reliability plays a role in many common statistical techniques, which are 

discussed in Ree & Carretta (2002).  Any observed predictor score can be thought of as 

comprising the true score and uncorrelated error component.  The variance of the 

observed score can be represented as the sum of the true and error variances as 

 

errortrueobs
222 σσσ += ,   ( 2) 

 

where Ree & Carretta (2002) use the following definition of reliability when test/retest 

data are available:  
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Although the mean of a predictor or criterion score is not affected by unreliability, 

lower reliability implies that measurement error is higher, which causes increased 

observed variance (Ree & Carretta, 2002).  Since reliability affects observed score 

variance, it also affects hypothesis tests and confidence intervals involving a measure of 
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standard error, which is based on standard deviation of the measure.  The result is that 

tests are less sensitive and confidence intervals are wider, hence statistical power can be 

expected to decrease (Ree & Carretta, 2002).  Ree & Carretta (2002) feel that decreased 

statistical power and wider confidence intervals could lead to misinterpretations of what 

constructs are being measured. 

 Unreliability also causes concerns for accuracy of correlations.  “The 

magnitude of the correlation between variables is limited by their reliabilities” (Carretta 

& Ree, 2000a).  “According to classical test theory, the upper bound on the validity 

(correlation coefficient) is the square root of the reliability” (Stanley, 1971).  Lower 

reliabilities of two different measures of the same construct will cause the correlation 

between the scores from those measures to decrease (Ree & Carretta, 2002).  A well-

known formula that demonstrates the correlation between two variables as a function of 

the reliabilities of the two variables is cited by Ree & Carretta (2002) and is presented in 

Equation 4. 

( )'' yyxxCxy rrrr =     ( 4) 

 

Correlations can be corrected for unreliability by solving the above equation for 

rc, the true correlation, which results in Equation 5 (Ree & Carretta, 2002). 
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Carretta & Ree (1993b) corrected for unreliability in conjunction with correcting for 

range restriction in several studies.  Under hypothetical perfect reliability among three 

measures of a single construct and true correlation of 1.0 for any pair, partial correlation 

would be zero (Ree & Carretta, 2002).  Ree & Carretta (2002) show that unreliability of 

0.8 causes the partial correlation to increase to a moderate 0.44.   

For multiple regression, “the effect of the reliability is a function of reliability 

magnitudes and the true score correlations among the predictors” (Ree & Carretta, 2002).  

Again, there is no biasing effect on the regression coefficients, but “the effect of the 

unreliability of the variable being partialed out has a substantial effect on the partial 

regression coefficient of the other variable (in the two predictor case)” (Ree & Carretta, 

2002).  Hence, “the uncorrected regression weights are not dependable indicators of the 

importance of the independent variables” (Ree & Carretta, 2002).   

 Ree & Carretta (2002) state that standard error of estimate increases as a result of 

unreliability by   

( )( )



 −−=∆ xyxxxyyy rrrSE 2

'
2 11σ ,  ( 6) 

 

while the standard deviation of the predicted criterion decreases by  

 

( ) yxxy r σσ ∗−−=∆ '
211 ,   ( 7) 

 

and validity coefficients are reduced as a result of unreliability by  
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( ) xyxxxy rrr ∗−=∆ '
21     ( 8)   

 

In factor analysis, unreliability reduces factor loadings (Carretta & Ree, 2000a).  

This leads to erroneous conclusions about construct interpretation (Carretta & Ree, 

2000a).  As reliability improves, factor loadings can be interpreted more directly. Carretta 

& Ree (2000a) state that factor loadings can be corrected for unreliability.  To do so “the 

underestimation can be corrected by dividing the factor loading by the reliability” 

(Carretta & Ree, 2000a).  No test/retest data is available in this research; however, 

variable communalities can be used as lower bound estimates of the reliabilities (Ree & 

Carretta, 2002).   

These issues are considered as part of the analysis, but the corrections discussed 

above are not applied.  This decision is based on the lack of significant results found by 

Carretta (1994) and Carretta & Ree (1993b) after correcting for unreliability.  In terms of 

validating the current PCSM model via stepwise multiple linear regression, the 

significant variables must be considered in light of these artifacts.  However, the actual 

regression coefficients are not the focus of the analysis.  In terms of updating the 

regression weights for the current PCSM model, no variable selection is performed.  

Further, no information available suggests that the current PCSM regression weights have 

been corrected for unreliability.   

Ree & Carretta (2002) also suggest the use of “latent variable analyses” such as 

confirmatory factor analysis to “eliminate or substantially reduce the unreliability of the 

variables is a another worthwhile approach.”  In this research, factor analysis is used in 

this confirmatory sense as part of the PCSM validation.  Despite any underlying affects 
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caused by predictor unreliability, varimax rotated factor loadings provided for a very 

straightforward construct interpretation relative to the current PCSM inputs. 

 
2.2.3  Dichotomization of Criteria 

In general, Cohen (1993) prefers the use of continuous criteria whenever possible.  

Cohen (1983) cites Cohen & Cohen (1983) for arguing against needless dichotomization 

of a criterion because “it results in underestimating effect sizes and reducing the power of 

statistical hypothesis test.”  Dichotomization has its roots in what is known as “broad” or 

“coarse” grouping of continuous variables as a method of simplifying statistical 

calculations (Cohen, 1983).  In Cohen’s view, the advent of the modern computer makes 

such data simplification unnecessary.   

Cohen (1983) specifically discusses the case of a bivariate normal population 

where variable X predicts criterion Y.  Dichotomization of the predictor variable at the 

mean, reduces the proportion of criterion variance accounted for by the dichotomized 

predictor variable to 64% of that accounted for by the undichotomized predictor variable 

(Cohen, 1983).  The situation worsens as the point of dichotomization moves away from 

the mean.  This results in reduced product-moment correlation and smaller test values, 

which obviously affect associated statistical tests (Cohen, 1983).  With dichotomization 

being performed at or near the mean, large sample sizes can still detect significance with 

test values at approximately three-fifths to three-quarters as large as they should be 

without dichotomization (Cohen, 1983).  However, sample size in no substitute for severe 

dichotomization. 

In this research, the criterion is dichotomized.  Unfortunately, there is no 

convenient way to create a continuous variable for the binary pass/fail criterion available 
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in this research.  Carretta & Ree (1993) attempted to overcome this problem by creating a 

rank index based on actual UPT performance averages for those identified as successful.  

For eliminees, a ranking index based on the total number of flying hours completed prior 

to failure was fabricated such that the highest failure had a ranking index lower than the 

worst graduate.  This provided a continuous looking criterion to use in a linear regression.  

Unfortunately, the number of flying hours completed is not available in this research; 

therefore, there exist no method for ranking failures.  However, Carretta & Ree (1993b) 

found a correlation of 0.98 between the predicted outcomes for the binary pass/fail 

criterion and the ranking index criterion.  In essence, the creation of a more continuous 

criterion had little effect on the actual predictions when the criterion was dichotomized 

on a data set.  The data used in this research is similar in content to the data used in 

Carretta & Ree (1993b).   

 
2.2.4  Subgroup Effects 

Group effects may occur when multiple groups (i.e. sex or race) are represented 

within a sample.  Validation of predictors is often based on correlation and regression.  It 

is possible that the correlations between the individual groups and the criterion differ 

from the correlation between the combined group and the criterion.  When this occurs, 

the regression equation based on the combined group can lead to inaccurate conclusions 

regarding the validity of the predictor for all groups represented in the sample (Ree & 

Carretta, 1999).  Ree & Carretta (1999) discuss possible scenarios and the resulting effect 

on the regression equation for the combined group.   

Ree & Carretta (1999) provide an example of “Simpson’s paradox” in which each 

sub-group has zero correlation with the criterion, but group mean differences on the 
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criterion produces a positive correlation between the combined group and the criterion.  

When two groups exist in a sample, the authors suggest a hierarchical linear models 

approach.  “Hierarchical analysis consists of a series of linear regression models that are 

tested to determine contributions of independent variables to prediction of the dependent 

variable”  (Ree & Carretta, 1999).  The series of tests allows the researcher to 

systematically investigate differences in regression slopes and intercepts of the individual 

groups and combined group models to determine if a final model with only one slope and 

one intercept based on the combined group is appropriate (Ree & Carretta, 1999).  To use 

a single model for prediction among the combined group is invalid when models for the 

subgroups result in significantly different parameters.   

For situations involving more than two groups (i.e. Race), Ree & Carretta (1999) 

suggest using Within and Between Analysis (WABA) and cite Dansereau et al. (1984) for 

providing a detailed discussion of WABA.  Race is not considered in the current PCSM 

model; therefore, race is not considered in this research.        

Carretta & Ree (1995) and Carretta (1997a, 1997b) investigated both sex and 

race/ethnic group differences between USAF officer and USAF pilot applicants.  

Factorial invariance is a term used to describe whether selection instruments measure the 

same factors for all groups (Carretta & Ree, 2000a).  In other words, factorial invariance 

implies that predictor scores load on the same factors in all subgroups.  If factorial 

invariance does not hold, misinterpretation of the constructs being measured may occur 

because the set of predictors used to define an underlying construct is subgroup 

dependent (Carretta & Ree, 2000a).   
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In a study of a large sample of USAF officer applicants, Carretta & Ree (1995) 

examined the factor structure of the AFOQT.  The study results showed “nearly identical 

structure of ability for sex and race/ethnic groups” (Carretta & Ree, 2000a).  Since all 

USAF pilots are officers, these results also apply to the USAF pilot applicant population 

of interest in this research.   In a study of USAF pilot applicants, Carretta (1997a) 

investigated the factor structure of the BAT in terms of sex.  Recall that the BAT 

provides 5 of 7 inputs into the PCSM model.  “Despite means score differences (among 

sex subgroups) on the tests, results indicated near identity of factor structure for men and 

women” (Carretta & Ree, 2000a).   

Once factorial invariance is demonstrated, the researcher should test for 

differences in mean scores among the sub-groups.  Carretta & Ree (2000a) cite several 

recent studies by Carretta (1997a, 1997b), in which mean score differences for the 

AFOQT and BAT among sex and race/ethnic groups where investigated for USAF 

officer applicants and pilot trainees.  For the AFOQT composite scores, a significant 

difference in mean scores were found for groups in terms of sex (male vs. female) and 

race/ethnicity (Whites vs. Blacks vs. Hispanics).  In both cases, the selection process is 

thought to be the cause of a reduction in the mean score differences in terms of standard 

deviation units (d) by > 50% (Carretta, 1997a).  For the BAT, mean score differences 

were reported for sex subgroups only, hence Carretta (1997b) was unable to report 

race/ethnic results.  Carretta & Ree (2000a) report that all mean score differences favored 

males and were statistically significant for the sample of USAF pilot applicants.  No 

change in standard deviation units (d) was reported for those selected for pilot training. 
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Differential validity occurs when tests do not measure the same constructs for 

different groups.  Referring to the wealth of literature available, Carretta & Ree (2000a) 

state “the cumulative evidence overwhelmingly demonstrates that differential validity is 

almost nonexistent for cognitive tests,” which accounts for the majority of PCSM input.  

Carretta’s (1997a) results confirm this lack of differential validity for the AFOQT.   

In summary, despite the presence of group mean score differences in terms of sex 

and race/ethnicity for USAF pilot trainees, factorial invariance holds and differential 

validity does not hold.  Both situations are favorable in terms of using factor analysis to 

explore and understand potential predictive scores.   

 
2.2.5  Weighting of Variables 

Weighting of variables refers to the linear combination coefficients derived by 

some optimization procedure such as regression.  “Two common weighting methods 

include unit weighting and criterion-based regression weighting” (Carretta & Ree, 

2000a).  Walters et al. (1993) cite criterion-based regression weighting as the norm in 

pilot selection (Carretta & Ree, 2000a).  Ree et al. (1998) showed that unit weights 

produced “nearly identical rank orders of candidates when compared with other 

weighting schemes.”  Carretta & Ree (1998 & 2000a) argue for using unit weighting 

whenever top-down selection is used.  According to Weeks’ (1998) policy capturing 

study for four sources of UPT candidates, top-down selection is the primary method of 

selecting pilots.  However, the situation is exacerbated by the fact that each selection 

source uses its own ranking system and PCSM is not the most significant factor for the 

ranking systems of the AFA and ROTC, who select the majority of all UPT candidates. 
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Although unit weighting has intuitive appeal for understanding the resulting 

composite, it provides for less intuitive means of comparing candidates, which is 

important in pilot selection.  Pilot candidates near the “cut-off” are compared before the 

final selections are made.  Neither a candidate’s rank order or unit weighted composite 

provide a normative scale for which to make a comparison (Ree et al., 1998).  Such a 

normative scale provides a means for making interpretations about the magnitude of the 

difference between two composite scores, which are important when comparing two 

applicants or when a data set spans multiple years.  While PCSM’s regression based 

weighting may be less intuitive than unit weights, the fact that its output has a 

probabilistic interpretation makes it ideal for comparing two candidates.  On the other 

hand, “simple and unit weights are not influenced by outliers in the data and cannot lead 

to shrinkage on cross application (cross-validation)” (Ree et al., 1998), a benefit not 

enjoyed by other regression-based methods.   

Ree et al. (1998) offer the conclusion that similarity in rank order between 

regression-based weights and unit weights could be explained by an average correlation 

(0.60) among the 10 Armed Services Vocational Aptitude Battery (ASVAB) measures 

used as predictors in that study of enlisted Air Force members.  It is certainly true that 

similarity in regression weights across job families caused similar rank order results (Ree 

et al., 1998).  To counter this problem, Ree et al. (1998) also employed random weights 

(1-9) in place of the regression weights.  The results were surprisingly similar to those 

rank orders found using unit weights and regression weights.   

These results demonstrate Wilks’ Theorem, which explains the “mathematical 

inevitability of the ubiquitous finding that unit weighting produces a composite that is 
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very highly correlated with composites weighted by any other method” (Ree et al., 1998).  

Inspection of Wilks’ approximation formula (Equation 9) for the expected correlation of 

two weighted linear composites reveals that the correlation is proportional to the average 

correlation among the predictor variables and the number of predictor variables.  In the 

Ree et al. (1998) example, the average correlation (r) among the 10 ASVAB scores was 

0.60.  The expected correlation is also dependent on the magnitude of the squared 

coefficients of variation (CV) (in brackets) of the two populations being compared.  In 

Ree’s et al. (1999) study, the CV’s were all near unity, thus essentially acted as a 

constant.   
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where the terms of order 1/K2 ... 1/Kn are dropped, (r) is the average correlation of the 

variables, K is the number of variables, v and w represent randomly drawn weight sets. 

Despite the simplicity of this consequence, viewing PCSM scores as a pseudo 

probabilistic inference of success plays a large role in operational implementation for this 

research.  The ability to interpret a PCSM score as a probability of success in pilot 

training must be maintained in order to meet the customer’s operational requirement.  

Therefore, unit weighting will not be used in this research.  

 
2.2.6  Misunderstanding Constructs 

 Constructs are abstractions of abilities that researchers seek to measure.  Once a 

construct is identified, the researcher seeks to find measures that have construct validity.  

One example of a construct germane to this research is that of Officership.  Weeks (1998) 
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found measures of Officership to be significant in the AFA and ROTC pilot selection 

processes; however, the validity of the Officership measure used at ROTC was not found 

to be statistically significant (p > 0.05).  No significance test for the Cumulative Military 

Performance (CMP) measure used at the AFA was reported by Weeks (1998).  Other 

constructs commonly used in military applications include intelligence, leadership ability, 

or situational awareness.  Constructs are not observed directly, but are inferred (Carretta 

& Ree, 2000a).  What a predictor appears to measure is not necessarily what it actually 

measures.  Without studying construct validity formally, many researchers make 

erroneous assumptions about what is being measured by tests (Carretta & Ree, 2000a).   

 The factor structure and validity of the AFOQT and BAT tests has been formally 

investigated in several studies (Carretta, 1997, Carretta & Ree, 1994, 1995a, 1995b, 

1996).  Specifically, the AFOQT and BAT tend to be “g-loaded” on the general cognitive 

ability construct (Carretta, 1997, Carretta & Ree, 1995b, 1996, Ree & Carretta, 1995, 

Olea & Ree, 1994).  “A long history of research findings has demonstrated g to be the 

most valid predictor of academic performance, job performance, and for numerous other 

human characteristics” (Carretta & Ree, 2000a).  However, there are those who place less 

confidence in g as a predictor of ability (Bauer, 2003b). 

In a study by Wheeler & Ree (1997), “results indicated that the validity of the 

BAT psychomotor tests comes from their measurement of a general psychomotor factor 

and g” (Carretta & Ree, 2000a).  Olea & Ree (1994) studied the validity of general 

cognitive ability and special abilities (spatial or perceptual) to predict several pilot criteria 

including academic training performance and flying work samples.  Olea & Ree (1994) 

used AFOQT scores to estimate the predictors.  Again, g was found to be most significant 
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with specific abilities being incrementally valid to g (Olea & Ree, 1994).  Ree & Carretta 

(1998) found very high correlation (near 1.0) between verbal and quantitative scores on 

the AFOQT and Scholastic Aptitude Test (SAT), respectively.  This confirms that these 

AFOQT scores capture the same construct as the SAT composites, which are accepted 

measures of general cognitive ability, g.   

Carretta & Ree (2000a) hypothesize that the incremental validity of specific 

abilities over the AFOQT pilot composite was due to specific aviation related job 

knowledge “rather than specific abilities such as spatial or perceptual ability.”  Carretta & 

Ree (2000a) summarize by stating, “research results point to g as the most important 

underlying construct in the prediction of pilot training success.”       

Jones & Ree (1998) found that “job ability differences did not moderate the 

relationship between the amount of g measured by a test and its score validity.  This 

study was accomplished both across and within a range of job families requiring 

differential job skills (Jones & Ree, 1998).  Dissimilar results do exist.  Carretta & Ree 

(2000a) reported on a survey of several meta-analyses, which showed “measures of 

cognitive ability and personality were less valid.”  They concluded that these results 

could be expected because such measures are “mainstays in military pilot selection 

procedures, thus leading to restriction of range on these constructs.”  Carretta & Ree 

(2000a) cite Jensen (1998) for a complete presentation and discussion of general 

cognitive ability.     

Carretta & Ree (1996) performed a confirmatory factor analysis (CFA), which 

“found that the AFOQT displays a hierarchical nature similar to other multiple aptitude 

test batteries.”  The higher-order factor found in this CFA was identified as general 
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cognitive ability (g), which accounted for 67% of the common variance with all 16 

AFOQT sub-tests contributing to the measurement of g (Carretta & Ree, 1996).  These 16 

sub-tests are then used to create the 5 AFOQT composites discussed in Section 2.3.1.     

As noted throughout this section, the factor structure of the AFOQT & BAT 

scores currently used in the PCSM model has been studied by Carretta (1997), Carretta & 

Ree (1995b, 2000a), and Ree, Carretta, & Earles (1999a).  This research makes no 

attempt to further understand or define the factor structure or constructs measured by the 

AFOQT or BAT composites.  Factor analysis is only used for the purpose of validating 

the those predictors currently in the PCSM model. 

 
2.2.7  Misinterpretation of Factor Analytic Results 

 Factor analysis seeks to determine and explain unobservable sources of variation 

in a correlation matrix.  Factor analysis is often used to identify latent constructs being 

measured by inspecting the factor loadings of each predictor across a predetermined 

number of factors extracted via factor analysis.  This is normally done via eigenvalue 

analysis.  By grouping predictors with factor loadings that meet some threshold, normally 

0.50, it is possible to form an interpretation of what is being measured by each group of 

predictors.  Carretta & Ree (2000a) warn that the standard practice of factor rotation can 

cause misinterpretation due to a phenomenon known as the disappearing first factor.  

Carretta & Ree (2000a) suggests foregoing rotation or using a residualized hierarchical 

solution, such as that used in a CFA of the AFOQT (Carretta & Ree, 1996).   

 Residualized hierarchical analysis is a method that uses factor analysis to identify 

a single higher-order factor, which accounts for the most common variance among the 

predictors.  The common variance accounted for is generally referred to as communality 
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of the factor.  The remaining proportion of the variance is considered to be unique and 

can then be attributed to lower-order factors.  Carretta & Ree (2000a) cite Schmid, J., & 

Leiman, J.M. (1957) as a source of more detail on developing hierarchical factor 

solutions.    

 Not withstanding, rotation methods are well understood and routinely used in 

factor analysis as a method of redistributing factor loadings.  Factor rotation seeks to 

maximize the factor loadings of each predictor on a single factor, while minimizing the 

factor loadings of that predictor on all other factors.  Thus, interpretation of the 

underlying latent factors is made more apparent.  However, there does exist some reason 

for concern.  Rennie (1997) provides the following quote on the matter of the 

appropriateness of rotation from Pedhazur & Schmelkin’s (1991, p. 611) textbook, “What 

might be viewed as a meaningful rotation from one theoretical perspective may not be 

considered meaningful, even utterly inappropriate, from another.”  Rennie (1997) cites 

Hetzel (in press) by stating, “with varimax rotation, there is a tendency for the principal 

factor to disappear because the factor variance is redistributed.”  This redistribution is 

exactly what researchers who employ rotation methods rely on to make clear a plausible 

factor interpretation.  In terms of construct validation, the question for Rennie (1997) is 

not whether or not to rotate, but rather which rotation method best suites the researcher’s 

current application.  Rennie states, “rotation is used in almost all exploratory factor 

analysis studies.”   

In the present research, factor analysis is used in a confirmatory sense and as a 

data reduction technique.  Rather than make interpretations of the constructs being 

measured by the AFOAT and BAT tests, these tests become the identifier for their 
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construct.  Data reduction results from factor analysis are compared for both unrotated 

and varimax rotated factors.   The factor analysis performed in this research is used to 

confirm that the inputs of the current PCSM model are still valid at the construct level.  

No attempt to duplicate CFA work discussed in this section is made.  Therefore, no 

residualized hierarchical analysis is performed.   

 

2.2.8  Lack of Statistical Power 

Sackett & Wade (1983) demonstrated that statistical power is much better than 

Schmidt et al. (1976) suggest for the average size validity study (N = 68) when indirect 

range restriction occurs.  “Under indirect range restriction, the average validity study (N 

= 68) has a 75% chance of detecting validity if validity exists when a one-tailed test can 

be used” (Sackett & Wade, 1983).  Under direct range restriction, “their (Schmidt et al., 

1976) tables are appropriate (Sackett & Wade, 1983).  In this research, direct selection 

does not occur on any of the predictors available.  In fact, the indirect nature of the range 

restriction that occurs during the selection of UPT candidates in not understood because 

each selection source follows a unique selection process.  Therefore, the relaxed sample 

sizes reported by Sackett & Wade (1983) are applicable.  

The required sample size is a function of required statistical power, criterion 

reliability, and selection ratio for a given combination of experimental predictor validity, 

interpredictor correlation, and operational predictor validity (Sackett & Wade, 1983).  

Selection ratio is the proportion of the unrestricted population selected.  In their study 

involving common combinations of experimental and operational predictor validities and 

interpredictor correlation, Sackett & Wade (1983) found that the required sample size for 
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a required power of 0.90 ranged from only 32 to 312.  Training set sample sizes used in 

this research range from 282 to 6,310. 

 
2.2.9  Failure to Cross-Validate 

The squared cross-validity coefficient, Rc
2, is often used to estimate the predictive 

power of a sample regression equation for use in future samples from the population.  

Kennedy (1988) defines Rc
2 as the “squared correlation of the actual criterion values with 

the predicted values from the sample equation for the population of interest.”  Under 

typical social applications with moderate sample size, significant loss of information, due 

to cross-validation, causes inflation of the validity estimates after empirical model 

selection (Kennedy, 1988).  This effect is counter to the effects of range restriction, 

which causes the unrestricted correlation to be underestimated in the sample.  The effect 

is less dramatic with larger samples (Kennedy, 1988), such as those available in this 

research.  Kennedy also noted work by Hockings (1976), Rencher & Pun (1980), and 

Lerner & Games (1981) that supports this conclusion.   

Loss of information for model development due to holding-out part of the sample 

for validation results in a “shrinkage” of the true validity when the sample equation is 

applied to the population.  In a comparison of several estimators of Rc
2, Kennedy (1988) 

“demonstrated the accuracy of Stein’s formula for estimating the mean of the distribution 

of all possible cross-validated correlations from the population from which the sample 

was selected.”  Kennedy (1988) states, Stein’s Operator “could be expected to yield 

estimates as good as or better than cross-validation, or several other formula estimators.”  

Stein’s Operator is presented in Equation 10.  In a PCSM study, Carretta & Ree (1993b) 

employed Stein’s Operator on correlation coefficients corrected for range restriction.  In 
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this case, Stein’s Operator resulted in insignificant (no more than 0.002) reductions in the 

corrected correlations. 

N  2)p(N  1)p(N
) R(1  1)(N  2)(N  1)(N   2

2

−−−−
−+−−

=cR   ,   ( 10) 

 

where N is the sample size and p is the number of predictors in the model. 

 

2.3 Pilot Candidate Selection Process 

 

2.3.1  AFOQT Scores 

The Officer Training School (OTS) and Reserve Officer Training Corps have used 

the Air Force Officer Qualifying Test (AFOQT) to evaluate officer commission 

candidates since 1957 (Skinner & Ree, 1987).  “The Air Force Officer Qualifying Test is 

a paper-and-pencil multiple aptitude battery used to select civilian or prior service 

applicants for officer precommissioning training programs and to classify commissioned 

officers into aircrew specialties such as pilot or navigator” (Carretta & Ree, 1995).  The 

AFOQT is comprised of 16 individual tests that are designed to determine an applicant’s 

abilities in five different categories:  verbal, quantitative, pilot, navigator, and academic.  

A summary of the tests that make up the categories is provided in Table 2, followed by a 

description of the tests in each category as described by Carretta & Ree, 1995.  
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Table 3. Composition of AFOQT Composites (Carretta & Ree, 1995) 

   Composite   
 
Test 

 
Verbal

 
Quantitative

Academic 
Aptitude 

 
Pilot 

Navigator-
Technical 

Verbal Analogies X  X X  
Arithmetic Reasoning  X X  X 
Reading 
Comprehension 

X  X   

Data Interpretation  X X  X 
Word Knowledge X  X   
Math Knowledge  X X  X 
Mechanical 
Comprehension 

   X X 

Electrical Maze    X X 
Scale Reading    X X 
Instrument 
Comprehension 

   X  

Block Counting    X X 
Table Reading    X X 
Aviation Information    X  
Rotated Blocks     X 
General Science     X 
Hidden Figures     X 

  
 
 

• Verbal Category:  Verbal Analogies measures the ability to reason and 
recognize relationship between words.  Reading Comprehension assesses the 
ability to read and comprehend paragraphs. Word Knowledge provides a 
measure of the ability to understand written language through the use of 
synonyms. 

• Quantitative Category:   Arithmetic Reasoning measures the ability to 
understand arithmetic relationships expressed as word problems. Data 
Interpretation measures the ability to interpret data from graphs and charts.  
Math Knowledge measures the ability to use mathematical terms, formulas, 
and relationships. 

• Academic Aptitude Category:  The six tests that comprise the verbal and 
quantitative categories.  

• Pilot Category:  Verbal Analogies are described above.  Mechanical 
Comprehension assesses mechanical knowledge and understanding of 
mechanical functions.  Electrical Maze provides a measure of spatial ability 
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based on choice of a path through a maze.  Scale Reading measures the ability 
to read scales and dials.  Instrument Comprehension assesses the ability to 
determine aircraft attitude from illustrations of flight instruments.  Block 
Counting measures spatial ability through analysis of three-dimensional 
representations of a set of blocks.  Table Reading assesses the ability to 
extract information from tables quickly and accurately.  Aviation Information 
measures knowledge of general aviation concepts and terminology. 

• Navigator-Technical Category:  Arithmetic Reasoning, Data Interpretation, 
Math Knowledge, Mechanical Comprehension, Electrical Maze, Scale 
Reading, Block Counting, and Table Reading are all described above.  
Rotated Blocks measures spatial aptitude by requiring mental rotation and 
manipulation of objects.  General Science provides a measure of knowledge 
and understanding of scientific terms, concepts, principles, and instruments.  
Hidden Figures measures spatial ability by requiring the detection of simple 
figures embedded in complex drawings. 

 

2.3.2  BAT Scores 

The Basic Attributes Test (BAT) is a battery of tests administered to pilot candidates 

during the application process.  The BAT is designed to measure a candidate’s 

psychomotor skills, information processing, and an activity interest survey.  Studies by 

Carretta (1989, 1990, 1992a) have validated its use in pilot selection.  The test is 

administered with an alphanumeric keypad, monochrome computer monitor, and two 

joysticks at Air Force specified test facilities.  The BAT is comprised of five tests 

including Two-Hand Coordination (psychomotor), Complex Coordination 

(psychomotor), Item Recognition (information processing), Time Sharing (psychomotor), 

and Activities Interest Inventory (attitudes) (AETC 1998).  AETC’s (1998) description of 

each test follows: 

• Two-Hand Coordination is a pursuit tracking task (Fleishman, 1964).  An 
airplane (target) moves in a fixed, elliptical pattern at a varying rate.  The 
participant controls the horizontal and vertical movement of a “gun sight” 
using the right and left control sticks.  The participant’s task is to keep the gun 
sight on the target.  The scores are summed horizontal (PS8X1) and vertical 
(PS8Y1) tracking distance error.  These scores are then transformed to provide 
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a single, continuous two-hand coordination score that ranges from 0 to 25549 
with lower being better.  

• Complex Coordination measures multi-limb coordination (Fleishman, 1964).  
Using a dual-axis right control stick, participants are required to keep a 1-inch 
cross-centered on a dotted line cross that bisects the screen horizontally and 
vertically.  Simultaneously, using the left single-axis control stick, participants 
have to keep a 1” vertical bar horizontally centered at the base of the screen 
(i.e. rudder).  The scores are horizontal (PS8X2), vertical (PS8Y2), and rudder 
(PS8Z2) tracking error.  Each of these continuous scores ranges from 0 to 
72000 with lower being better. 

• Item Recognition measures short-term memory and is based on a task 
proposed by Sternberg (1966).  A string of 1 to 6 digits is presented on the 
screen.  The digit string is then removed and, after a brief delay, replaced by a 
single digit.  The participant’s task is to remember the digit string and indicate 
whether the single digit was one of those presented in the digit string.  Item 
recognition results in 2 variables; ITMR and ITMP.  ITMR is a continuous 
score that ranges from 0 to 2742.8 with lower being better while ITMP is a 
continuous variable ranging from 0 to 100 with higher being better. 

• Time Sharing measures the ability to perform 2 dissimilar tasks at the same 
time (i.e. time sharing ability; North & Gopher, 1976).  In the first 10 minutes 
of the test, the participant is required to keep a randomly moving gun sight on 
an airplane (the target) using the right-handed control stick.  In the next 6 
minutes, the participant has to perform the tracking while simultaneously 
canceling digits that appear at random intervals and locations on the screen.  
Digit cancellation is timed and consists of pressing the same digit on the 
numeric keypad.  The final 3 minutes of the test involve tracking only.  
Tracking difficulty is varied by increasing or decreasing the control stick 
sensitivity as a function of tracking error.  The reported score is called TMSD.   
TMSD is a continuous value that ranges from 0 to 341.33 with higher being 
better. 

• Activities Interest Inventory provides two scores, which cannot be elaborated 
upon due to issues related to test compromise.  The two scores are AIAR and 
AIAP.  AIAR is a continuous value that ranges from 0 to 9322.9, with lower 
being better, while AIAP is a discrete value that ranges from 0 to 98.77. 

 

2.3.3  Pilot Selection Processes Across Pilot Sources 

There are seven points of entry to U.S. Air Force pilot training.  These include the 

Air Force Academy (AFA), Reserve Officer Training Corps (ROTC), Officer Training 
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School (OTS), Active Duty (AD), Air National Guard (ANG), AF Reserves, and 

international sources (Weeks, 1998).  Weeks (1998) performed a comprehensive pilot 

selection policy capturing study for four of seven points of entry, which accounted for 

65% of the pilots selected for training in that data set.  The sources included in the study 

where AFA, ROTC, OTS, and AD.  In this study, Weeks provides a detailed review of 

the selection process at each of the four sources.  Weeks (1998) states that all selection 

boards perform rank lists of pilot candidates and apply a cut-off dependent on the current 

production requirement.  The entire pilot selection process, as described by Weeks 

(1998), is summarized graphically in Figure 2. 

For analyzing the AFA, OTS, Active Duty (non-rated officers & navigators 

separately) selection policies, Weeks (1998) defines the significance a variable has on the 

selection process by defining an average sensitivity for each variable in a resultant model.  

Sensitivity is defined by Weeks (1998) “as the percentage change in average board rating 

given a 10% change in the selection variable.”  For example, cumulative military 

performance (CMP) average had an average sensitivity of 4.78% in the AFA model.  This 

implies that a 10% increase in CMP average resulted in a 4.78% increase in average 

board rating.  Weeks (1998) found that PCSM score is the most significant predictor only 

for the Active Duty applicant selection process; however, Pugh (2003) indicates that this 

is no longer the case.  The results found by Weeks (1998) are presented in Table 4.  
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AF Academy 

ROTC 

OTS 

Active Duty 

Cum Mil Perform 
(Officership 
Construct) 
GPA 
Flight Screening

Rel Standing Score*
(Officership 
Construct) 
GPA 
PFT 
AFOQT (Verbal & 
Quant) 

GPA 
PCSM 
Recommendations 

Non-Rated: PCSM
Nav’s: PCSM 
AFOQT (Quant) 
Recommendations 

Selected Pilot 
Candidates 
From All  
Sources 

Selection Processes are Source Dependent

PASS 

FAIL 

 

Figure 2.  Pilot Selection Processes By Selection Source 

 

For the AFA, OTS, and AD, Weeks (1998) had develop a model, which estimates 

these selection processes by investigating all known inputs available to the selection 

boards.  On the other hand, the ROTC selection process is known and defined by an 

equation, which determines each ROTC applicant’s Categorization Order of Merit 

(COM).  Since the COM equation is known, Weeks needed only to identify which 

predictor variables used in calculating COM are significant.  For the year studied, 1995, 

Weeks (1998) found 5 predictors to be significant; Relative Standing Score (RSS), GPA, 

PFT, AFOQT Verbal, and AFOQT Quantitative.  Significance is defined by Weeks 

(1998) as the percentage of COM score range accounted for by each predictor.  For 

example, RSS accounted for 47.8% of the COM score range.  The other four significant 
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variables for the ROTC selection process and respective percentage of COM score range 

are presented in Table 4. 

 

Table 4.  Summary of Weeks (1998) Policy Capturing Study 

AFA OTS AD Non-Rated AD Navigator ROTC* 

CMP 4.78% GPA 1.91% PCSM 2.09% PCSM 1.85% RSS 47.8% 

GPA 3.21 PCSM 1.10% 2Lt Rank -
0.07% 

AFOQT 
Quant. 0.96% GPA 19.8% 

Flight 
Screening 
Performance 

1.40% 
# 
Recommend 
Letters 

0.43% 
Positive 
Endorser 
Recommend 

0.05% 
Positive 
Endorser 
Recommend 

0.77% PFT 11.5% 

Athletic 
Participation 0.07% Interviewer 

Comments 0.42% Engineer or 
Math Degree 0.04% 

Positive 
Commander 
Recommend 

0.33% AFOQT 
Verbal 11.5% 

Military 
Cmdr 
Position 

0.04% # Traffic 
Violations 

-
0.18% 

Master’s 
Degree 0.03%   AFOQT 

Quant. 9.4% 

Lower Mil. 
Position 
Held 

-
0.03% 

Possess 
Bachelor of 
Arts Degree 

-
0.01% 

Flying 
Instrument 
Rating 

0.02%   
* Percentage for 
ROTC are % of 
COM Score Range 

 

 

The main results of the Weeks study are two fold.  First, although the AFA and 

ROTC combined to provide 54% of pilots selected for training at that time of the study, 

measures of ability are not the most significant selection criteria for either source (Weeks, 

1998).  Weeks (1998) found that the AFA selection process is dominated by two factors, 

Cumulative Military Performance (Officership) and Cumulative Academic Average (see 

Table 4).  ROTC selection is dominated by a measure called Relative Standing Score 

(RSS), which is an “Officership” score adjusted to account for differences in class size 

across all ROTC detachments (Weeks, 1998).  Second, Weeks (1998) showed that 

correlation (validity) between ROTC’s RSS and the pass/fail criterion was 0.01 (p > 0.05, 

N= 469), while the AFOQT Pilot composite had a validity of 0.14 (p < 0.01, N= 469).  In 
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the current data, AFOQT Pilot has a correlation of 0.18 with the binary criterion.  

Correcting for range restriction increases the correlation to 0.21.  Weeks (1998) 

concluded that although validity of the AFOQT Pilot composite was lower than in 

previous studies, it is still a much better predictor of UPT performance than measures of 

Officership.  These results “indicates little or no relationship between Officership (as 

measured by ROTC via RSS) and pilot training attrition.”   

Despite Weeks (1998) findings coupled with the fact that PCSM has been shown 

to be a valid predictor of pilot training success in several studies (Carretta, 1992a, 1992b, 

2000), the AFA and ROTC have yet to implement PCSM scores as significant factors in 

their respective selection processes.  AETC Studies and Analysis Squadron, the sponsor 

of this research, promotes the increased use of PCSM in the pilot selection processes.  To 

date, ROTC uses PCSM minimally, while the AFA has yet to implement PCSM scores 

(Pugh, 2003). 

 The AFOQT pilot composite and PCSM score have both been shown to be valid 

predictors of pilot training attrition (Weeks, 1998).  Carretta & Ree (1992) showed that 

measures of ability are valid predictors of pilot training performance.  Weeks (1998) 

found that the “AFA and ROTC pilot candidate ability levels are lower on the average 

than what they would be if selection policies assigned equal importance to Officership 

and ability.”  Although measures of Officership have not been shown to be valid 

predictors of pilot training performance, Weeks realizes the importance of leadership and 

responsibility in a military setting (Weeks, 1998).  Therefore, Weeks (1998) suggests a 

balance between measures of Officership and ability in pilot selection, rather than 

selection based on measures of Officership that currently exists at the AFA and ROTC. 
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Given the results of the Weeks (1998) study, Carretta (2000) recommends 

implementation of a minimum qualifying PCSM score and then applying the “whole-

person” concept to make final selections.  Carretta (2000) noted that applying minimum 

qualifying PCSM scores of 25 or 50 to the 1,268 pilot trainees who successfully 

completed T-37 training as of Fall1998, increased T-37 graduation rates from 80.1% to 

84.5% and 89.3%, respectively.  If those not meeting the minimum PCSM standards are 

replaced by applicants who do, one could expect an increase in graduation rates.  

Currently, no minimum PCSM score is required for pilot training selection.  There are 

however, minimum qualifying AFOQT standards for UPT applicants (Weeks, 1998).   

For the current data set, Figure 3 presents the number of selections by PCSM 

score quartiles and source of selection (ROTC, OTS, AD, other).  In Figure 4, failures 

due to training deficiency (FTD) are captured by source within each PCSM score 

quartile.  Although AFA representation is too small in the current data to make realistic 

statements about the AFA selection process, one can see that the distribution of ROTC 

selections across the PCSM score range is different than the other sources.  Specifically, 

the majority of passes selected by ROTC have PCSM scores less than 50.  The smallest 

selected proportion of ROTC passes have PCSM scores greater than 75.  Likewise, the 

failures selected by ROTC are more prevalent at the lower PCSM scores.  This 

demonstrates the fact that PCSM is not a significant factor in the ROTC selection 

process. 
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Figure 3.  UPT Passes by Source 

 

FTDs By Source

35

10
10

5

60

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-25 26-50 51-75 76-99 Totals

PCSM Quantiles & Total FTDs

AFA-F ROTC-F OTS-F AD-F ANGAFR-F Other-F
 

Figure 4.  Failures Due to Training Deficiency by Source 
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2.4  Air Force and Navy Pilot Selection Model Validation Studies 

 

2.4.1  PCSM Validation Studies 

Pilot Selection Methods (Carretta & Ree, 2000a) summarizes the history of 

military and commercial pilot selection programs, addresses “pitfalls” in ability research, 

and reviews recent validation studies on AFOQT and BAT tests.  Pitfalls of ability 

research were discussed in section 2.2.  Validation studies performed for the PCSM 

model are discussed here.  Carretta and Ree (2000a) include mission-readiness, 

operational tempo demands, retention issues, training costs, and safety among the reasons 

for sustaining a formal, scientifically based pilot selection program.  As cited earlier, the 

cost of pilot training is quite expensive; therefore, pilot candidate attrition is of utmost 

importance for both military and commercial flying organizations.  Reducing attrition 

rates through optimal selection decisions can “reduce training cost, improve job 

performance, and enhance organizational effectiveness” (Carretta & Ree, 2000a).   

In order to ensure the maximal probability of success for each pilot applicant 

selected, it is necessary to make selections based on predictors known to have predictive 

power much greater than a naive or random type of selection.  Formal validation of 

predictors also ensures that selection is not based on predictors that are negatively 

correlated with the criterion, which could introduce the possibility of test compromise by 

encouraging poor performance on some tests.  Carretta & Ree (2000a) consider validity 

to be “the most fundamental testing and selection issue” (Carretta & Ree, 2000a).    

Carretta & Ree (1994) performed a validity study on the predictors incorporated 

in PCSM.  “Regression analysis was used to determine which variables provided the best 

prediction of two flying criteria: pass-fail flying training, and class rank at the end of 
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flying training” (Carretta & Ree, 1994).  The AFOQT “is a good measure of general 

intelligence (g)” (Carretta & Ree, 1994) and has “g-saturation” of 41% (Carretta & Ree, 

1995).  Recall that g is considered to be the best predictor of training performance by 

Carretta & Ree. 

Carretta & Ree’s (1994) validation study of the variables in the current PCSM 

model to determine which best predict training success found that “almost all variable 

types were statistically significant predictors of the criteria.”  This suggests that there are 

no unnecessary variables included in the current PCSM model.  However, results 

presented in section 4.3.4 suggest that only 3 of the 7 inputs may be significant in terms 

of PCSM performance.  Results in Section 4.3.4 contradict this suggestion.  The AFOQT 

Pilot composite is the single most predictive variable in the PCSM model.  Carretta & 

Ree (1994) also investigated the incremental validity of the BAT subtests (psychomotor, 

information processing, risk) and flying experience above that already accounted for by 

the AFOQT Pilot composite.  Flying experience was found to have the most incremental 

validity, while BAT information processing displayed the least (Carretta & Ree, 1994).   

Despite the potential for using flying experience to effectively screen applicants, 

Carretta & Ree (1994) caution against over-weighting flying experience because of the 

equally likely potential for screening out successful candidate’s due to “lack of income or 

opportunity to pursue flying training” on their own.  Furthermore, although “the influence 

of early flying skills on later flying skills is very strong for both sexes,” flying experience 

becomes less significant for predicting training success for later stages of UPT (Carretta 

& Ree, 1995, 2000a).  This suggests the advantage of entering training with previous 
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flying experience decreases as training progresses due to learning curve effects for 

students who enter UPT with little or no flying experience. 

Carretta & Ree (1995) revalidated AFOQT composites for validity in predicting 

pilot training performance using 7,563 men and women selected for pilot training, stating 

that “no studies have closely examined its validity for predicting pilot training 

performance since Miller (1966) investigated AFOQT composites.”  AFOQT “reflects a 

consensus among trainers, pilots, and researchers as to the important aptitudes for the 

prediction of pilot success” (Carretta & Ree, 1995).   

Carretta & Ree (1995) point out that Miller did not correct correlations for the 

effects of range restriction.  Carretta & Ree (1995) employed Lawley’s (1943) correction 

formula to correct for range restriction.  “The Lawley procedure estimates the 

correlations, variances, and means of both predictors and criteria as they would be found 

in the unrestricted population” (Carretta & Ree, 1995).  They also corrected for 

unreliability using communalities as computed in principal factor analysis as estimates of 

reliabilities.  Such communalities provide a lower bound estimate on reliabilities (Ree & 

Carretta, 2002); therefore the correction for unreliability would be based on a 

conservative estimate of the true reliability.  The study demonstrated that “on average, 

the restriction in range was such that the variances in the sample were about 68% of the 

population variance values” for the AFOQT composites (Carretta & Ree, 1995).  Carretta 

& Ree (1995) did not address whether Miller’s (1966) study selected a sub-optimal set of 

predictors as a result of using uncorrected correlations, which is the point of correcting 

correlations during model development.   
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In another study, Carretta & Ree (1994) show that range restriction due to pilot 

training selection caused 14 of the 16 variances for AFOQT subtests to “decrease on 

average to 70% of the applicant sample variance” used by Skinner & Ree (1987).  Each 

of the 16 separate AFOQT tests provided some form of predictive value in Carretta & 

Ree’s (1995) analysis, “which leads to the conclusion that the individual composite 

scores are valid predictors worthy of consideration in the current analysis” (Young, 

2002).  In short, Carretta & Ree’s (1995) study “show(s) that AFOQT is valid for the 

selection of pilots.”  Similar to Young (2002), this research considers all five AFOQT 

composites.  Given the presence of predictive value of all 16 AFOQT sub-tests, perhaps 

an investigation into the creation of a new PCSM specific composite of AFOQT sub-tests 

would yield a replacement for the Pilot composite. 

Carretta (1992b) found that “use of a training criterion based on flying 

performance data would not necessarily have resulted in a lower attrition rate than if the 

dichotomous UPT final outcome criterion was used.”   The data available for this 

research include several UPT performance measures.  Although a continuous UPT 

performance measure is not used as a criterion in this research, the data is available as a 

result of the data preparation process.  The data prepared for this research makes it 

possible for a future researcher to confirm Carretta’s (1992b) results.  In doing so, a 

composite similar to the RANKIND composite used by Carretta (1992b) could be 

tailored to account for the fact that no data on total flying hours completed is available in 

the current research data.   

Carretta (1992b) studied several rank composites with UPT eliminees included in 

the sample.  Carretta (1992b) also noted that the “criterion used in the regression had 
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little effect on the order ranking of the applicants once the predictors were held constant.”    

Due to the presence of skewness that is commonly seen in AFOQT and BAT scores (i.e. 

high sample means with low variation) among selected pilot training candidates, Carretta 

(1992b) also investigated regression on log-transformed data.  This resulted in “nearly 

identical results” (Carretta, 1992).  In short, regression on a composite of actual UPT 

performance scores as the criterion did not change the resulting rank order of pilot 

candidates vs. regression on a binary pass/fail criterion. 

In 1997, Carretta & Ree investigated high attrition rates among enlisted U.S. Air 

Force members in training for the job of weapons director.  They found the failing group 

did not lack in ability when compared to the passing group, in fact “there were no notable 

differences in ability between those who successfully completed training and those who 

failed to complete training for non-academic reasons” (Carretta & Ree, 1997).  Of 32 

failures, only 3 were for academic reasons.  The average score on the study’s general 

ability composite for these 3 failures is 55, which translates to a predicted training grade 

of 87; a passing grade.  Carretta & Ree (1997) suggest that when lack of ability cannot be 

identified as a cause for training failures, increasing ability standards will not reduce the 

attrition.  In this case, they noted that all 32 failures had been non-volunteered to 

weapons director training.  Hence, lack of motivation seemed to be the most likely cause 

of attrition.   

It is suspected that rather than opting for self-initiated elimination (SIE) from 

UPT, pilot candidates sometimes purposely fail graded flying-related measures.  

However, the current data set includes approximately equal numbers of FTD's and SIE's, 

which suggests that such actions are not as pervasive as some theorize.  General cognitive 
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ability, g, captured by the AFOQT pilot composite is the best predictor of pilot training 

success within the PCSM model; however, it is impossible to predict failures such as self-

elimination because they are not ability related.  No predictive model based on ability can 

account for a phenomenon such as lack of motivation or fear of flying.  At AETC’s 

request, the current research is conducted on a data set that includes FTD’s, SIE’s, and 

academic failures. 

Weeks (1998) theorized that attrition is a function of three factors; student quality, 

the ratio of production to training resources available to students, and training difficulty.  

McLaughlin (1996) hypothesized a relationship between attrition and production.  Weeks 

(1998) found the historical average attrition rate to decrease at times of low pilot 

production and increase in average attrition rate at times of high pilot production.  When 

production quotas increase, resources are generally not increased at all or at a 

proportionate level (Weeks, 1998).  This causes pilot training resources to become scarce, 

thus driving up the production to resources ratio.   

Although Weeks (1998) hypothesizes that training complexity is increasing, due 

to the complexity of modern cockpits and introduction of mission oriented training, a 

relationship between attrition and training complexity has yet to be shown.  Weeks 

(1998) states that the current de-emphasis of ability at AFA and ROTC may be 

combining with an increase in production to resource ratio, to increase attrition beyond 

what would be seen if more emphasis in selection was put on ability.  Further, Weeks 

(1998) predicts further increases in attrition if selection policy continues to focus on non-

ability measures.    
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The fact that Weeks (1998) found that attrition rate is associated with USAF pilot 

production quotas may imply that the standard by which the UPT pass/fail criterion is 

based is not constant.  Of course, other factors include possible changes in selection 

processes and quality of those selected in years of high production quotas.  Thus, the data 

includes records of UPT failures during years of higher pilot production, which may have 

been a pass in years of low production.  The opposite case is also likely, where passes in 

years of high production may not have been selected over failures selected in years of 

low production.  Furthermore, changes in production quotas cause changes in the 

distributions of predictive test scores for selected pilot candidates.  Surely, such artifacts 

in the data make discrimination more difficult, thus limiting the predictive power of the 

resultant models. 

 

2.4.2  Validation of Naval Aviation Tests 

Williams et al. (1999) performed a revalidation of the Aviation Selection Test 

Battery’s (ASTB) utility for predicting performance in naval aviation ground school and 

flight training grades. The ASTB is the Navy equivalent of the AFOQT.  The ASTB was 

originally introduced in 1942 and the current version dates back to 1992 (Williams et al., 

1999).  Despite not correcting sample correlations for range restriction, the results of the 

ASTB validation were positive.  Williams et al. (1999) provide the following description 

of the ASTB.  The ASTB consists of six paper-and-pencil sub-tests, which are used to 

generate three composites used in the naval pilot selection process.  All three have been 

validated to predict their intended criterion.  An academic qualification rating (AQR) 

predicts ground school performance.  A Pilot Flight Aptitude Rating (PFAR) predicts 

flight grades in primary flight training.  The Pilot Biographical Inventory (PBI) predicts 
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attrition through primary flight training.  Although Williams et al. (1999) found the 

ASTB to perform well at predicting ground school (academic) and flight training grades; 

it provided the ability to predict attrition “to a lesser extent”.  Hence, it appears that 

attrition is not only related to flying and academic abilities. 

Furthermore, Williams et al. found that a relatively new computer-based 

performance test (CBPT), similar in description to the BAT, shows promise as a tool for 

selection of U.S. naval aviators.  The CBPT has yet to be implemented in the naval pilot 

selection process (Williams et al., 1999).  Although, only a small sample (N=210) of data 

was available, CBPT performed well as a predictor (R2 = 0.33, p < 0.0001).  The sample 

(200 male, 10 female) volunteered to take the CBPT prior to beginning Aviation Pre-

flight Indoctrination (API).  The CBPT data provided incremental validity beyond that of 

using PFAR alone, by accounting for 17% of the primary flight grade variance in the 

sample (Williams et al., 1999).   See Williams et al. (1999) for a more detailed 

description of the CBPT and its 10 sub-tests.   

Although only 15% of those who take the ASTB are selected for naval aviator 

training, Williams et al. (1999) specifically chose not to correct correlations for range 

restriction in the revalidation study.  Despite this, Williams et al. found correlations of 

moderate magnitude.  These correlations were comparable to historical ASTB findings of 

Frank & Baisden (1993) and Hiatt et al (1997), which are cited by Williams et al. (1999). 

Damos (1996) also refrained from correcting for range restriction.  Damos found 

results similar to Williams et al. (1999) for a wide variety of aviation selection tests.  The 

merits of Damos’ argument against correcting for range restriction are considered in 

section 2.2.1.6.  Williams et al. (1999) did not consider CBPT tests requiring “rudder 
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pedals or more than one joystick” citing reliability, calibration, and quality control 

problems with more complicated psychomotor test batteries.    As a side note, the USAF 

BAT currently includes tests requiring more than one joystick and a new version of the 

BAT requiring the use of rudder pedals is nearing operational use (Pugh, 2003).  Despite 

the presence of possible unreliability in the BAT scores related to the EQPMOT input to 

PCSM, results of this research presented in chapter 4 suggest that EQPMOT or its 

component scores has been shown to be the most significant scores among the BAT sub-

tests. 

 
2.5  Current PCSM Database and T-37 Performance Data 

 The research sponsor, AETC/SAS, provides the data used in this research.  

Predictive & demographic data is contained in a PCSM database.  UPT performance data 

is contained in separate SSN and MASS databases.  The SSN database provides data on 

the actual UPT pass/fail outcome, while the MASS database provides UPT performance 

scores.  The data preparation process used to generate the consolidated data set used in 

this research is described in Section 3.3. 

 The current data set contains 3,343 records, 3,155 are passes and 188 failures.  

The data includes 3,086 males and 257 females.  Table 5 presents the breakout of passes 

and failures by selection source in the current data set.  Table 6 presents UPT outcome by 

sex.  Table 7 presents the number of each type of failure contained in the data set by sex.  

Figure 5 present the information of Table 7 as percentages of each failure type within 

each sex. 
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Table 5.  Pass/Fail Breakout by Source 

Source AFA ROTC OTS AD ANG/AFR Other Totals 

Passes 56 1385 428 575 658 53 3155 

Failures 0 134 8 24 21 1 188 

Total 56 1519 436 598 779 55 3343 

 

 

 

Table 6.  Breakout of UPT Outcome by Sex 

 Pass Fail Total 

Female 225 32 257 

Male 2930 156 3086 

Total 3155 188 3343 

 

 

 

Table 7.  Number and Type of UPT Failures by Sex 

Failure Type FTD Academic SIE Total 

Female 15 2 15 32 

Male 70 12 74 156 

Number of 
Failures 85 14 89 188 
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Figure 5.  Proportion of Failure Types by Sex 

  

 

2.6  Factor Analysis 

 Dillon & Goldstein (1984) describe factor analysis as a “data reduction technique 

for investigating interdependences.”  Dillon & Goldstein (1984) differentiates factor 

analysis methods from other data reduction methods such as principal component 

analysis by stating that factor analysis techniques “distinguish different types of 

variance,” rather than simply accounting for total variance.  In general, unobservable 

factors are associated with a set of observable variables, which represent a common or 

shared type of variation.  Factor analysis attempts to find links between seemingly 

unrelated variables to a common factor structure.  For the common factor-analytic model, 

“interest centers on that part of the total variance that is shared by the variables” (Dillon 

& Goldstein, 1984).   The variables “linked” together for each factor are then used to 

make interpretations about the latent structure underlying the data. 

 In exploratory factor analysis, the researcher seeks to investigate, interpret, and 

ultimately understand the factors underlying the data.  Linkages between observable 
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variables and unobservable factors are established via factor loadings.  Under certain 

circumstances, factor loadings represent the correlation between the variables and the 

factors (Dillon & Goldstein, 1984).  Confirmatory factor analysis, on the other hand, 

seeks to confirm or deny the hypothesized interpretation of the underlying factor 

structure.  In this case, the dominant factors are thought to be understood and represented 

by the variables used in the PCSM model.  For example, PCSM’s 7 inputs originate from 

3 primary sources; the AFOQT, the BAT, and flying experience.  This research uses 

factor analysis to confirm the linkages between these inputs and the most dominant 

underlying factors. 

 

2.7  Discriminant Analysis 

 Discriminant Analysis attempts to discriminate between two or more groups 

within a population.  This is done by deriving a discriminant function that when applied 

to independent predictors, classifies each exemplar as a member of one of the groups.  

The discriminant function is a linear combination of independent variables.  

Discrimination is accomplished by maximizing between-group variance relative to the 

within-group variance” (Dillon & Goldstein, 1984).  Once applied to an individual 

exemplar, the discriminant function assigns a score on the discriminant function line.  

This discriminant score is “essentially a weighted average of the exemplar’s values on a 

set of independent variables”  (Dillon & Goldstein, 1984).  After all exemplars are 

assigned a discriminant score, an a posteriori probability of the likelihood of belonging to 

each group can be derived for each score.  Deriving two distributions along the 

discriminant function line does this.  Figure 6 is a graphical representation of a two-group 

discriminant analysis from Dillon & Goldstein (1984).     
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Figure 6.  Graphical Illustration of Two-Group Discriminant Analysis 

 

2.7.1 Discriminant Analysis Methodology 

Discriminant Analysis is typically based on the assumption the data is 

multivariate normal and that the variance-covariance matrix of independent variables in 

each group is the same (Young 2002).  Fisher’s original derivation of the linear 

discriminant function did not specify any distributional assumptions (Dillon & Goldstein, 

1984).  Dillon & Goldstein (1984) provide a summary of work done to test the robustness 

of the linear discriminant function to departures from multivariate normality and equality 

of variance-covariance matrices.  Optimal results are obtained when these two 

assumptions hold; however, many studies have ignored the assumptions based on the fact 

that Fisher made no distributional assumptions (Dillon & Goldstein, 1984).   

Dillon & Goldstein (1984) caution that the linear discriminant function is not 

robust enough to ignore the two assumptions and give the following summary of their 
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findings in the literature.  They found that studies on the effects of unequal variance-

covariance structures indicate that the test for the equality of group mean vectors is 

adversely affected.  When multivariate normality is violated, “tests of significance and 

estimated classification error rates may be biased.”  Normality should be investigated if 

estimated error rates are greatly different for the groups in the population.  To test 

equality of covariance matrix for the two-group problem, the Box M method is used.  

Details concerning the development and implementation of the Box M method are 

available in SPSS’s online manual (SPSS 2002a).  A significant p-value for the Box M 

method implies that the variance-covariance matrices obtained for the two groups are not 

equal, thus rejecting the null hypothesis.  SPSS provides the option to use separate 

variance-covariance matrices in its discriminant analysis procedure.  Some caution the 

using the Box M test of equal covariance structure stating, “the multivariate Box M test is 

particularly sensitive to deviations from multivariate normality, and should not be taken 

too ‘seriously’. (StatSoft Inc., 2003).   

If equality of variance-covariance structure holds, then Fisher’s approach is 

applicable.  Fisher showed that Equation 11 gives the vector of discriminant weights (
^
b ), 

here Sp is the pooled sample covariance matrix shown in Equation 12 (Dillon & 

Goldstein, 1984).  Here ix  is the centroid of group xi and ni is the number of exemplars 

in the ith group. 

)2x1x(1
pS

^
b −⋅−=      ( 11) 
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The discriminant score for each individual is obtained via the linear combination 

of the value measured for the independent variables and the associated discriminant 

weights.  Discriminant scores are obtained via Y = 
^
b TX, where X is a p x n matrix of p 

predictors and n exemplars (Dillon & Goldstein, 1984).     

In the case of unequal variance-covariance structure, Dillon & Goldstein (1984) 

provide a discussion of the performance of a quadratic discriminant function developed 

by Smith (1947).  The reader is directed to this discussion for details concerning the use 

of quadratic discriminant function and it’s performance relative to Fisher’s linear 

discriminant function under the same conditions. 

One can test whether the between-group differences in average score profiles of 

the two groups are statistically significant.  This is can be accomplished via an F-test of 

the test statistic Z in Equation 13, where D2 is the Mahalanobis generalized distance 

(Dillon & Goldstein, 1984).  Dillon & Goldstein (1984) state that Z has an F-distribution 

with p and n1 + n2 –p –1 degrees of freedom if the hypothesis of equal means and a 

common variance-covariance matrix holds. 

 

2D
p2)2n1(n

1p2n1n

2n1n
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Classification of exemplars is done via a classification rule, which defines a cut-

off score on the discriminant function, Y.  If group sizes are equal, Y is generally defined 

as the midpoint between the average discriminant scores for each group.  If group sizes 

are unequal, a weighted cut-off score, Y*, will optimize classification error within the 

data set used to derive the discriminant function.  However, when the group 

representation is significantly disproportionate, this can result in all exemplars being 

classified as a member of the group represented by the larger group.  This defeats the 

purpose of classification, especially when the target group is the smaller group.  Equation 

14 gives the expression for a weighted cut-off score provided by Dillon & Goldstein 

(1984).  A graphic representation presented by Dillon & Goldstein (1984) and taken from 

Young (2002) in Figure 7 presents the placement of Y and Y*. 
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Figure 7.  Optimal cutting score with unequal sample sizes 
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Once all exemplars have been classified, it is desirable to estimate the 

classification error rate.  Common methods include apparent error rate (APER), holdout 

method, and cross-validation method.  If all exemplars are used in deriving the 

discriminant weights, APER “estimates are consistent but can be severely optimistically 

biased” (Dillon & Goldstein, 1984).  APER is an estimate of the combined rate of 

misclassification for both groups.  A confusion matrix makes calculating APER 

straightforward.  Table 8 presents a confusion matrix and Equation 15 presents the APER 

equation.     

 

Table 8.  Confusion Matrix 
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The holdout method allows for validation by simply splitting the exemplars into 

two randomly chosen groups of predetermined sizes (i.e., 2/3 and 1/3).  The larger group 

is used to determine the discriminant weights, which are then applied to the smaller 

holdout group.  This gives a better estimate of how the discriminant function will perform 

in the population because the holdout group has not been introduced to the model during 
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development of the discriminant weights.  In this research, the previously discussed 

“TEST” set is the holdout group.   

Cross-validation is accomplished by holding out the ith exemplar and determining 

a discriminant function based on the N-1 remaining exemplars.  The held out ith exemplar 

is then classified as in the holdout procedure.  This process is repeated for all i = 1 ... N 

exemplars.  APER is then calculated based on the resulting classification of the single 

holdout exemplar across the N iterations of the cross-validations process.  Most statistical 

applications provide this type of cross-validation as an option. 

 

2.7.2 Stepwise Discriminant Analysis 

Stepwise Discriminant analysis is commonly used when there are many predictors 

available for use in determining group classification (Dillon & Goldstein, 1984).  The use 

of partial F-values and probability of F-value are common methods determining the most 

important predictors for discriminating between groups.  A partial F-value is conditioned 

on only those predictors present in the discriminant function at the present step, and not 

the entire set of  p - 1 predictors as in the nominal sense of an F-value (Dillon & 

Goldstein, 1984).   

The stepwise discriminant analysis process is similar to stepwise multiple 

regression analysis as presented by Dillon & Goldstein (1984) in chapter 6 of that text.  

The following process reflects Dillon & Goldstein’s (1984) summary of how to conduct 

stepwise discriminant analysis.    

1. First, single predictor F-values are computed, treating each variable as 
though it were the only predictor available. 
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2. The predictor with the largest F-value is then chosen to enter the 
discriminant function. 

3. Successive steps add (or delete) new predictors on the basis of their 
computed F-values conditioned on those predictors already made part of 
the system. 

 

Dillon & Goldstein (1984) also note that recent work suggests “liberal α-levels” 

for F-to-enter values.  It is suggested to use 0.10 < α < 0.25, rather than conventional 

levels of  α < 0.10.  Furthermore, Dillon & Goldstein (1984) states that stepwise 

discriminant analysis suffers from the same problems discussed for multiple regression 

analysis in chapter 6 of their text.  The two main issues reported by Dillon & Goldstein 

are the affects of multicollinearity that results from including strongly correlated 

predictors and the fact that partial F-values are such that the F-distribution does not 

strictly apply.  Refer to pages 240-242 of the Dillon & Goldstein (1984) text for a more 

complete discussion. 

Dillon & Goldstein (1984) also present a method of canonical discriminant 

analysis.  In some cases, this method is preferred over Fisher’s linear discriminant 

functions.  The coefficients for both Fisher’s linear discriminant functions and canonical 

discriminant function coefficients are available for each discriminant model developed in 

this research from AETC/SAS. 

 

2.7.3 Arguments Against Stepwise Methodology 

 Whitaker (1997) provides a detailed review of some of the written commentary of 

several researchers who “sharply criticized” the use of stepwise methodologies and 

provides alternative suggestions.  Several researchers are cited for their support of 
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multiple linear regression as superior to discriminant analysis in most situations.  

Specifically, Whitaker (1997) cites Kerlinger (1986) and Thompson’s (1994) criticism of 

transforming a continuous criterion into a dichotomous criterion in order to use 

discriminant analysis because of the valuable variance information that is “squandered.”  

Whitaker cites Thompson (1989, p. 166) as stating the “it has not been shown that 

package stepwise results are relevant for a predictive discriminant analysis,” where group 

classification is the point of the analysis.  This is pertinent as group classification is 

exactly what is intended in the current research. 

 Whitaker (1997) cites multiple researchers who have “challenged traditional 

interpretations of statistical significance.”  It is argued that popular statistical packages 

use incorrect degrees of freedom in statistical tests built into computer programs that do 

discriminant analyses (Whitaker, 1997).  Secondly, sampling error can represent the only 

differences in predictors.  Thus, stepwise procedures can erroneously capitalize on these 

differences in sampling error.  Likewise, “otherwise worthy variables are often excluded 

from the analysis altogether and assumed to have no explanatory or predictive potential” 

(Whitaker, 1997).  Finally, due to the previous two problems, it is argued that the 

stepwise methodology often fails to select the best subset of variables.  Whitaker suggests 

correcting computer generated F statistics by hand and conducting the “all-possible-

subsets” approach to determining the best sub-set of variables to overcome the above 

mentioned problems.      
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2.8  Logistic Regression 

Logistic regression is used as on of the means of updating the regression weights 

of the current PCSM model.  Currently, PCSM is based on a linear regression that is 

transformed to in a logistic sense by way of applying a discrete sigmoid function 

approximation to the linear regression output.  Logistic discrimination can be used in 

situations where measurements have been collected on both quantitative and qualitative 

predictors.  If multivariate normality and common variance-covariance structure holds, 

posterior probabilities of membership in the ith group conditioned on the current exemplar 

can be expressed as follows in the multivariate logistic function (Dillon & Goldstein, 

1984): 

x)Tβ0exp(β1

1x)|2P(G

x)|iP(Gx)Tβ0exp(βx)|1P(G

++
=

⋅+=

  ( 16) 

 

where β are the logistic regression coefficients.  A logistic model is distinct from a linear 

regression model in that the outcome is dichotomous.  When the logistic distribution is 

used, a common notation for the conditional mean of the criterion given a predictor score 

is given in Equation 17.    

x)1β0exp(β1
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x)|E(YΠ(x)
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The logit transformation of Π(x) is central to the study of logistic regression 

because it “has many of the desirable properties of a linear regression model” (Hosmer & 

Lemeshow, 1989).  Specifically, the logit, g(x) is linear in its parameters.  Another 

critical difference between linear and logistic regression is that the error term in logistic 

regression will take on one of two possibilities due to the dichotomous nature of the 

logistic output.  The two possibilities are presented in Equation 18.  

 

π(x)1w.p.π(x)ε0y

.π(x)w.p.π(x)1ε1y

−−=⇒=

−=⇒=
   ( 18) 

 

Hosmer & Lemeshow (1989) and Bauer (2002b), as well as most multivariate 

texts with sections dealing with logistic regression, provide detailed development of the 

fitted logistic regression model.  The development is based on the method of maximum 

likelihood to yield estimated values for unknown parameters, which maximize the 

probability of obtaining the observed set of data (Hosmer & Lemeshow, 1989).  The 

method of maximum likelihood involves construction of the likelihood function, which 

expresses the probability of the observed data as a function of the unknown parameters.  

It is common practice to take the natural log of the likelihood function as a first step, 

known as the log likelihood.  The log likelihood is then differentiated with respect to the 

parameters β0 and β1 (for the two parameter model).  The derivatives are then set equal to 

zero and solved for the respective parameters.  Solving the equations for the logistic 

regression requires iterative methods because the equations are non-linear in the 

parameters.  The equations to be solved, which can be found in most logistic regression 
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texts, are presented in Equation 19 and most statistical applications provide the capability 

to find their solutions.   
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The logit of the multiple logistic regression model and the resulting likelihood equations 

follow the same form as in the two-parameter model, with the addition of multiple beta 

coefficients to be estimated.  

 

2.8.1  Interpretation of the Coefficients of the Logistic Regression Model 

Log of the odds ratio is called the log-odds ratio or just log-odds, which is the 

logit difference.  It approximates a quantity called relative risk.  The odds ratio will tend 

to have a skewed sampling distribution “due to the fact that it is bounded away from 

zero” (Hosmer & Lemeshow, 1989).  Hence, inferences are usually based on a sampling 

distribution of ln(odds ratio) = 1β , which tends to follow a normal distribution.  

It is recommended to code all dichotomous variables as 0-1 and treat them as 

interval scaled, because other coding schemes affect the estimate of the odds ratio and the 

end points of associated confidence intervals (Hosmer & Lemeshow, 1989).   The most 

common interval scaled coding method uses a referent group (vs. the method of deviation 

from the means coding used in linear regression) because of the interest in estimating the 
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risk of an “exposed” group relative to a control group or unexposed group (Hosmer & 

Lemeshow, 1989).  

   

 2.8.2  Two Parameter Logistic Regression Model for Personnel Selection 

A study by Raju et al. (1991) of 84,808 observations of Air Force enlistees tested 

on forms 8,9,and 19 of the Armed Services Vocational Aptitude Battery (ASVAB) 

showed the logistic regression model to be “valid and also quite robust with respect to 

direct and indirect range restriction on the predictor” for a two parameter logistic model.  

A dichotomous criterion was created using information on Final School Grade (FSG) for 

the population.  Since data was only available for those passing their respective Air Force 

school (FSG ≥ 70), the criterion for receiving a label of “success” was set at FSG ≥ 84, 

the median FSG grade in the data population.  The two predictors used were Math 

Knowledge and Mechanical Comprehension scores.   The two parameter model used by 

Raju et al. (1991) is presented in Equation 20, where “D is a constant usually set to 1.7 to 

make P(x) correspond to a normal ogive and a and b are job parameters to be estimated.”  

Here, D does not denote Mahalanobis distance.    

  

b)]exp[Da(x1
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−+

−
=     ( 20) 

 

One benefit of the two-parameter logistic regression model is that the results can 

“directly relate the probability of job success to trait levels” (Raju et al., 1991).  

Advantages of the logistic model cited by Raju et al. (1991) include the following: 
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1. The standard error of an observed correlation coefficient does not vary 
from one predictor score to the next, whereas the standard error of P(x) 
depends on x.  Therefore, the information that logistic regression provides 
about the precision of measurements in more useful.  

 

2. Because logistic regression is used in item response theory, P(x) can be 
considered to be subpopulation invariant, whereas range restriction is 
known to affect the correlation coefficient. 

 

Raju (1991) randomly selection of 1,000 samples of 1,000 observations each from 

the population (N = 84,808) and performed logistic regression.  The results show that the 

two-parameter logistic regression model’s theoretical probabilities for the entire dataset 

fit the empirical probabilities reasonably well.  Performance with respect to direct and 

indirect range restriction was also studied.  Direct range restriction was induced via a cut-

off set at the population median Math Knowledge score for each population sample.  

Indirect range restriction was induced for set of samples by setting a cut-off score at the 

population median Mechanical Comprehension prior to applying the cut-off for Math 

Knowledge.  Here the sample consisted of those whose Mechanical Comprehension and 

Math Knowledge scores were both greater than the respective population medians.  

Under indirect range restriction, 3% of the χ2
 values were significant at the same alpha 

level.  Range restriction reduced average sample size from n = 1,000 to 527 for direct 

restriction and 565 for indirect range restriction. 

A χ2 test was employed to assess how well the sample-based logistic regression 

probabilities matched the sample-based empirical probabilities.  At the α = 0.01 level, 

2% of the 1,000 χ2 values were significant for unrestricted samples.  Likewise, 2% of the 

samples subjected to direct range restriction were significant at the same alpha level, 

while 3% were significant for indirect range restriction.  This shows that the effects of 
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range restriction did not significantly effect the resulting logistic regression model 

goodness of fit to the population based logistic regression model.  The author agrees with 

Raju et al.’s (1991) statement, “overall, the two-parameter logistic regression model 

appeared to offer a promising alternative to studying the question of the probability of 

success in selection.”  However, updating the regression weights for the current PCSM 

model involves 6 parameters including the intercept.   

 

2.9  Artificial Neural Networks 

Artificial Neural Networks (ANN) is inspired by the architecture and function the 

human brain.  Figure 8 presents a “node” of the McCullock-Pitts model (1943).  This was 

the first attempt at modeling such brain functions (Looney, 1997).  The terms node and 

neurode are used in the literature interchangeably.  The node is the building block of a 

neural network.  Nodes simulate the biological neuron, which functions via synaptic 

inputs that activate an output depending on whether or not the sum of the inputs to a 

single neuron exceeds some threshold of the neuron (Looney, 1997).  In a neural 

network, a user specified number of nodes receive an input from each predictor variable 

for an exemplar presented to the network.  In the biological sense it is believed that the 

brain learns which synaptic inputs to a specific neuron should be given more weight in 

determining its resultant output.  Activation functions transform a linear combination of 

weighted predictor inputs to form the node’s output. 

The set of optimal weights applied to the predictor inputs must be learned.  The 

McCullok-Pitts model does not include a mechanism for the model to learn; however, 
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this basic model served as the impetus for future networks (Looney, 1997).  Methods for 

simulating learning in a neural network model are discussed in Sections 2.9.4 and 2.9.5. 
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Figure 8.  McCulloch-Pitts neuronal model 

 

Bi-valued threshold functions, unipolar (0,1) and bipolar (-1,1), where the first 

activation functions.  These are step-functions; however, continuously differentiable 

activation functions are most common in current applications.  The advantage these 

functions offer is that gradient methods can be used to iteratively solve for weights that 

map a vector of input features (predictors) into a desired output that matches its class 

identifier (Looney, 1997).  The sigmoid or logistic function is a unipolar (0,1) example of 

a continuous activation function commonly used today.  The equation for this function 

and its graph are presented in Equation 21 (Looney, 1997) and Figure 9 (Young, 2002), 

respectively.  The hyperbolic tangent function (bipolar sigmoid) is its bipolar (-1,1) 

continuous counterpart, whose equation and graph are presented in Equation 23 (Looney, 

1997) and Figure 10 (Young, 2002), respectively.  
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where s is the weighted sum of input features, α is the decay (growth) rate, b is the bias 

that shifts the function center to where e0 occurs (at s = b), where the output is the 

midvalue f(s) = ½.   Hence, b is the s-axis center of asymmetry of f(s) (Looney, 1997). 

 

 

Figure 9.  Sigmoid Activation Function 
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where the last term is derived in the usual situation by setting the threshold equal to zero 

(Looney, 1997). 
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Figure 10.  Hyperbolic Tangent Activation Function 

 

 

 2.9.1  Artificial Neural Network Definitions  

 The following definitions are related to artificial networks and are often referred 

to in discussions of neural networks and are taken from Bauer (2002).  The definitions are 

included as an aid to the reader. 

• Activation Function. A mathematical function that maps the sum of the 
weighted values entering a node into a range of output values (Looney 1997).   

• Artificial Neural Network (ANN). An information processing system 
(algorithm) that operates on inputs to extract information and produces 
outputs corresponding to the extracted information (Bauer 2002b). 

• Architecture.  The topological arrangement of neurons, layers, and 
connections, which defines the set of modeling equations available to the 
ANN (Bauer 2002b). 

• Backpropagation.  A learning algorithm for updating weights in a feed-
forward multi-layer perceptron (MLP) ANN that minimizes the mean squared 
mapping error (Bauer 2002b). 

• Conjugate Gradient Method.  A weight updating method that measures the 
gradient of the error surface after each pass.  It then alters the weights of the 
node inputs using a compromise between the direction of the steepest gradient 
and the previous direction of change (SPSS 1997). 

• Epoch. A complete presentation of the data set being used to train the MLP, or 
equivalently called a training cycle (Bauer 2002b). 
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• Feature.  In neural networks, features refer to the input vectors of information, 
which are presumed to have some relation that may be helpful in 
distinguishing the various output classes.  The vector of features is often 
called an exemplar (Bauer 2002b). 

• Feedforward Neural Network.  Multilayer ANNs whose connections 
exclusively feed inputs from lower to higher levels.  In contrast to a feedback 
or recurrent ANN, a feed-forward ANN operates only until all the inputs 
propagate to the output layer.  An example of a feed-forward ANN is the MLP 
(Bauer 2002b). 

• Hidden Units.  The processing elements in a MLP ANN that are not included 
in the input or output layers.  This is part of the neural network located 
between the input and output layers (Bauer 2002b). 

• Hyperbolic Tangent Activation Function (Tanh).  An activation function that 
maps a node’s inputs to a continuous S-shaped function between –1 and 1.  
The continuous function allows the network to utilize gradient search methods 
for the weight updates (SPSS 1997).  Figure 10. 

• Learning Algorithm.  The equations used to modify the weights of processing 
elements in response to input and output values (Bauer 2002b).  

• Linear Activation Function.  An activation function that simply sums the 
inputs to a node and passes them through (SPSS 1997).  Figure 9. 

• Neuron.  The fundamental building block of an ANN.  Normally, each neuron 
takes a weighted sum of its inputs to determine its net input.  The net input is 
then processed through its transfer function to produce a single-valued output 
that is broadcast to ‘downstream’ neurons (Bauer 2002b). 

• Sigmoid Activation Function. An activation function that maps a node’s 
inputs to a continuous S-shaped function between 0 and 1.  The continuous 
function allows the network to utilize gradient search methods for the weight 
updates (SPSS 1997).  Figure 10. 

• Supervised Training.  A method of training adaptive ANNs that requires a 
labeled training set and an external teacher.  The teacher knows what the 
desired response is and thus can provide responses for correct or incorrect 
classification by the network (Bauer 2002b). 

• Weight.  The values associated with each connection in the network that 
signifies the importance of the respective inputs.  The weights are combined 
to calculate the activations (Bauer 2002b).  
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2.9.2  Development of the multilayer perceptron (MLP) model 

Neural networks “learn” by adjusting the weights that are applied to the input 

features, which ultimately affect the output(s) of the network.  Development of the 

Rosenblatt perceptron in the 1950’s was significant because it included multiple neurodes 

in a two-layer network (Young, 2002).  A drawback of the Rosenblatt perceptron is that it 

could only effectively solve linearly separable classification problems (Looney, 1997).  

The XOR problem, a classic non-linearly separable classification problem involving two 

groups, required another neural network innovation before it could be solved effectively.  

The solution to such a problem was an algorithm commonly known as backpropagation.  

Backpropagation, developed by Rumelhart, Hinton, & Williams in 1986, “utilizes 

gradient search of the error space to update the weights of the network” (Young, 2002).  

This allowed for a relaxation of the exponential number of perceptrons required to solve 

non-linear problems, which hampered the development of neural networks prior to the 

development of computing power capable of handling the computational costs associated 

with the number of nodes needed (Looney, 1997).   

A two-layer network has an uncounted input layer of features, a hidden layer of 

neurodes that accept a weighted sum of all inputs into each neurode, and an output layer 

that accepts weighted sums from each of the hidden nodes (Looney, 1997).  Figure 11 

presents a generalized picture of the common feedforward ANN with two layers.  The 

hidden layer is made up of unipolar or bipolar sigmoidal threshold logic functions (TLF), 

which provide binary responses as inputs to the output layer.  The output layer is also 

driven by TLF’s.  Each output node produces a binary response, which then can be 

interpreted as a means of classifying exemplars. 
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Figure 11.  General Feedforward MLP 

 

 2.9.3  Network Engineering 

 Much of the architecture of current networks rely on the Hornik-Stinchcombe-

White theorem, which states (Looney, 1997): 

A feedforward artificial neural network with two layers of neurodes and 
nonconstant nondecreasing activation function at each hidden neurode can 
approximate any piecewise continuous function from a closed bounded subset of 
Euclidean N-dimensional space to Euclidean J-dimensional space with any 
prescribed accuracy, provided that sufficiently many neurodes be used in the 
single hidden layer.  

 
Hence, although it is possible to solve non-linearly separable classification problems with 

a single layer network, the previous theorem states that the two-layer MLP is sufficient.  

The process involves the use of a sufficient number of neurodes in the hidden layer to 

separate the classes into linearly separable sub-groups and then using the network output 

layer to adjoin or lump the sub-groups into the appropriate classes.  The following is a 
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review of the main ideas presented by Looney (1997), who provides a more detailed 

discussion of network engineering. 

 A set of non-linearly separable classes can always be decomposed into linearly 

separable subclasses because each neurode defines a hyper-plane, which separates the 

feature space into two half-spaces.  The intersection of these hyper-planes creates convex 

hulls, which are pair wise linearly separable (Looney, 1997).  The feature space can be 

divided into a sufficient number of convex hulls in order to classify the data set into 

linearly separable subgroups; even if it means classifying the exemplars as individual 

singletons.  As the dimensionality of the data increases, the required number of neurodes 

increases exponentially (Looney, 1997).  Too many neurodes causes over fitting or 

specialization of the network to the data set, which causes poor generalization upon 

cross-validation or application to a new sample (Looney, 1997).   Specialization occurs 

when a large number of weights allow the network to essentially “memorize” the data set.  

Generalization is enhanced when successive layers have less neurodes than the one 

previous (Looney, 1997).   

 Looney (1997) states that smaller networks have the following advantages; (1) 

better generalization, (2) learn more quickly, and (3) operate with less complexity 

requiring less computer memory.  Looney cites Villiers & Barnard (1992) for showing 

that two hidden layers are always sufficient.  The second hidden layer is often referred to 

as the output layer.  By implementing a second hidden layer, the number of neurodes 

required in the first hidden layer is reduced, thus improving the networks generalizability 

(Looney, 1997).    
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A common approach to network design involves the addition of one or more noise 

features.  Bauer et al. (2000) implement a random uniform (0,1) noise feature as a means 

of identifying salient features in their signal-to-noise ratio (SNR) method.  This method is 

discussed in section 2.9.6.  Holmstrom and Koistinen (1992) added noise features to 

transform an underdetermined system into an over determined one (Looney, 1997).  

Young (2002) found that initializing network weights from a Gaussian distribution (+ 

0.001) outperformed networks initialized with weights from a uniform distribution (+ 

0.001).  Both uniform and Gaussian distributed initial weights were investigated in this 

research and Young’s (2002) findings were not supported.  Therefore, the more 

commonly used uniform weights were used to initiate networks. 

 

2.9.4  Backpropagation      

This research will utilizes a conjugate gradient method of network training; 

however, backpropagation is reviewed because it is the most common training method.  

Backpropagation allows a feedforward MLP to iteratively update the network weights, 

thus training the network to classify the target output vector.  Gradient search 

methodology, which involves iteratively calculating derivatives of the network’s error 

surface with respect to the network inputs and respective hidden layer weights, 

systematically reduces the error between the network’s output and the desired output.  

There are two methods of updating network weights.  Batch training updates the network 

weights after the entire set of exemplars in the data set are passed through the network.  

The total error calculated is then used to perform the error surface derivates.  



 

94 

Instantaneous training updates the network weights after each individual exemplar passes 

through the network.  Bauer (2002) prefers instantaneous training.    

In chapter 11 of his text, Looney (1997) provides a robust discussion of many 

feedforward architectures and weight updating methods.  Topics covered include gradient 

descent vs. strategic search algorithms, fullpropagation vs. backpropagation, and the 

effects and comparisons of a multitude of MLP algorithms.  Due to over correction of the 

network weights with the steepest descent method, the backpropagation algorithm for this 

research incorporates the conjugate gradient method for updating the network weights 

during instantaneous training.  The conjugate gradient method is discussed in Section 

2.9.5. 

 

 2.9.5  Conjugate Gradient Method 

The conjugate gradient method uses a compromise between the direction of 

steepest descent and the previous direction of change (SPSS 1997).  This helps the 

network avoid the problems of overcorrecting weights encountered by Young (2002).  

The conjugate gradient method takes advantage of the fact that close to the “well” of a 

local or global minimum, the Total Sum-Squared Error (TSSE) function of network error 

is approximately quadratic, so that convergence can be completed with a fixed number of 

steps, which eliminates a major problem of backpropagation (Looney, 1997).  Although, 

the problem of finding such minimums in the feature space still remains, strategic search 

methods can be used to locate a starting weight set in the region of a “deep minimum” 

prior to implementing the conjugate gradient method (Looney, 1997).   
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Johansson et al. (1992) state “backpropagation is likely the most common 

supervised learning algorithm in neural network applications.”  Unfortunately, 

backpropagation suffers from becoming inefficient for training network weights.  As the 

number of weights in the network increases, backpropagation learning time can become 

prohibitive.  The conjugate gradient method is a numerical optimization technique that 

has been shown to reduce learning rates in backpropagation type weight training 

(Johansson et al., 1992).   

The usual methods of overcoming the problem of excessive learning time 

exhibited by backpropagation include reducing the dimensionality of the problem, using 

faster computers or a parallel processing architecture, applying numerical optimization 

techniques.  The conjugate gradient method falls in the latter category.  Johansson et al 

(1992) list the following advantages of the conjugate gradient method. 

 

1.  Faster than backpropagation’s steepest descent method by an order of 
magnitude on the parity problem 

 
2.  Doesn’t suffer from inefficiencies and possible instabilities caused by using a 

fixed step size in steepest descent 
 
3.  Simple for a numerical optimization technique compared to second order 

Newton and Quasi-Newton methods due to avoidance of calculation and 
inversion of the Hessian matrix of second order partial derivatives of the error 
surface at each iteration  

 

 Calculation of the Hessian matrix is a common problem in numerical 

optimization.  Complexity of Hessian calculation and inversion grows exponentially as 

problem dimensionality increases.  Storage requirements for large Hessian matrices are 

also cause for concern, even with today’s computing power.  Fortunately, the conjugate 
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gradient method avoids calculation of the Hessian.  Johansson et al. (1992) develop the 

conjugate gradient method in detailed fashion. 

In order to compare the two methods, Johansson et al. (1992) implemented both 

methods to 4 and 5 bit parity problems across a series of learning rate/momentum 

combinations for each of 6 different network architectures (3 with a single hidden layer, 3 

with two hidden layers).  The result was that for each problem, “the conjugate gradient 

methods are an order of magnitude faster than conventional backpropagation.”  However, 

Johansson et al. (1992) noted “the relative successes of optimization algorithms are 

highly problem dependent.”  Networks with a single hidden layer resulted in more 

convergence failures than two hidden layers for both the conjugate gradient and 

conventional backpropagation methods.   

 

2.9.6  Signal to Noise Ratio 

 Insignificant or non-salient input features adversely affect the classification 

accuracy of an ANN.  Signal to Noise Ratio (SNR) is a method proposed by Bauer, 

Alsing, & Greene (2000) for screening out non-salient features in multi-layer perceptron 

feedforward ANN’s.  This method is an improvement over earlier methods used by Belue 

& Bauer (1995) and Steppe & Bauer (1996) because the current method of  feature 

screening can be done with only one iterative training run.  The previous methods 

required between 10-30 training runs to iteratively remove non-salient features.  Belue & 

Bauer (1995) used a “partial derivative based saliency measure to calculate each feature’s 

effect on a single hidden layer ANN’s output.”  Steppe & Bauer (1996) used Tarr’s 
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weight-based saliency measure by “summing the squared values of the weights 

connecting feature i to the hidden nodes.”    

 The SNR saliency measure in Equation 23 involves converting a ratio of first 

layer weights of a fully trained ANN to a decibel scale (Bauer, Alsing, & Greene, 2000).  

The ratio in Equation 23 sums the squared first layer weights from the candidate input 

features of a trained ANN and the first layer weights from an injected noise input that 

follows a Uniform (0,1) distribution.   
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where 

 -  SNRi is the saliency metric for the ith feature 

 -  J is the number of hidden nodes 

- w1
N,j is the weight connecting the injected noise feature, xN, to the first hidden 

node layer 

-  w1
i,j is the weight connecting the input feature, xi, to the hidden node layer 

 

The study by Bauer, Alsing, & Greene (2000) showed that the SNR feature 

screening method is “consistent and robust within and across most ANN architectures.”  

In the study, architectures with momentum rates of 0.1, 0.5, and 0.9 were investigated.  
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Inconsistency was noted for architectures with high momentum rate set at 0.9.  SNRi, the 

SNR saliency measure of feature i, is used to rank order the features by significance to 

the network with larger saliency measures being more salient.  An SNR of 0.0 indicates 

the feature has the same saliency as the noise feature, which is not related to the target in 

any way.  The least-salient feature is removed at the end of each training epoch during a 

single training run until all are removed.  Classification error is record for each training 

epoch.  The first salient feature whose removal causes a significant increase in 

classification error and all features removed after that are then retained and used to fully 

train a new network.  A modified version of this SNR method developed by Young 

(2002) is presented in Chapter 3 and used in this research 

 

2.10  Ensemble Method 

Perrone & Cooper (1992) presented an ensemble method for combining multiple 

neural networks, possibly of “different architectures or trained on different data sets”, to 

improve performance of the combined model above any of the individual models.  The 

presence of many local minima that generally exist in the weights of neural network 

makes simple averaging of the weights, as is done in the parameter space for most 

resampling techniques, counter productive (Perrone & Cooper, 1992).  The ensemble 

method averages in “functional space not parameter space,” which allows it to actually 

benefit from the presence of local minima captured by the different networks created 

(Perrone & Cooper, 1992).  One drawback of the ensemble method; however, is 

requirement to develop and maintain multiple dissimilar models so that their outputs can 

be combined. 
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Two methods are presented by Perrone & Cooper (1992), the Basic Ensemble 

Method (BEM) and Generalized Ensemble Method (GEM).  Figure 12 is reproduced 

from Perrone & Cooper’s work to provide an illustration of how the ensemble method 

improves the solutions in a Mean Square Error (MSE) sense.  In figure 12, Regions A and 

B represent two distinct classes.  Hyper-planes 1 and 2 represent two possible models.  

Hyper-plane 3 is an improved solution, in the MSE sense, resulting form averaging 

hyper-planes 1 and 2 and “will give the optimal generalization performance” (Perrone & 

Cooper, 1992).  Perrone and Cooper also provide an example that illustrates the weakness 

of the BEM, which the interested reader should consider.  

 

   

                   B  

        A  1 

2 

3 

 

Figure 12.  Ensemble Illustration 

 

Perrone & Cooper (1992) contend that the usual method of creating multiple 

networks and selecting the best performing network based on some criteria discards 

valuable information contained in the other networks.  Another important benefit of the 

ensemble method is its ability to use all available data in training each network, which 
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avoids the problem of missing data common to cross-validation.  The ensemble method’s 

“smoothing property of the ensemble process removes any over-fitting” (Perrone & 

Cooper, 1992).   

In addition to neural network problems, the ensemble method is applicable to any 

technique that minimizes MSE (Perrone & Cooper, 1992).  Benefits of the ensemble 

method described by Perrone & Cooper (1992) include:  

1. Efficient use of all networks of a population without discarding any 
network 

 

2. Efficient use of all available data without over fitting 

 

3. Inherent performance of regularization by smoothing in functional space 
which helps avoid over-fitting 

 

4. Utilizes local minima to construct improved estimates, rather than being 
hindered by local minima  

 

 

The GEM “always generates a regression estimate which is ... the best possible of 

any linear combination of the elements of the population of functions which estimate 

f(x)” (Perrone & Cooper, 1992).  The Generalized Ensemble Method combines N 

networks such that: 
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where 

- f(x) = the true but unknown network function  

-  fi(x) = the trained network function 

-  si 'α  are real numbers that satisfy the constraint∑ = .1iα  

-  
∑ ∑ −

∑ −

=
k j kjC

j ijC

i 1

1
α , which minimizes MSE[fGEM] = ∑

ji jiCji, ,αα  

-  Cij = E[mi(x)mj(x)] 

-  mi  = fi(x) -  f(x)  

 

Cij is the correlation matrix of the output errors from the different networks.  The 

above results from Perrone & Cooper rely on two assumptions:  Linear independence of 

the rows and columns of Cij and a reliable estimate of the true correlation matrix Cij.  By 

forming the correlation matrix between the different networks, one is able to calculate 

“weights” to apply to the output of each net.  Summing the weighted outputs of each 

network, forms a new model that reduces the MSE of the overall model (Young, 2002).  

If the models combined via the GEM method are not dissimilar enough the weights 

derived become uniform; hence the GEM becomes similar to the BEM.  Perrone & 

Cooper caution that, in practice, if two or more networks are not dissimilar, the 

correlation matrix C will be ill-conditioned.  Perrone & Cooper also noted that in their 

sample the magnitude of the increase in classification accuracy was reduced after 6-8 

networks where included in the GEM.   

Young et al. (2003) performed network screening by forming a matrix of the 

errors from the n different networks generated.  An n x n correlation matrix of these 
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errors was calculated and factor analysis was performed to identify which networks to 

retain.  To actually identify the networks, Young et al. (2003) identified the factor 

structure by employing the common practice of retaining all factors with eigenvalues 

greater then 1.0.  The network with the highest factor loading for the respective principal 

factors used in the factor analysis where retained for use in the Generalized Ensemble 

Method (Young et al., 2003).  

 
2.11  Chapter Summary  

 This chapter discussed the following broad areas; PCSM research, pitfalls of 

ability research, the pilot candidate selection process, validation studies of the current 

PCSM model, an overview of the data used is in this research, factor analysis, and several 

predictive techniques that are employed in this research.  The techniques described are 

discriminant analysis, logistic regression, artificial neural networks, and the ensemble 

method of combining predictive models.   

 In terms of the “pitfalls,” the only pitfall that is not understood in terms of 

possible impact on the results of this research is range restriction.  Correlations corrected 

for range restriction are calculated as part of the validation study.  Despite the fact that 

many studies have investigated the accuracy of the correction under, no study reviewed 

addressed a specific example where an invalid model resulted from using uncorrected 

correlations.  Carretta & Ree (1995) revisited Miller’s (1966) study, but did not challenge 

the selection of the variables in Miller’s (1966) model.    

The other pitfalls have been accounted for in this research or have been addressed 

through previous study results that are thought to be relevant to this research.  For 
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example, corrections for unreliability proved to be of trivial significance (Carretta & Ree, 

1994).  Dichotomization of the criteria had little effect when replaced with a more 

continuously scaled criterion (Carretta, 1992b).  Sample sizes in this research are more 

than adequate for the indirect range restriction situation studied by Sackett & Wade 

(1983).  Subgroup effects are not expected to affect factor analytic results (Carretta, 1997 

and Carretta & Ree, 2000a).  Stein’s operator yielded little change in correlations 

corrected for range restriction (Carretta & Ree, 1994).  Furthermore, the issue of cross-

validation is addressed by the use of the independent TEST set.   

Review of the PCSM model reveals that UPT candidates are selected based on a 

variety of selection policies dominated by different selection criteria.  PCSM is not a 

significant factor in the selection of a majority of UPT candidates.  This forces PCSM 

validity to be based on its performance as a predictor for candidates whose selection is 

not necessarily based on their PCSM score.  Nevertheless, PCSM has still been shown to 

be a valid predictor of successful completion of UPT. 
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III.  Methodology 
 
 
3.1  Introduction 

 This chapter provides an overview of the data available for this research, the 

process of preparing the data for analysis, the methodology and the algorithms employed 

to accomplish the analysis, and the method for comparing competing models.  

Furthermore, a brief description of two specialized software applications is presented.  

The methodology described in this chapter is used to answers the three objectives of in 

this research.  First objective is PCSM validation.  Secondly, the regression weights of 

the current PCSM model are updated.  Finally, an independent model is developed. 

 The two specialized software applications used in this research are SPSS 11.5 and 

SPSS Neural Connections 2.1.  SPSS 11.5 is a statistical analysis package capable of 

performing many popular multivariate analysis techniques.  Neural Connections 2.1 

primarily supports the development of neural network models.  The descriptions of these 

packages provide a short tutorial for readers who wish to recreate parts of this research.  

Model performance and comparison is accomplished primarily through the presentation 

of Receiver Operating Curves (ROC).  A ROC is useful for classification problems 

because performance is displayed across the entire range of decision thresholds, thus 

allowing the users to select the threshold that best meets their needs. 

 

3.2  Data Description 

 The data for this research was provided by AETC/SAS on one CD-ROM.  The 

data exists in Microsoft ACCESS database format.  Figure 13 presents how the data was 
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merged into the single data table used for this research.  The process and issues 

encountered are described in more detail in Section 3.3. 

 

 

93 StudMass 93 StudSSN 01 StudMass 01 StudSSN

Combined ’01 
Mass, SSN, PCSM

One Data Table
“Original Data”

PCSM DB PCSM DB

Combined ‘93 
Mass, SSN, PCSM

T-37’s T-37’s

93 StudMass 93 StudSSN 01 StudMass 01 StudSSN

Combined ’01 
Mass, SSN, PCSM

One Data Table
“Original Data”

PCSM DB PCSM DB

Combined ‘93 
Mass, SSN, PCSM

T-37’s T-37’s

 

Figure 13.  Data Preparation Process 

 

The data is made up be two sets of databases.  The first contains UPT 

performance data from 1993 through 2001.  There are several UPT performance 

databases for each year, each of which includes multiple data tables.  Based on the advice 

of AETC, the “hist_yr” database was selected for each year.  Within the “hist_yr” 

database, two data tables were selected; “SSN” and “MASS.”  The SSN table contains 

data relevant to UPT success or failure.  The MASS table contains UPT performance 

data.  The second set of databases available contained PCSM data.  PCSM data covers 

the period 1993 through 2001 in single data table, whereas the SSN and MASS data are 

contained in separate data tables in separate databases for each year.  With the data 

sources selected, the UPT data contained in the SSN and MASS tables for each year were 

matched up with the predictive data available in the PCSM database. 
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3.3  Data Preparation 

 The analysis focuses on the data of individuals whose UPT training course is 

identified as one of the following: PV4AA, PV4AB, PV4AJ, and PV4AN.  These courses 

distinguish the training as non-joint military training.  All other courses are disregarded 

for purposes of this research.  In order to merge the data into one baseline data set, the 

three data sources were matched across the SSN, MASS, and PCSM data within each 

year.  To do so in Microsoft Access, a common identifier is needed for definition of 

query relations.  Social Security Number is present in the PCSM and SSN data for all 

years.  However, the Social Security Number field is missing from the MASS data for the 

years 1993-1998.  The training base location and student ID fields were used in the SSN 

and MASS tables to append a Social Security Number field to the MASS data.  To do 

this, a query matched student ID in the SSN and MASS tables such that the training base 

location field in each table matched.  The second logical operator is necessary because 

the student ID field is only unique within training base locations. 

 Prior to performing queries to merge matching data fields, it was necessary to 

search the SSN tables for duplicate Social Security Numbers.  Duplicates occur most 

often for people who attended one of the four courses of interest in this research as well 

as another type of flight training course.  In all cases, the record associated with the 

course of interest was kept, while other records were deleted.  Where duplicate records 

existed for a course that is not of interest, all records were deleted from the SSN table.  

After the 1993-1998 MASS tables had a Social Security Number field appended, a 

reference field that identifies year was added using an update query.   
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 A separate data merge query was performed for each year, 1993-2001.  Each 

query defined two relations based on the Social Security Number field.  These relations 

matched the SSN table to the MASS table and the PCSM table to the MASS table within 

a single query.  Criteria defined in the query limited selected records to those records 

where Social Security Number in the MASS table matched in the SSN and PCSM tables.  

Each year’s query result was then exported as a data table into a separate database.  A 

complete, stand alone data set was constructed by combining each year’s query result into 

one data table in the new database.  Only one match exists for 1993 and is missing data in 

many fields.  It was deleted.  No matches existed for 1994.  A complete data set covering 

1995-2001 generated 3,409 records prior to further data review.   

 Table 9 presents all data field labels chosen for this research.  Some demographic 

data such as SSN, name, gender, and year are for reference only and is not used as part of 

any analysis.  Text Nominal variables such as Status_Source, Aero_Rating, and Fly_Exp 

are converted to 0,1 dummy variables for each level of the text nominal variable.  IFT 

score is not used as a predictor as it is not available to the selection boards.   
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Table 9.  Baseline Data Variables 

Data Type Name Scale Description 
Criterion Pass_T37 0,1 0=Fail 

1=Pass 
SSN Nominal Social Security Number 
Last_Name Text Last Name 
First_Name Text First Name 
Gender 0,1 0=Male, 1=Female 
DOB Nominal Date 
Ed_Level Ordinal (0-6) 0=High School 

1=1 Year College 
2=2 Years College 
3=3 Years College 
4=Bachelors 
5=Masters 
6=PhD 

GPA Scale (0-4.0) Grade Performance Average 
Status_Source Text Nominal AFA 

ROTC 
OTS_AD 
OTS_Civ 
AD 
AFR 
ANR 
Other 

Demographic 

Year Nominal 1993-2001 
Aero_Rating Text Nominal None 

Student Pilot License 
Private Pilot License 
Commercial Pilot License 
Transport Airline Certified 

Flying 
Experience 

Fly_Exp 0,1 Dummy 
variable for each 
category  

0=Not Applicable 
1=Applicable 
None 
Fixed Wing 
Rotary Wing 
Single Engine 
Multiple Engines 
Instructor 
Instrument Rating 
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Data Type Name Scale Description 
Flt_Hr_Cd Ordinal (0-9) 0=None 

1=1-5 Hours 
2=5-15 Hours 
3=16-25 
4=26-40 Hours 
5=41-60 Hours 
6=61-100 Hours 
7=101-150 Hours 
8=151-200 Hours 
9=200+ Hours 

IFT_Score Scale (0-99) Initial Flight Training Score 
Pilot Scale (1-99) Pilot Composite Score 
Nav Scale (1-99) Navigator Composite Score 
Quant Scale (1-99) Quantitative Composite Score 
Verbal Scale (1-99) Verval Composite Score 

AFOQT Data 

Acad Scale (1-99) Academic Composite Score 
H2CX1 Scale (0-72,000) BAT Pursuit Tracking Error 
PS2X2 Scale (0-72,000) BAT Pursuit Tracking Error 
PS2Y2 Scale (0-72,000) BAT Pursuit Tracking Error 
PS2Z2 Scale (0-72,000) BAT Pursuit Tracking Error 
ITMR Scale (0-2,742.8) Item Recognition Score #1 
ITMP Scale (0-100) Item Recognition Score #2 
TMSD Scale (0-341.33)  
AIAP Scale (0-98.77) Activity Interest Score #1 
AIAR Scale (0-9,322.9) Activity Interest Score #2 
BAT_Score Scale (1-99) BAT Score 

BAT Test 

BAT_Age Nominal Age at time of BAT 
Raw_PCSM Scale (0-1.24) Regression Weighted Linear 

Combination of PCSM Inputs 
PCSM 

PCSM Scale (1-99) Final PCSM Score after applying a 
discretized sigmoidal 
transformation 

Course Text Nominal 5 Character Flight Training Course 
Identifier 

Last_Stat_Date Nominal Most Recent Status Date 
Last_Stat_Code Text Nominal Most Recent Status Code to 

identify Pass/Fail type 
Last_Stat_Phase Nominal (1-3) 1=Academic 

2=T37 Phase 
3=T38 Phase 

T37_Raw_CK Scale (0-99) Raw Check Flight Grade 
T37_Raw_DLY Scale (0-99) Raw Daily Flight Grade 
T37_Raw_EPQ Scale (0-99) Raw  

UPT Data 

T37_Raw_ACAD Scale (0-99) Raw Academic Grade 
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Data Type Name Scale Description 
T37_Raw_FCR Scale (0-99) Raw Final Commander’s Ranking 
T37_T_CK Scale (0-99) Transformed Check Flight Grade 
T37_T_DLY Scale (0-99) Transformed Daily Flight Grade 
T37_T_EPQ Scale (0-99) Transformed  
T37_T_ACAD Scale (0-99) Transformed Academic Grade 
T37_T_FCR Scale (0-99) Transformed Final Commander’s 

Ranking 
* No Transformed UPT performance data available for 1993 and 1994 

 

  

The complete data set was scrubbed for missing or corrupted data.  Missing 

GPA’s were replaced with the mean GPA of 3.11 in 543 cases.  One record was deleted 

for missing data in many fields.  Six records were deleted for zero or empty scores for 

one or more AFOQT scores.  Four records were deleted for zero BAT subtest scores.  

These 11 deletions brought the total number of records down to 3,398.  The AFOQT 

Academic field had 42 empty records.  Instead of deleting these records, the field was 

replaced via simple linear regression (y = ax + b).  To do this, an independent variable 

was defined as the average of the AFOQT Verbal, Quantitative, and Navigator fields.  

The existing AFOQT Academic score was the dependent variable.  The resulting 

equation for replacing missing Academic scores is presented in Equation 25 and had an 

R-squared of 0.946. 

 

( )[ ] 225.15,,1957.1 −= NQVAvgACAD         ( 25) 

 

 In order to generate a standard method of including an age variable, the date of 

birth and BAT test date fields were combined to create an age at BAT test field via 

Equation 26. 
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( )
25.365

@_ DOBBATAgeAgeBAT −
=     ( 26) 

 
 

The Last_Stat_Code and Last_Stat_Phase fields were used in an update query to 

create a binary Pass/Fail criterion.  Those with non-elimination codes and a 

Last_Stat_Phase of at least 2 where defined as a pass (1.0).  All others were defined as a 

fail (0.0).  All failures with elimination codes other than E51 (Flying Deficiency), E52 

(Academic Deficiency), and E56 (Self-Initiated Elimination) were deleted.  This brought 

the total number of records down to 3,343.  This included 3,155 passes and 188 failures.  

The retained failures included 85 for flying deficiency, 14 for academic deficiency, and 

89 for self-initiated elimination. 

 Nominal data such as Status_Source and Fly_Exp were replaced with binary 

dummy variables at each of their respective levels, where “1” indicates the presence of 

the associated identifier.  In keeping with standard convention, the number of dummy 

variables is one less than the total number of categorical levels.  All zeros indicate the 

AFA for the Status_Source field.  All zeros indicate rotary wing for the Fly_Exp field.  

Ordinal data such as Ed_Level, Aero_Rating, and Flt_Hr_Cd were coded with increasing 

integer values beginning with zero.  Scaled data was not transformed in anyway at this 

point; however, standardization of all inputs is used for independent model development.  

No standardization of data was performed for the PCSM validation and regression update 

because the current PCSM model does not perform such transformations. 

 One specific difficulty that exists in the data as provided by AETC is the 

existence of inconsistencies between the Aero_Rating, Fly_Exp, and Flt_Hr_Cd fields.  
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For example a person identified as a commercial pilot in the Aero_Rating field may have 

zero reported FAA flying hours in the Flt_Hr_Cd field or indicate only single engine 

flying experience in the Fly_Exp field.  Where the Flt_Hr_Cd is greater than zero, the 

Fly_Exp field is updated to indicate both fixed wing and single engine flying experience 

if it was not already indicated.  Where reported FAA flying hours indicate between 1-40 

flying hours, the Aero_Rating is updated to student pilot if the field was empty or zero.  

Likewise, where flying hours indicate greater than 40 flying hours, the Aero_Rating field 

is updated to private pilot if the field was empty or zero.  Finally, instances where zero 

flying hours were reported and the Aero_Rating indicates student pilot or private pilot 

still existed in the data.  In cases where flying hours indicate zero, Aero_Rating was 

updated to none.  In cases where flying hours indicate 1-20 and Aero_Rating indicates 

private pilot, the Aero_Rating was updated to student pilot.  AETC was consulted prior to 

these updates.  All updates were done using Microsoft Access update queries.     

This preparation process results in a data set referred to as DATA_A.  It has 

approximately 94 % passes (3,155) and 6% failures (188).  It was decided to validate the 

PCSM model on two other data sets with equal proportions of passes and failures.  Two 

additional data sets with equal pass/fail proportions were created from DATA_A.  

DATA_B is created using bootstrap resampling.  Resampling is done with replacement 

from the 188 original failures until a total of 3,343 failures records including the original 

188 are obtained, hence DATA_B includes 6,686 records.  188 passes were randomly 

selected and included with the 188 original failures to create the second of these two data 

sets, DATA_C.  These three data sets are used to validate the current PCSM model.   
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For the regression update and development of the independent model, the data 

sets change as a result of holding out the independent “TEST” data set mentioned several 

times thus far and increasing the failure proportion in DATA_A.  However, the names 

given to the data sets are the same.  This is because the methods for creating the different 

data sets are unchanged.  Only the size and pass/fail proportions are changed.  Hence, all 

references to DATA_B imply that a large bootstrap resampling has occurred to generate 

enough additional failure records to give equal pass/fail proportions.   

The attrition rate has remained near 10% for the past several years (Pugh, 2003).  

AETC requested the data be made to represent a 10% attrition rate.  By contrast, Young 

(2002) performed a similar analysis for AETC using only flying training deficiencies 

(FTD).  In his research, FTD’s alone accounted for 5% of the data set, whereas FTD’s, 

SIE’s and academic deficiencies combined account for only 4.6% of the current data set.  

The original PCSM model was developed using only FTD’s, which represented 20% of 

the data set.  Later, a PCSM update included all types of failures, which represented 

19.6% of that data set (Carretta, 2003).  How the actual numbers and types of failures in 

these historical data sets compare is unknown.   

 Again three data sets were generated for analysis in similar fashion described for 

the validation study.  The only difference is that the TEST set is first pulled out of 

DATA_A before creating DATA_B and DATA_C.  To create the TEST set, 25% of the 

188 failures (N=47) are first removed.  Then 423 passes are randomly selected so the 

TEST set results in the required 10% attrition rate.  As a result, DATA_A is left with 

2,732 passes and 141 failures.  In order to force the 10% attrition requirement on 

DATA_A, bootstrap resampling with replacement was performed 163 times on the 141 
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remaining original failures and added to DATA_A.  For the purposes of the regression 

update and developing the independent model, DATA_A now contain 2,732 passes and 

304 failures.  DATA_B and DATA_C sets were then generated in the same fashion 

described for the validation study from this new version of DATA_A.  DATA_B has 

2,732 passes and 2,732 failures, while DATA_C has 141 passes and 141 failures.  Table 

10 summarizes the sizes and pass/fail proportions in the data sets used in each phase of 

this research.   

 

Table 10.  Data Set Summary 

PASS FAIL PASS FAIL PASS FAIL
3,155 188 2,732 304 2,732 304
96% 4% 90% 10% 90% 10%

3,155 3,155 NA NA 2,732 2,732
50% 50% NA NA 50% 50%

188 188 912* 304 141 141
50% 50% 75% 25% 50% 50%

NA NA 423 47 423 47
NA NA 90% 10% 90% 10%

VALIDATION LOGREG INDEP-MODEL

DATA_A

* 3 of these data sets were created

DATA_B

DATA_C

TEST

 

 

3.4  Specialized Software Utilized 

 

 3.4.1  SPSS 

SPSS for Windows, version 11.5, was used to perform several analysis techniques.  

These include basic descriptive statistics, factor analysis, stepwise linear regression, and 

stepwise discriminant analysis.  Figure 14 shows the initial window for SPSS Linear 

Regression.  It is similar to the setup window for most SPSS analysis functions.  The 

general analysis setup in SPSS opens such a window for variable selection, which 
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includes buttons to open successive windows for setting analysis parameters.  Dependent 

and independent variables are selected in a straightforward manner.  Other parameters are 

selected by means of check boxes in the successive windows.   

Dillon and Goldstein (1984) state, “conventional levels (< 0.10) can often tend to 

terminate the stepwise process prematurely.”    In keeping with this conservative 

modeling strategy, probability of F-to-enter was set at 0.10 and probability of F-to-

remove was set at 0.12.  Since Data_B is so large, it is necessary to set the probability of 

F values to the traditional 0.05 and 0.10, respectively, to limit the number of variables in 

the final model. 

 

 

Figure 14.  SPSS Linear Regression 

 

For discriminant analysis, the method of testing predictive value in the model 

chosen was the Mahalanobis distance with probability of F-to-enter set at 0.10 as seen in 

Figure 15.  The initial set up window for discriminant analysis is quite similar to Figure 

14.  Figure 16 displays classification options selected for the discriminant analysis.  The 

prior probabilities option simply defines a single threshold for predicting group 

membership.  This research utilizes ROC curves, which allow analysis of model 
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performance across all decision thresholds.  ROC curves are discussed in section 3.9.  

The separate group-covariance matrices option is selected because the Box M test of the 

assumption of equal covariance matrices is rejected with a p-value 0.000, rounded to 3 

decimal places.  Doing so improves performance of the discriminant function when the 

equal covariance assumption is violated. 

 

 
Figure 15.  Discriminant Analysis Method Options 

 
 
 

 
Figure 16.  Discriminant Analysis Classification Options 

 

SPSS provides a summary table in the form of a confusion matrix.  For the 

pass/fail classification problem, a confusion matrix is simply a 2 x 2 table that records the 

correct and incorrect group predictions.  A sample confusion matrix is presented in Table 

11.  Table 12 provides definitions for the confusion matrix, where True Positive indicates 
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correct prediction of the target group (failure) and False Positive indicates incorrect 

prediction of the target group.  SPSS also allows the user to apply the discriminant 

function to a validation set.  In this case, a confusion matrix for the validation set would 

also be displayed.  Furthermore, SPSS provides the capability to perform a Cross-

Validation, where an iterative process determines discriminant functions with a single 

exemplar held-out.  Group prediction is then done via the discriminant function 

determined using all available data except the exemplar for which the current prediction 

is being made.  Group prediction, discriminant scores, and group membership 

probabilities can be saved as additional columns in the data sheet used in the analysis. 

 

Table 11.   SPSS Confusion Matrix 

 
 
 
 

Table 12.  Confusion Matrix Definitions 

 Predicted Fail Predicted Pass 
True Fail True Positive False Negative 
True Pass False Positive True Negative 
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 3.4.2  Neural Connections 

Neural Connections, version 2.1is used in the development of all neural networks.  

Neural Connections is a Windows-based program, which allows the user to perform 

multiple types of neural networks in a relatively straightforward manner.  Setting up a 

neural network in Neural Connections involves three main steps; importing and 

configuring the data, selecting the network type and its associated parameters, and setting 

up the output.  Neural Connections opens with a blank template.  The user then builds the 

network in a building block fashion by selecting network tools from a tool bar provided 

as part of the Neural Connections environment.  Figure 17 presents a simple MLP 

network architecture, which contains the three network tools necessary to create a model. 

 

 

Figure 17.  Sample Neural Connections MLP Architecture 

 
  

After the user selects the tools for building a model, opening dialog boxes is 

accomplished by clicking on the tools themselves.  Clicking on View within the Input1 

tool menu opens an empty data table similar to a spreadsheet.  Clicking on File/Open 

opens the data input dialog box presented in Figure 18.  Data is imported from an 

SPSS.sav format file as a flat file by clicking on Configure and browsing to the file.  
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Once the data is imported, each variable can be defined as an Input, a Target, or 

Reference and can be selected for use in the model.  Neural Connections also provides 

the ability to analyze the distribution underlying each variable via the Input1 tool data 

sheet.  Transformations can be tested in a straightforward manner, which a user can easily 

learn from the Neural Connection documentation. 

 

 

Figure 18.  Neural Connections Data Input Window 

 
 Once the user is ready to set up the model, the first task is to allocate the data via 

the Input1 tool data sheet.  Click on Data/Allocation to open the window presented in 

Figure 19.  The options in this window are self-explanatory; however, the reader should 

note the two options for setting the seed value when a random process is selected.  

Random ordering can be applied to the data and/or the selection of the training and 

validation sets.   
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Figure 19.  Neural Connection Input Data Allocation 

 
 Clicking on the tool the user has selected to define the network type (MLP in 

Figure 17 above), then clicking on dialog opens the window presented in Figure 20.   

This window provides the options for setting the network parameters.  Note that the 

Conjugate Gradient method is the chosen network learning technique in this research.  

The Conjugate Gradient method is discussed in section 2.9.5.  Network weights can be 

assigned randomly and the user has yet a third opportunity to change the seed number for 

this random process.  Random seed numbers are changed manually for each model to 

provide robustness by training on different data sets and allowing different initial weights 

to avoid getting “stuck” in the same error surface local minima. 
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Figure 20.  Neural Connection MLP Network Parameters 

 
  

The final step to setting up the basic network architecture is to configure the 

output.  Figure 21 presents the dialog box for Text1 in Figure 17 above.  The dialog box 

in Figure 21 allows the user to select the data set for the trained model to be applied to 

and a delimited format for the text output.  The path and output file name are also 

accomplished from this dialog box.  The user should note that the size of data printed to a 

screen is limited and truncates the beginning of the output.  Printing to a text file is the 

best approach.   
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Figure 21. Neural Connections Output Dialog Box 

 

Figure 22 presents the dialog box that opens when the Format button in Figure 21 

is clicked.  The options in this window are straightforward.   Note that the Cross Tab 

Matrix option provides a confusion matrix.  The number of bins selected defines the size 

of the confusion matrix.  Two bins provide the usual 2 x 2 confusion matrix with the 

decision threshold set at 0.50.  Selecting more bins for a two-group problem simply 

defines more evenly spaced decision thresholds.  The output then provides an idea of how 

many network outputs of each group fall into the different confusion matrix bin ranges.  
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Figure 22.  Neural Connections Output Format Dialog Box 

  

Network weights can be viewed after training stops by clicking on the network 

tool, then clicking on the “Status” option in Figure 17.  This brings up the window 

presented in Figure 23.  Viewing the network weights in this way is convenient; however, 

capturing the weights for use in the SNR method is not straightforward.  A special VBA 

application had to be written to capture and organize the network weights as they appear 

in Figure 23.  Appendix C provides instructions on how to prepare the .NNI information, 

once it is opened in a text file, before the VBA application can be used.  Appendix D 

provides the VBA code used to import and organize the network weights and input 

standardization parameters from a pre-processed text file of the .NNI network 

architecture into an Excel Spreadsheet. 

Networks developed in Neural Connections 2.1 are saved as a .NNI file.  The 

.NNI file is simply a text file containing the architecture of the network. The information 

presented quite neatly in Figure 23 is obtained by opening the .NNI file containing the 

network architecture from within a text file using the “Open” option from with in the 
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“File” menu and browsing to the appropriate .NNI file.  The reader should consult the 

Neural Connections 2.1 documentation for an explanation of the information contained in 

the .NNI file.  

 
Figure 23.  Network Weights and Standardization Parameters 
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3.5  Validation Study 

The first objective of this research is to validate the current inputs to the PCSM 

model.  This is done several ways.  The first method involves a combination of linear 

regression and factor analysis.  Variables retained by stepwise linear regression are 

compared to their associated factor analysis interpretation.  Factor analysis is done in a 

confirmatory sense and is performed on the three data sets described in section 3.3.  

Factor analysis is performed using both unrotated factors and varimax rotation.  Factor 

interpretation is performed using the resultant component factor loadings as a means of 

understanding the latent constructs underlying each factor.  

Factor analysis was first performed using Kaiser’s criterion, whereby the number 

of factors to use is defined by the number of correlation matrix eigenvalues that are 

greater than one.  In each case, several factors beyond the ninth factor have eigenvalues 

very close to 1.0.  Determining the number of factors via a scree plot of the eigenvalues 

dictated that the preferred number of factors to retain is eight.  This held true for all three 

data sets.  Figure 24 provides a sample scree plot of the eigenvalues associated with 

Data_A.  
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Figure 24.  Scree Plot From Data_A 

 

In this research, factor analysis helps overcome the situation where variables 

significant in a linear regression are sample dependent.  For example, the 5 scores of the 

AFOQT are highly correlated and one or more may be present in the stepwise linear 

regression models.  These variables have consistently strong factor loadings on their 

common factor.  This is true for two reasons.  First, the 5 AFOQT composites have many 

of the 16 AFOQT subtests scores in common, thus causing a degree of colinearity.  The 

AFOQT is discussed in more detail in Chapter 2.  Second, the AFOQT composites are 

measuring the same construct because the 16 AFOQT subtests primarily measure 

psychometric g (Earles & Ree, 1991) as well as factors commonly associated with paper 

& pencil tests such as verbal, quantitative, spatial, and perceptual speed (Skinner & Ree, 

1987).  Therefore, if another AFOQT composite takes the place of the Pilot composite, 

we can interpret the result as validating the underlying construct of the associated PCSM 

input rather than invalidating that input. 
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 Stepwise linear regression is accomplished in SPSS as described in section 3.4.  

Probability of F-to-enter is set to 0.10 and probability of F-to-remove is set to 0.12.  The 

resulting variables from each regression are reported in Chapter 4. 

 Partial Correlations are also used to validate PCSM via an iterative process of 

accounting for variables with the largest partial correlations.  The correlations of all 

variables with the pass/fail criterion are first calculated.  The largest correlation that is 

significant at the 0.10 alpha level is removed.  Then the partial correlations are calculated 

with the removed variables’ validity accounted for in the calculation.  At each iteration, 

the most valid variable is removed and partial correlations calculated to account for all 

variables removed to that point.  The process stops when correlations are no longer 

significant.   

 Finally, the effects of correcting correlations for range restriction are investigated.  

The correlations between the criterion and other variables known to be significant are 

first calculated.  The variables are then ranked by the magnitude of the correlations.  

These correlations are then corrected for range restriction a new rank order is created.  

The order of the variables is then compared for uncorrected and corrected correlations to 

see if variable rankings change appreciably. 

 

3.6  Regression Update 

Recall that the DATA_A set used in the regression update is not the same as 

DATA_A used in the validation study because the TEST set is removed and the 10% 

attrition rate is required.  DATA_B is not used in the regression update.  Data_C is 

slightly changed also.  A 50% attrition rate is considered unreasonably high for the 
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purposes of updating the regression weights.  However, the influence of failure 

proportion on the resulting regression performance is of interest.  Therefore, a the 

pass/fail proportions are set at 75%/25%, respectively.  A version of DATA_C with 912 

passes randomly selected from DATA_A give a 25% attrition rate (912 passes, 304 

failures).  Three different versions of this DATA_C are generated to guard against the 

effects of a “good” or “bad” sample on model performance.  Unless otherwise noted, all 

results are for the TEST set. 

 

3.6.1  Current PCSM Regression Discussion 

The current PCSM model is regression based.  The type regression type is 

unknown to the author.  The results of this research suggest PCSM is based on linear 

regression rather than logistic regression.  Based on information provided by AETC, the 

author had previously been under the impression that the actual regression weights were 

derived from a logistic regression and the discrete sigmoidal transform is simply a means 

of dealing with those raw PCSM scores greater than 1.0 as a result of the earlier linear 

regression.  It appears that the discrete sigmoidal transform simply give the model a 

“logistic feel.”      

Some time after the original PCSM model was put into operational use, AETC 

chose to add a logistic aspect to the model by applying a discretized sigmoidal 

transformation to the linear regression output.  This was done in order to address the 

problem of interpreting a PCSM score that ranged from zero to beyond 1.0 as a 

probability of passing UPT.  In this research, both linear and logistic regressions are 

investigated.   
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Carretta (1991b) studied the effects of performing multiple linear regressions on 

criteria, which ranked observations according to simple weighted averages of T37 flying 

grades, T38 flying grades, and academic average.  Due to non-normality and skewness 

among most of the inputs, Carretta (1992b) also performed regressions on Log 

transformed data.  Carretta (1992b) reported negligible differences in results.  The current 

data set suffers from the similar distributional issues.  Based on Carretta’s findings and in 

order to maintain consistency with the current PCSM model, the data is not transformed 

prior to performing the updated linear and logistic regressions.  

 Prior to performing the regression, several data preparation steps were required.  

The data provided by AETC includes the 9 raw BAT scores rather than the 5 actual BAT 

scores that are PCSM inputs.  The process of transforming the 9 BAT scores into the 

required 5 BAT inputs presented in Figure 1 is presented again in Figure 25.  The process 

is duplicated from a spreadsheet model provided by AETC.  
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Figure 25.  BAT Score Transformation Process 

 

Four of the 9 raw BAT scores are 2-hand coordination pursuit tracking error 

scores.  These are standardized, averaged, and multiplied by –1.0 to form a raw 

EQPMOT input.  The raw EQPMOT scores are negated in order to prevent test 

compromise.  Two of the 9 raw BAT scores relate to the reaction time and percentage 

correct for a short-term memory item recognition test.  The raw input for PCSM is the 

reaction time, ITMR.  In order to prevent test compromise, the ITMR input is scored at 

the maximal value of 2,500 milliseconds if the percentage correct, ITMP, is less than 

75%.  The final three raw inputs, TMSD, AIAR, AIAP, are not changed in anyway at this 

point.  Each of these 5 scores are then transformed via equating tables.  The equating 

tables date back to the original implementation of the operational form of PCSM.  They 

equate the operational BAT test to the baseline BAT test configuration, which PCSM was 

developed on.  Information concerning the equating tables can be found in Carretta & 
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Ree (1993a).  The 5 resulting BAT scores are inputs into the current PCSM model along 

with the AFOQT Pilot composite and reported FAA flying hour code.  

 

3.7  Independent Model 

 Three separate data sets are employed in the development of the independent 

model.  The first, DATA_A, is the same data set used in the regression updates and 

consists of 2,732 passes and 304 failures.  The second set, DATA_B, consists of equal 

numbers (N = 2,732) of passes and failures for a total of 5,464 records.  Recall that 

bootstrap resampling with replacement was performed on the original 141 failures not 

included in the TEST set.  The third data set, DATA_C, consists 141 passes and 141 

failures.  Unless otherwise noted, all results are for the same TEST set. 

 When networks are trained on any of the three data sets, the data can be randomly 

assigned to training and validation sets with proportions defined by the user in Neural 

Connections.  In this research the training/validation proportions are set at 75% and 25%, 

respectively.  For example, DATA_A contains 3,036 records (2,732 passes, 304 failures).  

Networks are trained on the 75% (N = 2,277) of records randomly assigned to the 

training set.  As Neural Connections 2.1 trains the network, performance on the 

validation set is monitored.  Training stops when validation set performance is optimized.  

Although use of a validation set prevents over training the network, model performance 

on the validation set will tend to be optimistic.  The independent TEST set provides a 

more conservative estimate of model’s generalized performance.  The random 

training/validation set assignments are not changed for the networks trained to obtain a 
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mean SNR, but are changed at each iteration of he process feature selection from among 

the SNR ranked features. 

 

3.7.1  Feature Selection and Network Development Algorithm 

 Figure 26 presents a flow diagram of the algorithm used to perform feature 

selection and develop and optimized multi-layer perceptron (MLP) neural network.  

Figure 26 is followed by a short description of each step of the algorithm.  The 

methodology of the algorithm can be broken down into 4 main processes. (1) ranking 

features, (2) identify the minimum number of features to include, (3) optimize the 

number of hidden layer nodes, (4) reduce local minima effects.   
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Figure 26.  SNR Feature Selection & Network Optimization Algorithm 
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1. Introduce a Uniform (0,1) noise feature to the original set of features.  

2. Standardize all features. 

3. Randomly initialize the weights between 0.01 and 0.01.  

4. Randomly select the training and validation sets.  

5. Train the network.  

6. Retain the weights that resulted in the best validation set classification 
error and calculate the SNR for each feature. 

7. Store the SNR’s for each feature.  Repeat steps 3-7 for n runs.  n is user 
defined and is data set specific.  5 runs were used in this research.  
Training/validation sets remained constant for this portion of the process. 

8. Compute the mean saliency measure for each feature based on the n runs. 

9. Rank order all features based on their mean saliency and remove all 
features whose mean saliency is less than some minimum mean saliency 
defined by the user after inspection of all mean saliencies.  This is 
relative.  SNR > 0 implies more saliency than random noise.  If SNR’s 
tend to be large, a feature with SNR < 3.0 may not be regarded as being 
salient.   

10. Beginning with only the top ranked feature, iteratively train networks 
adding the next highest ranked feature one at a time until the sum of 
squared errors is optimized.  Randomize the training/validation set 
assignments and initial weights with each iteration.  This is done without 
a noise feature present.  Neural Connections 2.1 automatically adds a bias 
term and its associated node in the hidden layer. 

11. Retain the features present in the network with the optimal sum of 
squared error across the validation set. 

12. Train additional nets with the retained features to ensure performance is 
not merely due to the random training/validation set assignment and/or 
the initial weights.  

13. Optimize the number of nodes for a network with the retained features 
with a sigmoid activation function by training individual networks with 
different numbers of nodes in the hidden layer.  Begin with a sufficiently 
small number of nodes and add one node iteratively until performance on 
the TEST set is optimized.  This is done by inspection of ROC curves 
with the current network compared to the current PCSM model for the 
TEST set.  
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14. Investigate any networks with different numbers of nodes that perform 
similarly at optimal levels.  Decide how many nodes to include in the 
final network architecture.  

The signal-to-noise ratio (SNR) algorithm is used as the basis for performing 

feature selection in this research.  Young (2002) modified the signal to noise algorithm as 

presented by Bauer et al. (2000).  Young (2002) trained multiple networks and used the 

mean SNR as the saliency measure.  Then, based on the mean SNR, the worst remaining 

features were removed one at a time until the classification accuracy was optimized.   

In this research, 5 networks are trained to obtain a mean SNR for each of 34 

features including the noise feature.  At this juncture, each network contains one hidden 

layer with one node per network input.  Neural Connections 2.1 automatically adds a bias 

input bringing the total number of inputs to 35.  It is not necessary to account for this 

input when assigning the number of hidden layer nodes in the network dialog box.  Data 

reduction is performed iteratively.  It begins by training a network with the highest 

ranked input feature and calculating the sum of squared errors across the validation set.  

The next highest ranked feature is added and the process continues iteratively until the 

sum of squared errors is minimized.   

Once the features are selected, the number of nodes in the hidden layer must be 

optimized.  This is done by training single networks with a specified number of hidden 

nodes covering a wide range.  The performance of each is investigated and candidates are 

further investigated to ensure performance is robust.  With the network architecture 

defined, the final step is to train multiple networks with different initial weights to ensure 

the optimal network does not suffer from being “trapped” in a local minimum on the 

error surface.   
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3.7.2  Discriminant Analysis Feature Selection 

 In selecting features that provide the maximal separation between groups as 

defined by the Mahalanobis distance, it is necessary to consider higher order terms.  In 

this research, a heuristic is used to search for significant quadratic and two-way 

interaction terms.  SPSS performs stepwise discriminant analysis.  Interaction terms are 

generated independently and provided to SPSS.  This can be done within SPSS; however, 

it is more convenient to do in Excel.   

Young (2002) investigated second-order terms for every variable available in the 

data set.  SPSS was not able to perform stepwise discriminant analysis on such a large 

number of variables; therefore, Young (2002) performed a heuristic algorithm to 

investigate the interactions through a series of stepwise discriminant analyses.  Each 

iteration performed stepwise discriminant analysis on the basic variables available and all 

second-order terms of one of those variables.  In this research and to the extent possible 

due to differences in variable coding decisions, the final set of first and second-order 

terms that Young (2002) performed discriminant analysis on is replicated.  A 

discriminant function is derived with these variables using the current data sets. 

 A smaller set of basic variables used to investigate second-order interactions was 

selected as a means of generating a second discriminant analysis model.  14 variables 

were selected for this purpose.  These variables were selected based on two criteria.  

First, a stepwise linear regression was performed on DATA_A with 0.15 probability of F-

ratio to enter and 0.20 to leave.  This resulted in 13 significant variables.  These 13 

variables were compared to the 17 variables selected via the Signal-to-Noise ratio (SNR) 

method, which is discussed in section 3.7.1.  After comparing these two sets of variables, 
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14 variables were selected as basic variables used to search for significant interaction 

terms.  These three sets of variables are presented in chapter 4.  Fortunately, SPSS is able 

to perform stepwise discriminant analysis on the set of 14 basic variables along with 

every second-order interaction term.  Therefore, an algorithm similar to that used by 

Young (2002) is avoided. 

 
3.7.4  Ensemble Method 

 In order to develop a final model, the ensemble method was used to combine 

individual networks.  Three (3) networks with a single hidden layer of 23 neurodes were 

trained using the sigmoid, hyperbolic tangent, and linear activation functions.  The 

hidden layer contained 23 neurodes as a result of steps 13 and 14 of process described in 

section 3.7.1.  The ensemble method can have the greatest advantage when the combined 

networks find different local minima on the error surface  (Perrone & Cooper, 1992).  

Initial network weights are selected from a random uniform (-0.5, 0.5) distribution.  The 

increase in range of initial weights from +/- 0.01 to +/- 0.5 for these 9 networks allows 

training to begin from significantly different locations on the error surface.  This is 

intended to maximize dissimilarity among the networks.  Thus, correlation between the 

individual network errors should be minimized for several of the networks allowing the 

ensemble method to take advantage of different local minima.   

 The ensemble method can become saturated when it is applied to many networks 

(Perrone & Cooper, 1992).  Hence, it is necessary to minimize the number of networks 

used to perform the ensemble method.  With 9 trained networks it is likely that some 

networks are redundant (i.e. highly correlated network errors).  Dissimilar networks are 

selected by compiling a matrix of the network errors in columns and performing factor 
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analysis with varimax rotation.  Three (3) factors are retained and the highest loading 

network for each factor is selected for the ensemble method.    

 
3.9  Model Comparison 

 The ROC curve is the primary means of comparing independent models to the 

current PCSM model.  For this research, the ROC curve plots the probability of detecting 

a failure (true positive or target detection) versus the probability of falsely classifying a 

pass as a failure (false positive or false alarm).  Equations 28 and 29 present these two 

probabilities as calculated from a confusion matrix that is based on a single decision 

threshold.  The confusion matrix was discussed in Section 3.4.1.   

FNTP
TPTPob
+

=)(Pr     ( 27) 

 

FPTP
FPFPob
+

=)(Pr     ( 28) 

 
 

Each point on a ROC curve represents these two probabilities for a given decision 

threshold.  In this way, the performance of multiple models can be performed across the 

range of thresholds.  Hence, a three dimensional performance is mapped into two 

dimensions.  Furthermore, a ROC curve makes the trade off between maximizing True 

Positives and minimizing False Alarms intuitive.  To illustrate how to compare two 

models using ROC curves, Figure 27 presents ROC curves for two notional models.  

Note that the bottom curve is wholly contained within the area of the top curve.  This 

demonstrates a desirable condition known as stochastic dominance.  A model is 
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stochastically dominant if it outperforms another model throughout the entire threshold 

range.  In practice, two models often perform best in different intervals along the 

threshold range, thus overlapping of ROC curves is common. 

In order include PCSM with model outputs that range from 0.0 to 1.0 on a ROC, 

it is necessary to transform the PCSM score from its range of 1-99 to 0.01-.99.  This is 

done by multiplying PCSM scores by 0.01.  SPSS forces unique variable names, so 

PCSM scores transformed in this way are named “PCSM2.”  Many of the ROC’s 

presented in this research include “PCSM2” for performance comparisons.  
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 Figure 27.  ROC Curves for Two Notional Models 

 

3.10  Chapter Summary 

This chapter provided the reader with an overview of the details regarding the 

most pertinent aspects of the analysis process used in this research.  First, it reviewed the 

data preparation process required before analysis could begin.  Next, it provides basic 

tutorials for the two specialized software packages used in this research.  Thirdly, it 
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provides an overview of the methodology used to accomplish each objective of this 

research.  In any multivariate analysis, one of the most crucial issues is feature selection.  

Two methods of feature selection are summarized, SNR and stepwise discriminant 

analysis.  Finally, ROC curves are presented as the primary means of comparing the 

performance of competing models.   
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IV.  Results 
 
 
4.1  Introduction 

 As discussed previously, this research has three goals.  They are validation of 

PCSM, updating the regression for the current PCSM model, and development of an 

independent model.  The results in these three areas are presented in separate sections.  

Updated regression and independent model results are compared to the current PCSM 

model by way of the independent “TEST” set.  Some results pertain to validation sets and 

are noted accordingly.  Validation sets may be unique due to changing random number 

seeds within Neural Connections or manually reassigning training/validation sets via a 

uniform (0,1) number generator from within Excel.  All references to the TEST set are 

the same set of 470 observations pulled out of DATA_A as described in Section 3.6.1. 

 

4.2  Validation Study Results 

Factor analysis was performed using both unrotated factors and varimax rotation 

on all three validation data sets in Table 13.  For each data set, the first three factor 

interpretations are clearly in line with the three latent constructs underlying the current 

PCSM model inputs.  These are the AFOQT test, the BAT test, and a measure flying 

experience.  All factor interpretations and the variables underlying the assigned 

interpretation are presented in table 14   
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Table 13.  Data Set Summary 

PASS FAIL PASS FAIL PASS FAIL
3,155 188 2,732 304 2,732 304
96% 4% 90% 10% 90% 10%

3,155 3,155 NA NA 2,732 2,732
50% 50% NA NA 50% 50%

188 188 912* 304 141 141
50% 50% 75% 25% 50% 50%

NA NA 423 47 423 47
NA NA 90% 10% 90% 10%

VALIDATION LOGREG INDEP-MODEL

DATA_A

* 3 of these data sets were created

DATA_B

DATA_C

TEST

 

 

The factor interpretations remained consistent across all three data sets for both 

unrotated and varimax rotated factors.  Varimax rotation made the interpretations much 

more apparent.  There is very little ambiguity in the varimax rotated factor loadings 

matrix.  The factor number associated with a specific factor interpretation did tend to 

change across the three data sets to a small degree.  For example two successive factors 

might swap order.  The variables loaded consistently on their respective factors 

regardless of the factor number, thus interpretation across all three data sets was made 

using the same variables.  
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Table 14.  Factor Analysis Interpretations 

Factors 1 2 3 4 5 6 7 8 

Interp. AFOQT 
BAT 

Complex 
Coord. 

Basic 
Fly Exp Age 

Adv. 
Fly 
Exp 

BAT 
Factor 

1 

BAT 
Factor 

2 

Looks 
On Paper 

Variables 

 
Pilot 
Nav 
Quant 
Verbal 
Acad 
 

 
BAT 
H2CX1 
PS2X2 
PS2Y2 
PS2Z2 

 
FltHrCd 
AeroCd 

 
BAT_Age 
ROTC 
AD 

 
AeroCd 
Multi 
Instrum 
Instruct 

 
ITMR 
AIAR 

 
AIAP 

 
GPA 
OTS_AD 
OTS_Civ 
AFR 
ANG 

 

 

Note that the second factor is defined by the BAT test.  Specifically, it is the 

EQPMOT related BAT scores that define this factor.  Regression results in sections 4.3.2 

and 4.3.3 and PCSM input rankings in section 4.3.4 indicate that the EQMPOT is the 

most significant of the BAT inputs to PCSM. 

The last factor interpretation is interesting to note.  There seems to be a latent 

construct explained by variables associated with GPA and UPT candidates selected from 

sources other than the AFA or ROTC.  Given the fact that the AFA and ROTC supply the 

majority of UPT candidates, competition for available slots at the other 5 selection 

sources is great.  I chose to interpret the latent construct as an input that describes the 

ability of those selected from these pools to “look good on paper.”  AD loaded 

moderately high on this factor as well, but had a much higher loading on the age factor.  

Nevertheless, AD could also be used as part of the interpretation of factor 8.  

Interestingly, the age factor resulted in strong loadings for both ROTC and AD, but were 

opposite in sign.  This is intuitive given that AD applicants are generally older than 

ROTC cadets.  Although only moderate in magnitude when compared to other loadings 
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for factor 5, non-AFA and non-ROTC source indicators suggest that advanced flying 

experience is a significant to selection from those sources.  The varimax rotated factor 

loadings for DATA_A are presented in Appendix F.   

Stepwise linear regression was performed on each data set with the pass/fail 

criterion as the dependent variable.  Table 15 provides a summary of these results.  

Significant variables are preceded by the factor number, for which the variable is used in 

factor interpretations presented in Table 14.  The probability of F-ratio to enter is set at 

0.10 allow more variables to enter the regression, but removal is set to 0.12 to remove 

variables quickly as they become insignificant.  This is done to investigate variables with 

predictive power rather than sheer parsimony.  Note that for the bootstrapped data set, the 

probabilities to enter/leave were set at 0.05/0.10 to limit the number of variables that 

become significant with such a large sample size.  Although adjusted R-squared values 

are not very impressive, regression significance is great.  This is due to large sample 

sizes, which causes relatively small MSE results and allows for larger F-ratios. 
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Table 15.  Stepwise Linear Regression Results 

Data Set 95% / 5% Bootstrap 50% / 50% Small 50% / 50% 
Enter/Leave 0.10 0.12 0.05 0.10 0.10 0.12 
Vars 
(Factor) 

(1) Pilot 
(3) Aero-Cd 
(2) PS2Z2 
(2) TMSD 
(4) ROTC 
(4) BAT_Age 
(4) AD 

(1) Pilot 
(3) Flt Hr Cd 
(2) PS2Z2 
(2) TMSD 
(4) BAT_Age 
(4) ROTC 
(1) Verbal 
(7) AIAP 
(4) AD 

(3) Single 
(5) Multi 
(1) Acad 
(2) BAT 
(2) PS2X2 
(5) Instrum 
(1) Nav 
(2) HC2X1 
(5) Instruct 

(1) Pilot 
(3) Flt Hr Cd 
(2) BAT 
(4) BAT_Age 

R 0.220 0.475 0.441  
Adj R-sqd 0.027 0.223 0.186 
SE 0.225 0.441 0.452 
F-Ratio 24.32 76.25 22.38 
MSE 0.051 0.194 0.204 
SSE DoF 3,335 4,713 371 

  

The variables are also investigated for validity of predicting a binary pass/fail 

criterion.  Calculating correlation coefficients and selecting the variable with the largest 

significant correlation at the 0.10 alpha-level begins this process.  Once a variable is 

selected, partial correlation calculations are made by “partialing out” all variables 

previously selected.  This is done iteratively using SPSS’s partial correlation capability.  

Table 16 provides a list of the variables in the order in which they were selected.  The 

first 7 variables had significant partial correlations at the 0.10 alpha level.  The last 6 

partial correlations where selected at successive iterations on the basis of partial 

correlation magnitude alone.  For example, the IFT variable has the largest partial 

correlation of the last 6 non-significant variables selected, but it was selected last.  At 

iteration 12 the partial correlation for IFT was 0.011 with a p-value of 0.531. 
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Table 16.  Partial Correlation Results 

Order Variable 
Partial 
Corr p-value Order Variable 

Partial 
Corr p-value 

1 PCSM 0.184 0.000 8 Verbal -0.24 0.174 
2 Pilot 0.075 0.000 9 Quant 0.018 0.304 
3 AD -0.033 0.054 10 Nav -0.028 0.101 
4 ROTC -0.045 0.010 11 TMSD 0.020 0.238 
5 BAT_Age -0.041 0.017 12 Flt Hr Cd 0.022 0.196 
6 PS2Z2 -0.036 0.039 13 IFT 0.031 0.077 
7 AIAP 0.033 0.060     

 

  

The effects of correcting correlations for range restrictions were also investigated.  

Table 17 presents both the uncorrected and corrected correlations between the pass/fail 

criterion and a set of 10 variables related to the current PCSM model.  The variables are 

ranked by magnitude of correlation.  Note that the rank order of the variables changes 

little.  This suggests that in terms of variables used in the current PCSM model, the 

affects of range restriction are not that great.  PCSM remains the single most predictive 

variable, followed by variables that are actual PCSM inputs.  Although, the AFOQT 

Navigator composite is not in the current PCSM model, it is highly correlated with the 

Pilot composite.   
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 Table 17.  Correlations Corrected for Range Restriction 

Variable Uncorrected Variable Corrected
pcsm 0.189 pcsm 0.219
pilot 0.180 pilot 0.201
flthrcd 0.143 nav 0.169
nav 0.128 flthrcd 0.154
ps2z2 -0.089 ps2z2 -0.131
hc2x1 -0.083 bat 0.119
bat 0.080 hc2x1 -0.112
tmsd 0.080 itmr -0.068
itmr -0.047 aiap 0.050
aiap 0.033 tmsd 0.028

Correlations with the Pass/Fail Criterion

 

 

4.3  Regression Update Results 

 The regression weights are update with linear and logistic regressions.  Both are 

compared to the current PCSM model.  AETC/SAS provided an Excel spreadsheet, 

which is currently used to perform this pre-processing and apply the regression weights.  

The regression weights were updated using the same pre-processing steps currently 

employed to transform the 9 raw BAT scores into the 5 BAT scores that actually enter 

PCSM.  The other two inputs, AFOQT Pilot and Flight Hour Code are not transformed 

prior to applying the regression weights.  This pre-processing was graphically illustrated 

in Figure 25. 

Unfortunately, the 5 transformed BAT scores are not recorded by AETC/SAS.  

Therefore, an Excel spreadsheet tool was created to apply the standardization, averaging, 

and other logical operator steps of the AETC/SAS Excel tool to the entire DATA_A and 

TEST sets.  MatLab is then employed to apply the equating tables for the 5 BAT inputs to 

the entire data set.  AETC currently applies the equating tables manually on a record-by-

record basis in a PCSM calculator Excel spreadsheet.  The MatLab code for the 

EQPMOT input is provided in Appendix B.   
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 Once the raw data provided for this research is transformed into the actual PCSM 

inputs, the regression can be modeled.  Currently, AETC/SAS calculates the linear 

combination of the weights and inputs to get a raw PCSM score.  Then a discrete 

approximation to an unknown form of a sigmoidal activation function is applied.  Figure 

28 presents the approximate activation function created from the look-up table currently 

employed by AETC.   
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Figure 28.  Current Activation Function For Raw PCSM Scores 

 

The lookup table used to create Figure 28 has a maximum raw score value of 

1.116.  All raw PCSM scores greater than 1.116 are assigned a PCSM score of 99.  In this 

data set, the raw PCSM scores range from 0.0 to 1.24.  This is a consequence of linear 

regression.  Logistic regression outputs are bounded by 0.0 and 1.0.  This introduced the 

issue of how to treat the updated logistic regression output since it has already passed 

through a continuous sigmoidal activation function.  Although the sigmoid activation 

function has already been applied to the updated logistic regression output, AETC/SAS 

prefers to apply the current approximation function in Figure 28.  This is accomplished 
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by rescaling the logistic regression output to exhibit a range of 0.0 to 1.116.  The discrete 

activation function in Figure 28 is then applied. 

 

4.3.1  Logistic Regression Results 

 Performance results of the updated logistic regression on the DATA_A set are 

similar to the current PCSM model when applied to the TEST set.  This held for both the 

raw logistic regression output as well as the transformed output.  Figure 29 shows the 

performance of the raw updated logistic regression output.  Figure 30 shows the 

performance of the updated logistic regression after the output range was changed to (0, 

1.116) and the approximate activation function in Figure 28 was applied. 
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Figure 29.  Raw Logistic Regression vs PCSM 
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Figure 30.  Range Converted & Current Activation Applied vs PCSM 

 

 As discussed in section 3.6.1, a logistic regression was also calculated for 

DATA_C1, DATA_C2, and DATA_C3.  These data sets consisted of 75% passes (N = 

912) and 25% bootstrapped failures (N = 304).  These 3 logistic regressions resulted in 

performance similar to DATA_A.  An example is provided in Figure 31.  These results 

are presented for raw logistic regression output.  Again, rescaling and applying the 

approximate sigmoidal function results in quite similar performance.  Comparing the 

results in Figures 29 and 31, it appears that performance of the logistic regression is not 

sensitive to the proportion of failures in the data set (10% vs. 25%).  It appears that 

updating the current PCSM regression with a truly logistic regression does not 

appreciably improve the model for the current data set.  These results also suggest that 

forcing the use of the approximate sigmoid function on logistic regression results is not 

necessary.  These results provide further validation of the current PCSM model. 
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Figure 31.  Performance of DATA_C2 Raw Outputs vs PCSM 

  

Analysis of the logistic regression results would not be complete without 

inspection of the resulting weights and their associated significance.  Table 18 provides a 

summary of the current PCSM regression weights and the logistic regression weights 

derived on DATA_A.  Table 19 provides the same PCSM weights and logistic regression 

weights for 3 separate DATA_C sets.  The p-values reported are for the logistic 

regressions.  It is interesting that although performance for all four logistic regressions is 

similar to the current PCSM model, the intercept and regression weights are substantially 

different.   
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Table 18.  Logistic Regression Weight Summary for DATA_A 

 PCSM DATA_A 

Input Wt Wt p-val 

Intercept .68966 -1.886 .006 

Pilot .00293 .0310 <.001 

FltHrCd .02313 .1316 <.001 

EQPMOT .08915 .2896 .019 

ITMR .00090 -.00002 .935 

TMSD .00010 .0029 .146 

AIAP .00240 .0111 .038 

AIAR .00004 -.00003 .562 
 

 

Table 19.  Logistic Regression Weight Summary for 3 DATA_C Sets 

 PCSM DATA_C1 DATA_C2 DATA_C3 
Input Wt Wt p-val Wt p-val Wt p-val 

Intercept .68966 -4.063 <.001 -2.325 .004 -2.735 <.001 
Pilot .00293 .0325 <.001 .0286 <.001 .0279 <.001 
FltHrCd .02313 .1133 <.001 .1428 <.001 .1384 <.001 
EQPMOT .08915 .4415 .002 .2595 .061 .2472 .075 
ITMR .00090 .0002 .606 -.0002 .517 .0002 .554 
TMSD .00010 .0038 .092 .0022 .342 .0033 .141 
AIAP .00240 .0158 .011 .0092 .127 .0092 .127 
AIAR .00004 .00004 .590 -.00005 .442 -.00007 .319 

 

 

 4.3.2  Linear Regression Results 

 The weights resulting from linear regressions are much more similar to the current 

PCSM model than were the logistic regression weights.  The weights for all four linear 
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regressions are presented in Table 20 along with the current PCSM weights.  The 

similarity in intercepts for PCSM and the DATA_A regression suggests that DATA_A is 

similar to the data set used to in deriving the current PCSM regression weights.  In this 

case, similar performance would not be as surprising as it is for the logistic regressions.  

Performance of the linear regression for DATA_A applied to the TEST set is presented in 

Figure 32.  The performance of the linear regressions for the 3 data sets with 75% passes 

and 25% failures is similar the that in Figure 32.  Figure 33 presents a comparison of the 

raw outputs for the linear and logistic regressions for DATA_A applied to the TEST set.  

The results are strikingly similar and suggest that the only advantage offered by a logistic 

regression is in its more realistic probabilistic interpretation.  

 

Table 20.  Linear Regression Weights 

Linear Regression Results
PCSM DATA_A DATA_C1 DATA_C2 DATA_C3

Intercept 0.68966 0.49506 -0.17864 0.12752 0.04433
PILOT 0.00293 0.00316 0.00606 0.00533 0.00521
FLTHR_CD 0.02313 0.00988 0.01694 0.02261 0.02191
EQP 0.08915 0.03181 0.07966 0.04695 0.04670
ITMRT 0.00090 0.00000 0.00003 -0.00004 0.00004
TMS 0.00010 0.00024 0.00066 0.00037 0.00055
AIAPER 0.00240 0.00079 0.00229 0.00122 0.00142
AIART 0.00004 0.00000 0.00001 -0.00001 -0.00001  
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Figure 32.  DATA_A Linear Regression Performance on the TEST Set 
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Figure 33.  Comparison of Linear and Logistic Regressions on the TEST Set 

 
 

 4.3.3  Linear Regression Results for Updated EQPMOT Standardization 

 The current PCSM model combines 4 pursuit tracking error scores from the BAT.  

These 4 scores are standardized before being averaged and multiplied by –1.0.  The 
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previous regression results used the same means and standard deviations as the current 

PCSM model.  Results presented here reflect updated standardizations using the means 

and standard deviations observed in DATA_A.  Figures 34 and 35 present the results of 

these linear regressions when applied to the TEST set.  Figure 35 applies the approximate 

sigmoidal function applied in the current PCSM model.  Again, application of the 

sigmoidal function does not improve performance.  Updating the EQPMOT 

standardization results in performance degradation.  This and the previous results suggest 

that no changes in PCSM’s regression weights or the standardization process are 

warranted. 
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Figure 34.  Linear Regression with Updated Standardization 
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Figure 35.  Updated Standardization with Approximate Sigmoid Applied 

 

 4.3.4  Investigating the Current PCSM Model 

PCSM’s continued positive performance initiated an interest in better 

understanding the PCSM model itself.  With PCSM score as the dependent variable, 

linear regressions were performed on the current PCSM inputs with the current and 

updated EQPMOT standardizations.  The regressions are performed on all available data.  

This includes both DATA_A and the TEST set combined.   The regression parameters 

are presented in Tables 21 and 22.  Adjusted R-Squared values for the two regressions are 

0.942 and 0.940, respectively.  The standardized coefficients match very closely across 

the two standardization schemes.  Hence, the inputs are providing similar information in 

predicting the PCSM score with both standardizations.  This indicates that the input 

distributions for the current data must be similar to those of the data used to derive the 

current PCSM model.  Such similarities could explain why the current regression 

performance is much like the current PCSM model. 



 

156 

Table 21.  Regression on PCSM with Current Standardization 

10.650 1.462 7.285 .000
.660 .009 .353 77.111 .000

5.045 .039 .576 129.077 .000
17.349 .286 .280 60.735 .000

-.020 .001 -.139 -32.519 .000
.177 .004 .190 42.491 .000

-.457 .011 -.175 -42.131 .000
-.007 .000 -.239 -56.464 .000

(Constant)
PILOT
FLTHR_CD
EQP
ITMRT
TMS
AIAPER
AIART

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: PCSMa. 

ITMR
TMSD
AIAP
AIAR

10.650 1.462 7.285 .000
.660 .009 .353 77.111 .000

5.045 .039 .576 129.077 .000
17.349 .286 .280 60.735 .000

-.020 .001 -.139 -32.519 .000
.177 .004 .190 42.491 .000

-.457 .011 -.175 -42.131 .000
-.007 .000 -.239 -56.464 .000

(Constant)
PILOT
FLTHR_CD
EQP
ITMRT
TMS
AIAPER
AIART

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: PCSMa. 

ITMR
TMSD
AIAP
AIAR

 

 

Table 22.  Regression of PCSM with the Updated Standardization 

Standardized 
Coefficients

B Std. Error Beta
(Constant) 19.798 1.541 12.844 0.000
PILOT 0.652 0.009 0.347 74.376 0.000
FLTHRCD 5.034 0.040 0.573 126.459 0.000
EQPMOT 12.452 0.209 0.286 59.629 0.000
ITMRT -0.020 0.001 -0.138 -31.946 0.000
TMSAV 0.165 0.004 0.177 38.274 0.000
AIAHR -0.455 0.011 -0.172 -40.957 0.000
AIART -0.007 0.000 -0.240 -56.008 0.000

Model  

Unstandardized 
Coefficients

t Sig.
1

a. Dependent Variable: PCSM

ITMR
TMSD
AIAP
AIAR

Standardized 
Coefficients

B Std. Error Beta
(Constant) 19.798 1.541 12.844 0.000
PILOT 0.652 0.009 0.347 74.376 0.000
FLTHRCD 5.034 0.040 0.573 126.459 0.000
EQPMOT 12.452 0.209 0.286 59.629 0.000
ITMRT -0.020 0.001 -0.138 -31.946 0.000
TMSAV 0.165 0.004 0.177 38.274 0.000
AIAHR -0.455 0.011 -0.172 -40.957 0.000
AIART -0.007 0.000 -0.240 -56.008 0.000

Model  

Unstandardized 
Coefficients

t Sig.
1

a. Dependent Variable: PCSM

ITMR
TMSD
AIAP
AIAR

 

 

Table 23 summarized the ranking of the PCSM inputs based on predicting 

Pass/Fail and PCSM itself.  Both the current and updated EQPMOT standardization are 

represented for each dependent variable.  The SNR rankings resulted from training 8 

MLP networks with PCSM as the target and the current PCSM inputs as input features.  

Table 24 presents the mean SNR ratios for these networks.  It is interesting to note that 

the Pilot and flight hour code rankings are reversed when PCSM is the dependent 
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variable.  This indicates that the flight hour code input is more important than the Pilot 

composite in determining an applicant’s PCSM score, but the Pilot composite is more 

important for predicting the pass/fail criterion.   

It is also worth noting that the top three inputs are always Pilot, FltHrCd, and 

EQPMOT.  Among the 5 BAT inputs to PCSM, EQPMOT consistently proves to be the 

dominant predictor.  Recalling the factor analysis interpretations provided Section 4.2, 

one can easily see the continued validation of the first three factors representing the 

PCSM inputs.  Despite the fact that the Pilot composite is most predictive of UPT 

performance, the results in Table 23 suggests that FltHrCd is more predictive of the 

PCSM score.  This discrepancy should be addressed in the PCSM model. 

 

Table 23.  Summary of Input Ranks Across Multiple Regressions 

EQPMOT Std
Old 

LinReg
New 

LinReg
Old 

LinReg
New 

LinReg
Old
SNR

1 Pilot Pilot FltHrCd FltHrCd FltHrCd
2 FltHrCd FltHrCd Pilot Pilot Pilot
3 EQPMOT EQPMOT EQPMOT EQPMOT EQPMOT
4 AIA%HR TMSAVDIF AIART AIART AIART
5 TMSAVDIF ITMRT TMSAVDIF TMSAVDIF AIA%HR
6 AIART AIA%HR AIA%HR AIA%HR TMSAVDIF
7 ITMRT AIART ITMRT ITMRT ITMRT

Pass/Fail as Criterion PCSM as Criterion
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Table 24.  Mean SNR's from 8 Networks with PCSM as Target 

Input Mean SNR Std Dev 90% LCL 90% UCL
FltHrCd 25.24 5.87 21.30142 29.18631
PILOT 20.81 5.90 16.84871 24.77144
EQP 19.97 5.75 16.11209 23.83586
AIART 18.67 5.81 14.76936 22.5686
AIA% 16.41 5.75 12.54278 20.26943
TMS 16.35 6.09 12.2556 20.44272
ITMRT 13.77 5.83 9.855359 17.68747  

 

In order to more fully investigate the relationship between PCSM and its inputs, 

linear regressions were performed on a series of sub-sets of PCSM inputs.  The pass/fail 

criterion is the dependent variable in these regressions.  First all 7 inputs are included, 

then the lowest ranked PCSM input was removed and a new regression performed.  This 

was done repeatedly until only the Pilot input remains.  The variables were removed 

according to the rankings of the linear regression results using the “old” standardization 

under the pass/fail criterion in Table 23.  Hence, ITMR is the first input removed, 

followed by AIAR, TMSD, AIAP, EQPMOT, and FltHrCd.  Table 25 presents the 

correlations among the linear regression outputs.  The correlations above the diagonal 

represent the correlations among the outputs for DATA_A, while the correlations below 

are for the TEST set.   PCSM-1 represents the model with the lowest ranked input 

removed.  Likewise, PCSM-6 represents the model with the 6 lowest ranked inputs 

removed.  Inspection of Table 25 reveals that correlations between regression outputs for 

the current PCSM model and the sub-models remain high until only the Pilot and 

FltHrCd inputs remain. 
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Table 25.  Correlations Among Regression Outputs for PCSM Sub-Models 

 PCSM PCSM-1 PCSM-2 PCSM-3 PCSM-4 PCSM-5 PCSM-6
PCSM 1 0.867 0.859 0.848 0.872 0.811 0.671
PCSM-1 0.890 1 1.000 0.996 0.988 0.962 0.875
PCSM-2 0.884 1.000 1 0.996 0.989 0.962 0.876
PCSM-3 0.870 0.996 0.996 1 0.993 0.966 0.879
PCSM-4 0.890 0.989 0.990 0.993 1 0.973 0.886
PCSM-5 0.840 0.964 0.964 0.968 0.976 1 0.910
PCSM-6 0.713 0.877 0.876 0.879 0.889 0.913 1

Linear Regression Output Correlations: Upper => DATA_A  ,  Lower => TEST 

 

 

 Figures 37, 38, and 39 present the performance of the last three linear regressions, 

PCSM-4, PCSM-5, and PCSM-6.  These figures present performance on the TEST set.  

Figure 37 presents PCSM-4, which includes Pilot, FltHrCd, and EQPMOT.  Figure 38 

presents PCSM-5, which includes Pilot and FltHrCd.  Finally, Figure 39 presents PCSM-

6, which includes only the Pilot input.  The performance of the linear regressions for 

PCSM-1, PCSM-2, and PCSM-3 are all nearly identical to PCSM-4.  Figure 37 shows 

that performance begins to degrade when EQPMOT is removed.  Performance is worst 

when only the Pilot input remains.  These results suggest that a more parsimonious model 

may be obtained through the use of top 3 ranked PCSM inputs; Pilot, FltHrCd, and 

EQPMOT.  One would need to further investigate the importance of the other PCSM 

inputs before eliminating them from the model.   
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Figure 36.  PCSM vs. PCSM, FltHrCd, EQPMOT 
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Figure 37.  PCSM vs. PCSM FltHrCd 
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Figure 38.  PCSM vs. Pilot 

 

4.4  Independent Model Results 

 

4.4.1  Signal to Noise Ratio Feature Selection Results 

PCSM is considered a valid feature for use in developing an independent model.  

However, it is not considered for inclusion here because the ultimate goal of an improved 

model would be to replace PCSM.  Including PCSM in an independent model would 

simply add complexity to an already complex model.  With that said, the Signal-to-Noise 

(SNR) method was used to investigate feature saliency with and without PCSM included 

as a feature.  This was done with the goal of understanding which features PCSM 

accounts for and which ones provide additional predictive information beyond PCSM. 

Features with higher mean saliencies than PCSM are more important to the 

networks than PCSM itself.  This would lead one to conclude that the importance of such 

features will not decrease upon removal of PCSM from the network.  Table 26 shows this 
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to be the case.  Table 26 presents the top 17 candidate features along with their mean 

saliency.  It is interesting to note that PCSM ranks ninth among the features when it is 

included.  A complete table of features and their mean saliencies is presented in 

Appendix E.   

Upon PCSM’s removal, features that become salient could provide additional 

insight into the question, “What makes PCSM work?”.  In fact, inspection of the 

complete list of mean saliencies in Appendix E shows that with PCSM removed, every 

available variable has a mean saliency of at least 3.0.  This indicates that although PCSM 

is not the most important input for a neural network, it does account for much of the 

information available in the rest of the variables.  This is also indicated by the fact that 

mean SNR’s increase for every feature when PCSM is removed. 

 

Table 26.  Mean SNR Saliency For Feature Selection 

PCSM Included (N = 8) PCSM Excluded (N = 5) 
Rank Feature Mean SNR Rank Feature Mean SNR 

1 Pilot 15.05 1 BAT 21.14 
2 BAT 14.62 2 Pilot 21.07 
3 ROTC 12.02 3 Nav 17.39 
4 Quant 11.47 4 Quant 15.91 
5 AERO34 10.88 5 AIAR 15.49 
6 ITMR 10.46 6 PS2Z2 15.26 
7 BAT_Age 10.21 7 ITMP 15.23 
8 PS2Z2 10.14 8 ROTC 14.78 
9 PCSM 9.86 9 TMSD 14.12 
10 AERO2 9.63 10 AERO34 14.00 
11 H2CX1 9.21 11 ITMR 13.95 
12 Instruct 8.97 12 BAT_Age 13.38 
13 TMSD 8.84 13 PS2Y2 12.65 
14 PS2Y2 7.94 14 AIAP 12.29 
15 Nav 7.65 15 PS2X2 11.83 
16 AIAR 7.51 16 AERO2 11.81 
17 ITMP 7.46 17 H2CX1 11.79 
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 With the features ranked by mean SNR, it becomes necessary to identify a 

parsimonious set of features for use in the final model.  This is done in a forward 

selection manner by beginning with the highest ranked feature, training an individual 

network, and calculating the SSE across the observations in the validation set.  Next, the 

second highest ranked feature is added to the network, training is performed, and SSE 

recalculated.  Figure 39 presents SSE across the validation set for each network as this 

iterative process progressed.  At this point in the research, the training and validation sets 

are being held constant. 
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Figure 39.   SSE Of Individual Networks 

  

 Looking at Figure 39, it appears that SSE is minimized with 10 or 17 features.  

Additional networks where trained for networks with 9, 10, 11, 16, 17, and 18 features 

and ROC curves inspected for both validation and TEST sets before the final number of 

features was selected.  Networks with the top 17 features consistently provide the best 
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results.  Although 10 features provide a more parsimonious model, performance across 

the TEST set is lacking.   

Figure 40 presents the performance for a typical 17-feature network across its 

validation set.  It is common practice to end training when a performance metric is 

optimized on a validation set.  This prevents over training the network, which destroys 

generalizability of the network.  Figure 41 presents the same network’s performance 

across the TEST set.  It is interesting to note the stark difference in performance between 

the sets. 

The TEST set is expected to yield lower performance as it provides a more 

realistic picture of how the model could be expected to perform in the population.  

Performance of the validation set is overly optimistic because the network is optimized 

for the validation set performance.  Given such a drastic decrease in performance across 

the TEST set, the author is lead to believe the TEST set to be particularly difficult in 

terms of classification.  This realistically leads to the conclusion that performance 

reported in this research can be expected to be conservative.  In any case, these results 

make a strong argument for the use of truly independent data sets for model validation.  

Only reporting validation results for models optimized on that set may result in overly 

optimistic conclusions and possible implementation of an invalid model. 
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Figure 40.  17 Feature Network Performance Across Validation Set 
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Figure 41.  17 Feature Network Performance Across TEST Set 

  

Once the 17 features were selected, networks were trained on the other two data 

sets, DATA_B and DATA_C.  It was expected that providing the network with a larger 
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proportion of failures would yield improved results.  Such improvements where not 

found.  In fact, performance was degraded.  

Figure 42 presents results of a network trained on DATA_B.  These results are 

not valid.  Figure 42 is presented to caution the reader duplicating these results.  This 

invalid performance is a consequence of the fact that there is no way within Neural 

Connections to avoid randomly selecting the repeated bootstrapped sample of failures for 

use in both the training and validation subsets of DATA_B.  Hence, many of the 

observations in the validation set are also present in the training set.  This results in the 

overly optimistic ROC curve in Figure 42.  Figure 43 presents the same network’s results 

for the TEST set.  Again, the importance of the TEST set is clearly demonstrated. 
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Figure 42.  17 Feature Network Results From DATA_B Across It’s Validation Set 
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Figure 43.  17 Feature Network Results From DATA_B Across the TEST Set 

 

The final step in optimizing the network is to select the appropriate number of 

nodes in the network’s hidden layer.  All networks trained to this point had one node for 

each feature.  Additional nodes provide the network with more classification power.  This 

phenomenon relates to the fact that each node separates the data with a hyper-plane.  

With enough hyper-planes, the data can be grouped into its separable classes. The reader 

will recall that given enough nodes, a network can accurately approximate any function.  

The problem with too many nodes is that the network can begin to approximate a 

function of the noise within the training data.  This leads to a breakdown of 

generalizability when the network is applied to independent data. 

 In order to optimize the number of hidden-layer nodes, one network was trained 

with 4 through 26 nodes, 34 nodes, and 50 nodes.  4 nodes resulted from using Neural 

Connections capability to automatically find an optimal number of nodes during training.  

In general, this feature has produced less than desirable results, with the resulting number 
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of nodes being orders of magnitude less than the number of features.  The author 

prescribes to a general rule of thumb in network architecture in which at least one hidden 

node is used for each feature.  

 This iterative network training procedure resulted in further investigation of 15, 

17, 19, and 23 node networks.  For each of these architectures, a second network was 

trained.  The 23-node architecture appeared to provide optimal, yet stable results.  A third 

23-node network was trained to further test this stability.  Figure 44 presents typical 

results for a 23-node network with the top 17 ranked features.   

It is interesting to note that no single network outperformed PCSM on the TEST 

set throughout the entire network optimization process.  However, very many networks 

have provided what seem to be optimistic results when validation set performance is 

considered.  A properly designed neural network is considered to be a very powerful 

modeling tool.  The fact that PCSM remains dominant after such a rigorous network 

architecture design process provides perhaps the strongest validation of the model yet. 
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Figure 44.  ROC Curve For 17 Features and 23 Hidden Nodes Across The TEST Set 

 
  

4.4.2  Discriminant Analysis Feature Selection Results 

 When the assumptions underlying discriminant analysis hold, the discriminant 

function is highly related to linear probability models in regression analysis (Dillon & 

Goldstein, 1984).  Dillon & Goldstein (1984) point out several philosophical differences 

in these two types of analysis.  Similar to regression analysis, it is necessary to consider 

higher-order terms for inclusion in the discriminant function in order to obtain the best 

results.  Due to limitations on the number of variables in SPSS, every interaction term 

could not be considered in one stepwise discriminant analysis run.  Therefore, Young 

(2002) used a heuristic search methodology by which he iteratively investigated every 

second-order interaction term for the 28 independent variables available in that analysis.   

This was accomplished by generating the set of interactions for each of the 28 

basic variables.  Then 28 stepwise discriminant analyses were performed.  Each one 

included the 28 basic variables and one of the 28 sets of interactions.  At each iteration, 
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all significant interactions were retained for a final stepwise discriminant analysis, which 

was performed on the 28 basic variables and the retained interactions from the 29 

previous iterations.  This heuristic involved 29 separate stepwise discriminant analyses.   

 Given the fact that the data used by Young (2002) is a sub-set of the data used in 

this research, a discriminant function is derived using a set of variables similar to those in 

Young’s (2002) final discriminant function.  Due to differences in variable coding 

decisions in this research and the exclusion of the variable identifying sex, it is not 

possible to recreate every variable exactly.  The discriminant function with the Young-

like (2002) variables performed as well or better than the optimized network.  Table 27 

presents the 22 variables used in this discriminant function.  Figure 45 presents a ROC 

curve of this discriminant function applied to the DATA_A TRAIN set.  Figure 46 

presents the same discriminant function applied to the TEST set. 

 

Table 27.  Discriminant Function Variables Based on Young (2002) 

1.Pilot x FixSgle 7.Pilot 13.ANGAFR x PS2X2 
19.Pilot x 
ANGAFR 

2.BAT_Age x 
ROTC 8.ROTC 14.Quant 

20.Quant x 
ANGAFR 

3.AERO1 9.H2CX1 15.PS2X2 21.ITMR 

4.AERO2 
10.ANGAFR x 
H2CX1 16.ANGAFR 22.BAT 

5.AERO34 11.MultiInstrum 17.BAT_Age  

6.Pilot x Pilot 12.GPA 
18.ROTC x 
MultiInstrum  
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Figure 45.  DATA_A Discriminant With Young (2002) Variables 
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Figure 46.  DATA_A Discriminant On TEST With Young-like (2002) Variables 

 

 In an effort to reduce the number of interaction terms that require investigation, a 

new approach is also taken.  A reduced set of basic variables is pre-selected in order to 

minimize the number of interactions.  To do this, the list of ranked salient features in 

Table 24 is compared to the list of variables significant in a stepwise linear regression on 
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the DATA_A set.  These regression variables in Table 28 are presented in the order they 

entered the regression.  This regression was performed on the combined DATA_A and 

TEST sets.  No variables left the regression once they entered.  Judgment was used to 

select a parsimonious set of 14 basic variables.  The variables are presented in Table 29.  

Note some differences in variable names compared to Table 15 are due to changes in 

coding of dummy variables for independent model development.  Such changes simply 

involve the combination of multiple levels of nominal or ordinal variables into fewer 

dummy variables.  New variable names relate to the variables combined.   

All 91 interaction terms were created for these 14 variables and added to the set of 

basic variables.  SPSS was able to perform stepwise discriminant analysis on the entire 

set of 105 variables (basic variable and interactions) with probability of F-ratio to 

enter/leave set to 0.05/0.10.  The resulting discriminant function included 20 variables.  

The 20 variables are listed in Table 30.  The numbering of these variables in Table 29 

does not indicate a ranking or significance among the variables.  The numbering of the 

variables relates to the naming of the interaction variable used during the creation of 

interaction terms.  By comparison, Young’s (2002) discriminant function included 25 

variables after investigating 378 interaction terms for 28 basic variables.   

 

Table 28.  Regression Variables For Selecting Basic Discriminant Variables 

DATA_A TRAIN Significant Regression Variables: 0.15 to enter, 0.20 to leave 

1.  Pilot 4.  H2CX1 7.  TMSAV 10.  BAT 13.  AIAP 

2.  PS2Z2 5.  ROTC 8.  ANGAFR 11.  AIAR  

3.  AERO2 6.  BAT_Age 9.  ITMR 12.  PS2Y2  
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Table 29.  Basic Variables For New Discriminant Analysis 

 

 

Table 30. New Discriminant Function Variables 

1.  Pilot 11. MULTINSM x BAT AGE 
2.  AERO2 12. BAT x BAT AGE 
3.  H2CX1 13. H2CX1 x H2CX1 
4.  BAT AGE 14. H2CX1 x PS2Z2 
5.  Pilot x AERO2 15. H2CX1 x ITMR 
6.  Pilot x ITMR 16. H2CX1 x BAT AGE 
7.  Pilot x ROTC 17. PS2X2 x PS2Z2 
8.  AERO1 x PS2X2 18. PS2Y2 x TMSD 
9.  AERO1 x ITMR 19. TMSD x ROTC 
10. AERO2 x ITMR 20. ROTC x ROTC 

 

 

Figure 47 presents the discriminant function derived on the DATA_A set applied 

to it.  Figure 48 presents the performance of this discriminant function applied to the 

TEST set.  Note the stark contrast in performance when the independent data set is used.  

It appears that the discriminant function based on the variables in Young’s (2002) final 

Name Number
PILOT 1
AERO1 2
AERO2 3
MULINSTM 4
BAT 5
H2CX1 6
PS2X2 7
PS2Y2 8
PS2Z2 9
TMSAVDIF 10
ITMRTC 11
BAT_AGE 12
ROTC 13
ANGAFR 14

TMSD

ITMR

Name Number
PILOT 1
AERO1 2
AERO2 3
MULINSTM 4
BAT 5
H2CX1 6
PS2X2 7
PS2Y2 8
PS2Z2 9
TMSAVDIF 10
ITMRTC 11
BAT_AGE 12
ROTC 13
ANGAFR 14

TMSD

ITMR
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discriminant model provide much better performance.  However, neither discriminant 

function is capable of out performing PCSM on the independent TEST set. 
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Figure 47.  New Discriminant Function Applied To DATA_A TRAIN 
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Figure 48.  New Discriminant Function Applied To TEST 
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4.4.3  Ensemble Method Results 

 Perrone & Cooper’s (1992) Ensemble method provides a way to combine model 

outputs in an attempt to improve performance.  The Ensemble method utilizes model 

error correlations for different models to derive the weights of a linear combination of 

model outputs.  The Ensemble method can take advantage of multiple local minima on 

the error surface; hence it works best when combining dissimilar models.  One method of 

generating such dissimilar models is to train models with drastically different sets of 

initial weights.  The most dissimilar models can be identified using factor analysis of a 

matrix of the different model’s errors (Young et al., 2003).  This procedure will identify 

the models explaining the latent constructs underlying the orthogonal factors of a varimax 

rotation.  Highly similar models will have high factor loadings within a common factor, 

hence only one feature is selected from each factor.   

 Three (3) networks of each of the 3 activation functions available in Neural 

Connections where trained on the DATA_A TRAIN set.  The random number seeds 

controlling the training/validation set assignments and the initial weight distribution was 

changed for each of the 9 networks.  Each network was applied to the TEST set and a 

matrix of TEST set errors was constructed. 

Factor analysis was performed on TEST set matrix of errors.  Ideally, the 

eigenvalues of several factors will be greater than 1.0.  However, in this analysis the first 

factor accounted for 97.6% of the variance.  Hence, the Ensemble method was unable to 

glean additional performance by combining networks that represented factors accounting 

for an insignificant proportion of variance.  The result was that the networks selected to 

represent the second and third factor had substantial factor loadings on the first factor.  
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Thus, these two networks where highly similar to the network representing the first 

factor.  The result was that all entries of the correlation matrix of these errors are near 

unity.  This limited the contribution of the Ensemble method severely by reducing it to a 

matter of averaging the outputs of nearly identical models.   

Table 31 and 32 present the unrotated and varimax rotated factor loadings across 

the first 3 factors of the matrix of errors from the 9 networks, respectively.  Note that in 

the unrotated factor loadings, all 9 networks load heavily on the first factor.  The varimax 

rotated factor loadings provide no additional insight because each network is essentially 

providing the same model.  Table 33 provides the correlation matrix for the errors matrix 

of the three networks combined with the Ensemble method.  In Table 33, the “E” denotes 

the use of errors rather than actual model outputs.  SIG refers to networks trained with a 

sigmoidal activation function.  Likewise, HYP and LIN denote hyperbolic-tangent and 

linear activation functions, respectively. 

 

Table 31.  Unrotated Factor Loadings of Errors Matrix 

 
  Component 
  1 2 3 
ESIG1 .984 -.035 -.123
ESIG2 .989 .094 -.058
ESIG3 .991 -.066 .021
EHYP1 .990 .052 -.022
EHYP2 .992 -.039 -.030
EHYP3 .976 .138 .148
ELIN1 .989 -.106 .064
ELIN2 .990 .057 -.073
ELIN3 .988 -.093 .075

  
 
 



 

177 

Table 32.  Varimax Rotated Factor Loadings Of Errors Matrix 

  Component 
  1 2 3 
ESIG1 .677 .575 .443
ESIG2 .650 .500 .563
ESIG3 .563 .644 .505
EHYP1 .615 .543 .557
EHYP2 .608 .610 .495
EHYP3 .488 .521 .697
ELIN1 .521 .686 .501
ELIN2 .656 .524 .532
ELIN3 .514 .679 .515

  
 

 
 
 
 
 
 

Table 33.  Correlations For Errors Matrix 

 ESIG1 EHYP3 ELIN1

ESIG1 1   

EHYP3 .95 1  

ELIN1 .97 .96 1 
 

  

Figure 49 displays the result of combining the three networks with the highest 

varimax rotated factor loadings on each of the three factors in Table 32.  The combined 

model is compared to two of its three component networks.  It can be seen that in this 

case the Ensemble method performs worse than the selected linear network.  Similar 

issues caused inadequate performance when combining the outputs of the discriminant 

functions with one or more network models.  In this case, maintaining multiple models 

for the purpose of employing the Ensemble method would be cumbersome at best with 
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little if any performance increase.  The simplest approach is to select the single best 

model as the final model.   
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Figure 49.  Ensemble Method Results vs Individual Networks 

 

The discriminant function based on the Young-like (2002) final discriminant 

model is the best model overall.  It is interesting to note that the discriminant function 

outperforms the optimized MLP neural network in this application.  Despite the rather 

involved process required to produce the 7 PCSM inputs, PCSM is much more 

parsimonious than this discriminant function with 22 variables.  A key component of the 

discriminant function that makes it a possible surrogate for PCSM is the fact that it 

involves a single vector of discriminant weights.  The optimized network on the other 

hand involves the application of both a 17 x 23 matrix of inputs weights (not including a 

bias term) going into the hidden-layer, and a 23 x 1 vector of weights after the hidden-

layer.  Without significant performance gains, such intricacies make implementation of a 

neural network unrealistic for AETC in terms of presenting and explaining the model to 

the end user. 
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4.5  Model Comparison Results 

As a model nears perfect classification, that is classifying all observations with 

zero error, the model output would move from the continuous to binary domain.  All 

failures would receive an output of zero and all passes an output of one.  A very good 

model would then be expected to assign all failures an output near zero and all passes an 

output near one.  Figure 50 provides a notional picture of how the cumulative distribution 

of failure and pass outcomes might be assigned for the ideal model. 
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Figure 50.  Cumulative Proportion of Classes for the Ideal Model 

 

When applied to an independent TEST set, a ROC curve provides an estimate of 

the model’s generalized performance across the entire range of classification thresholds 

for the two most common metrics of interest, probability of target detection and 

probability of false alarm.  Although ROC curves have been used as the primary means 
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of displaying and comparing the different model’s performance to PCSM, the next 

several charts attempt to see how the logistic regression and the 22 variable Young-like 

(2002) discriminant model compare to PCSM in terms of emulating this notion of an 

ideal model in Figure 50.   

The following results relate to the TEST set.  Figures 51 and 52 present how the 

logistic regression model outputs are distributed across the TEST set passes.  The logistic 

regression is chosen over the linear regression because of the expectation that the 

sigmoidal activation function will aid in separating the distributions of passes and failures 

across the score range.  Figure 51 provides actual counts in each score range, while 

Figure 52 provides the same information as a cumulative proportion of the sample of 

passes for comparison to our notion of an ideal model.  Figures 53 and 54 provide the 

same information for the sample of failures in the TEST set.  Figures 55 through 58 

present the same information as Figures 51 through 54 for the 22-variable Young-like 

(2002) discriminant function.  With respect to passes and failures, the PCSM results are 

unchanged in this series of figures. 
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LogReg vs PCSM (PASSES)
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Figure 51.  LOGREG TEST Set Passes Distribution 
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Figure 52.  LOGREG Cumulative Proportion of Passes 
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LOGREG vs PCSM (FAILS)
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Figure 53.  LOGREG TEST Set Fails Distribution 
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Figure 54.  LOGREG Cumulative Proportion of Fails 
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DISCRIM vs PCSM (PASSES)
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Figure 55.  DISCRIM TEST Set Passes Distribution 
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Figure 56.  DISCRIM Cumulative Proportion of Passes 
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DISCRIM vs PCSM (FAILURES)
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Figure 57.  DISCRIM TEST Set Failures Distribution 

 

 

Figure 58.  DISCRIM Cumulative Proportion of FAILURES 
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For the passes, both the logistic regression and discriminant model are more like 

the ideal than PCSM.  In terms of the failure sample, PCSM yields better performance in 

both cases.  However, neither model adequately models the ideal for the failures.  Herein 

lies the crux of the problem as it relates to predicting UPT failure.  The distribution of 

predictor scores for the failures is practically uniform.  This indicates that reasons for 

failure may not be related to constructs measured by PCSM.  Hence, predicting failure is 

a more difficult problem for reasons that may not be related to measures of ability; at 

least not for the measures of ability, which explain the constructs underlying the current 

data set.  If a predictor with construct validity for a construct that accounts for failure, it 

would certainly show up in the factor analysis. 

 

4.6  Chapter Summary 

This chapter presented the results of this research as they relate to achieving each 

of the 3 research objectives.  All three parts of this research validated the current PCSM 

model.  The work in the area of updating PCSM’s regression weights showed that the 

updated weights are no better than the current weights.  Linear and logistic regressions 

performed almost identically, regardless of whether the undefined discrete sigmoidal 

function approximation is applied to the outputs.  Updating the EQPMOT standardization 

resulted in performance degradation.  PCSM also performed well against independent 

models developed using powerful multivariate techniques such as discriminant analysis 

and neural networks.  Differences in the cumulative proportion of passes and failures 

across the PCSM score range may provide some insight into how PCSM performs 

differently for passes and failures.   
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V.  Conclusions 
 
 
5.1  Introduction 

This chapter discusses conclusions drawn from each aspect of this research.  In 

order to help future researchers, lessons learned through this effort are presented.  New 

insights gained through working with the data and PCSM model are discussed.  Finally, 

recommendations for future research are suggested for consideration by future 

researchers. 

 

5.2  Literature Review Findings 

The pitfall receiving the most attention in this research is the effect of range 

restriction on predictor/criterion correlations. A wealth of research is available on the 

range restriction problem.  The literature review in this research brought together much 

research aimed at understanding the accuracy of range restriction corrections.  Most 

concentrated on accuracy when the linearity and homoscedasticity assumptions are 

violated.  Studies involving both empirical data and Monte Carlo simulations are 

reviewed.    

Study results show that, in general, the corrections tend to be negatively biased.  

In fact, Bobko (1983) showed this expectation theoretically.  Accuracy is largely 

dependent on the severity of distributional assumption violations and selection ratio.  

Except for the most severe violations, applying Lawley’s multivariate correction would 

be expected to produce benign results.  On the other hand, no study reviewed in this 

research specifically argued that failing to perform the correction routinely causes 
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adverse results.  The implication is that range restriction may play some, yet 

unquantified, role in selection of a non-optimal set of predictors.  No real world examples 

were found to suggest that variables selected based on corrected correlations would differ 

from those selected using range restricted correlations.  When the magnitude of the 

uncorrected correlation is large, few examples of corrected correlations with near zero 

bias were found.  Most instances occurred at a specific experimental point and not across 

a range of tested points.  

Estimates of the unrestricted population mean, standard deviation, and predictor 

inter-correlations are required to perform the Lawley correction.  Such estimates are often 

not available or their estimates are of questionable accuracy.    No study reviewed 

investigated the accuracy of corrections when unrestricted population estimates are varied 

across a significant range.  Furthermore, no study looked at which population estimates 

drive accuracy for PCSM related data.  Hence, any correction based on such estimates is 

suspect. From my research, I believe range restriction affects all potential predictors for 

the PCSM model to some degree.  Therefore, a model based on uncorrected correlations 

is likely to result in a model that includes an optimal set of predictors.  These issues leave 

corrections open to possible criticism.   

Although the corrections have been used in several PCSM studies, no specific 

argument for using the correction for the PCSM data was found.  The predictor/criterion 

correlations in the PCSM model are certainly range restricted; however, no case is made 

as to how well the PCSM data meets the underlying assumptions or how the extreme 

selection ratio that exists would tend to affect correction accuracy.  No attempt known to 

the author has been made to estimate the accuracy of corrections on PCSM data.  
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Differences in the performance of PCSM related models based on corrected correlations 

should be investigated.   

 
5.3  Methodological Conclusions 

 The PCSM database does not have adequate configuration management.  A 

mechanism is needed to ensure the integrity of the PCSM database.  Many cases of 

inconsistent data exist.  For example, there exist records of pilots certified at some level 

(pilot, instructor, commercial) who have zero reported flying hours.  The database entry 

system should have safeguards that prevent entry of inconsistent records.  Apparently, no 

document accompanies the PCSM database in which the data available, calculations, 

transformations, etc. are concisely explained.  A standardized and unique identifier must 

be put into place for all data tables.  Efficient and accurate queries of the multiple 

databases depend on it.  There exist multiple UPT performance databases or versions of 

them for each year.  Further, many tables exist within each database with no available 

explanation as to what each represents.   

 A wholly independent TEST data set must be used to properly verify model 

performance.  The Neural Connections software used in this research provides the 

capability to select training, validation, and test sets from the data used in model 

development.  As the model trains, its performance is optimized for the validation set.  

Hence, the model’s generalizability is questionable.  To report only validation set results 

is naive at best.  An even more problematic situation would occur if the researcher 

combined results from the training and validation sets together.  This would be expected 

to give an even more optimistic result than would validation results when a model is 

iteratively trained by optimizing performance on that validation set.   
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Finally, if several different data sets are being used to train independent models 

for the same purpose, each model should be compared via the same wholly independent 

TEST set.  Such is the case in this research.  These dangers have been made abundantly 

clear through the presentation of results for both validation sets and the unique TEST set.  

Future researchers may find it interesting to note that PCSM performed 

differently on the TEST set in this research and the entire data set used in the work of 

Young (2002).  By locating a specific combination of the probabilities of detection and 

false alarm for PCSM on the ROC curves in Figures 59 and 60, it is apparent that PCSM 

performs better on the TEST set in Figure 60.  In Figure 59, the lower line presents 

PCSM performance on the combined training and validation set used by Young (2002).  

It appears that PCSM performed better in this research, which marks the need to estimate 

PCSM’s true generalized performance.   

Given that the Young (2002) data is thought to be a subset of the current data, one 

would not expect such results.  This comparison of PCSM results across different data 

sets is believed to be valid because the PCSM model is unchanged in these two 

applications.  However, this research included the addition of failures for academic and 

military reasons whereas Young’s (2002) did not.  Total failures where about 10% in 

both data sets.  One should also keep in mind that the TEST set included 470 records, 

while Young’s data included over 1,700 records.  If PCSM performance is sample 

dependent, then one must judge the performance of both PCSM and an independent 

model with statistical procedures, which account for error.  For example, Young (2002) 

calculated a 95% confidence interval at several locations on his ROC curve to show a 

statistical difference in model performance.  The disparity in proportions of failures and 
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passes necessitates caution when considering the Young’s (2002) confidence intervals.  

Confidence intervals generated for the probability of target detection for a fixed 

probability of false alarm would be larger due to the much smaller failure proportion in 

the data.  

 

Figure 59. PCSM Performance Across Young's (2002) Data 
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Figure 60. PCSM Performance Across the TEST Set 
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Young’s (2002) results in Figure 59 are not without other methodological issues.  

Apparently, Young did not use an independent TEST set.  Since it is known that Young 

(2002) used Neural Connections capability to randomly select training and validations 

sets for each network, any results for a validation set is considered to be optimistic in 

terms of generalization.  This is because Neural Connections optimizes the trained 

network for the validation set.  Furthermore, Young’s (2002) results combine model 

outputs for both training and validation sets.  This further optimizes the model 

performance and degrades confidence in the model’s generalized performance.   

The methodology in which Young (2002) performed factor analysis to select 

models for use in Perrone & Cooper’s (1992) Ensemble method also raises concerns.  All 

model errors in the factor analysis must represent each model’s output for the same 

record.  From Young’s (2002) thesis, it is believed the 10 models trained for this purpose 

used a different random number seed, which assigns the training (70%) and validation 

(30%) sets.  Social security number was then used to match the 10 model outputs with the 

correct target value for each record to facilitate model error calculations.  Hence, for a 

specific record, approximately 7 of the 10 errors recorded reflect performance for the 

training set.  Once the three models where chosen to apply the Ensemble method, 70% of 

the outputs within each model represent training set outputs.  In short, this produces a 

result that estimates performance on a generalized training set rather than performance in 

the population.   

In summary it is believed that Young’s (2002) results are exceedingly optimistic 

for two reasons.  First, due to the chance that that PCSM’s true generalized performance 

is better than seen by Young (2002).  Second, due to the arguments suggesting Young’s 
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(2002) model’s performance is overly optimistic.  If both issues where addressed, the 

performance of the two models could move toward each other.  Such expectations make 

PCSM’s dominant performance in this research more believable.  However, such 

expectations may not hold and thus are not an estimate of how good Young’s (2002) 

model really performs.  After all, the best model in the present research is based directly 

on the final discriminant function in Young (2002).  Young’s model should be validated 

on a truly independent test set. 

 

5.4  Validation Study 

 The current PCSM variables have been shown to have construct validity in that 

they consistently represented the most significant factor analysis factors.  Factor 

interpretation was unhampered by implementing orthogonal varimax rotation.  It fact, the 

same interpretations that would be made with unrotated factor loadings become much 

more apparent after varimax rotation.  In this research, rotation is believed to have 

strengthened the validation study.  Factor interpretations are upheld by the demonstrated 

results over a variety of methods such as partial correlations, correcting correlations for 

range restriction, and two types of regression.  PCSM performance is dominant in all 

ROC’s based on the TEST set. 

 

5.5  Regression Update Conclusions 

Two new regressions are derived across multiple data sets.  Each displayed 

similar performance to PCSM, yet none outperformed PCSM on the TEST set.  

Furthermore, a true logistic regression did not outperform the linear regression.  The 

requirement for applying the discrete sigmoid approximation to the results of a linear 
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regression in the current PCSM model was not shown to be beneficial.  The origin of this 

discrete sigmoid approximation is unknown.  AETC should reevaluate this aspect of the 

PCSM model.  Perhaps a better alternative would be to simply rescale the linear 

regression outputs to the desire range of 0.0 to 1.0. 

The work performed to gain insight into the current PCSM model shows that the 

Pilot, FltHrCd, and EQPMOT inputs drive performance in this application.  This provides 

evidence that a more parsimonious model may be available.  AETC should investigate 

the necessity of the four other PCSM inputs.  Furthermore, the validity of the non-

EQPMOT BAT scores should be reevaluated.  Perhaps such an investigation would lead 

to changes in the BAT test, which capitalized on the predictive value of the EQPMOT 

input. 

Future research in the area of PCSM should begin with a review of the history of 

the model’s development and configuration management.  Many questions about the 

current configuration of the PCSM model remain.  The author is unaware of the existence 

of a set of documents that preserve and explain the history and current state of PCSM.   

Continued use of PCSM makes such a study worthwhile.   

 

5.6  Independent Model 

Despite the complexity & many processing steps involved in the current PCSM 

model, it still outperforms the independent models when applied to an independent TEST 

set.  For the current data set, discriminant analysis provided as good or better 

performance than the more complex neural network model.  The discriminant analysis 

feature selection algorithm was shortened relative to Young (2002).  A more rigorous 
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feature selection methodology would likely improve the results of the discriminant 

function.  As is the case with multiple linear regression, the coding of variables can have 

significant impacts on model performance.  Although, the variable coding decisions seem 

logical and where made after significant inspection of the data was performed, 

optimization of variable coding was not specifically addressed.  Smith (1996) discusses 

alternative coding schemes for neural network applications.  Perhaps investigation into 

alternate coding schemes would result in better performance.   

   Using SNR ranked variables to help pick the 14 basic variables in the 

discriminant model may have been a poor choice.  The discriminant function is a linear 

model.  Presenting the model with variables known to be significant in a non-linear 

model such as a neural network may have introduced noise in terms of separablility.  

However, there does exist much similarity in the variables found to be significant in the 

linear regression and by the SNR method. 

 

5.7  Relevance of Research 

The applicant population is quite diverse in terms of education and ability levels.  

The selection process is purposefully and rightfully safeguarded against discriminatory 

selection policies.  The current selection process favors the “whole person” concept of 

selection over strict measures of ability.  This results in a selected sample whose 

predictor score distributions covering a large portion of score range for most predictors 

available.  Such distributions of ability measures across failures and passes could be a 

significant contributor to the complexity in prediction of UPT failure.  In fact, tests on the 

difference in predictor score means between failures and passes fail to reject the null for 
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most predictors available in this data.  This result holds when smaller random samples of 

the data are selected in order to limit the power of the test.   

Inspection of Figures 53 and 57 in Section 4.5 reveals that the TEST set sample of 

failures (N = 47) across the PCSM score range is quite uniformly distributed.  Figure 61 

presents the distribution of PCSM scores for the 18,927 valid records covering a period 

of 1993-2001 in the PCSM database.  Figure 62 presents the proportion of UPT 

selections across the PCSM score range for the same 18, 927 PCSM scores.  
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Figure 61.  Histogram of PCSM Scores Among Those Selected for UPT 
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Figure 62.  Proportion of UPT Selections Across PCSM Score Range 

 

One need not be privy to Weeks (1998) study on the selection policies of the top 

four UPT selection sources to draw the conclusion that PCSM is not a significant factor 

in the selection process.  The fact that the distribution of PCSM scores among those 

selected is not at all what one would expect for a valid prediction model should not 

reflect poorly on PCSM.  Rather, the attrition rates currently experienced by the Air 

Force may be a result of the selection process.  Until more definitive predictive tests are 

developed, PCSM should be given serious and diligent consideration by every UPT 

selection board.  However, no standardized test should be the sole criterion in such 

important matters.  The officers selected for UPT today represent to a large extent the 

leaders of tomorrow’s Air Force.  Leadership and Officership entail much more than the 

skills required to be a pilot.  This aspect is vital to the UPT selection process; it cannot 

and should not be totally removed. 
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The fact that scientifically applying very powerful statistical techniques in this 

analysis with little to no improvement on the current PCSM model is strong validation for 

PCSM.  Although its development and validity are somewhat esoteric, even to those 

associated with the program, the model is a valid predictor of UPT success.  AETC/SAS 

has long encouraged UPT selection boards to make significant use of the information 

provided by the PCSM score.  Unfortunately, this is not the case for the AFA and ROTC, 

who select a majority proportion of UPT candidates.  AETC should consider enforcing a 

combination of minimum PCSM score standards and the “whole-person” concept of 

selection for all applicants.    

 

5.8  Recommendations for Future Research 

A possibility that should be considered is to remove the flying experience input 

from the PCSM model and break the selection process up into three stages.  At the first 

stage, a minimum PCSM score qualification standard would be added to the AFOQT 

minimum score standards already in place.  The second stage would involve applying a 

standardized selection process or the independent selection processes currently in place.  

With low PCSM scores removed, the selection boards would still be free to use the 

PCSM score as they see fit within the “whole person” context.  The third and final stage 

would involve eliminating candidates based on performance in the 50 hours of pre-UPT 

flight training currently provided by the Air Force to those not possessing a private pilot’s 

license.  

It should be noted that the AFA is represented by only 56 of the 3,343 records 

used in this research.  Therefore, no meaningful conclusions can be made as to the 
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performance of the discriminant model or PCSM when applied to the AFA applicant 

population.  A separate study should be conducted to investigate the performance of 

PCSM in the AFA population.   

Currently, the AFOQT attempts to measure flight related skills in a pencil and 

paper format.  The results of such tests undoubtedly have strong correlation with an 

applicants flying experience.  This should be eliminated and properly placed in the 

context of a test similar to the BAT.  Such a test would improve upon the reliability of 

measuring the ability to learn complex flying tasks over a period of time under differing 

workloads.  The test would also incorporate the more academic skills required for flight 

that are suggested for removal from the AFOQT.  The test could provide basic instruction 

in the skills required, followed by practice and correction in an environment that is more 

realistic than the current BAT test, yet simple enough to make it cost effective.  To this 

end, the latest version of the BAT test incorporates pedals for simulating rudder controls 

and is expected to become operational soon (Pugh, 2003).   

Weeks (1998) theorized that attrition is linked to the availability of instructional 

resources, performance feedback, and additional time to hone the skills required in flight.  

Hence, the problem of success at UPT may not be so much about a specific flying ability 

or even some esoteric notion of intelligence, but rather the pace at which one learns the 

required skills in the presence of competition for the limited instructional resources at 

UPT.  An objective of an improved BAT test, such as the one imagined here, would be to 

measure how an applicant performs given the dynamic theorized by Weeks (1998).  If 

successful, such a test would certainly provide the promise of accurately predicting UPT 

outcomes.  



 

199 

The fact that PCSM’s validity remains intact when compared to very powerful 

classifiers such as neural networks and sound statistical techniques, begs for further 

investigation into the model itself before more independent models are developed.  Along 

this vein, a design of experiments approach coupled with regression analysis could 

provide valuable insight into the PCSM model.  This approach could investigate the 

necessity of the 4 PCSM inputs that appear too extraneous in terms of PCSM 

performance on the TEST set in this research. 

It seems evident that those who fail UPT, do so for reasons not measured by 

PCSM or known to the selection boards.  The fact that PCSM scores for those who fail 

UPT are uniformly distributed across the score range indicates that some unknown trait 

related to failure occurs without regard to one’s PCSM score.  One might investigate the 

variables that represent latent constructs underlying the passing and failing groups 

separately.  This could be accomplished by performing factor analysis on each group.  If 

factorial invariance does not hold, insight may be gained into the differences between 

those who pass and those who fail UPT.   

Searching for a psychological reason or factor related to failure may provide 

insight into the development of valid predictors of failure.  Specialized interviews could 

be developed and administered before and after UPT training.  Failures could be 

administered an interview which specifically focuses on identifying the reasons for 

failure. 

A final avenue of suggested research could involve an attempt to estimate 

PCSM’s generalized performance presented in ROC format.  Such research is prompted 

by the fact that PCSM performance is to some degree dependent on the proportion of 
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failures present in a sample.  The estimate could be accomplished by collecting a large 

number of PCSM data samples with differing failure proportions via bootstrapping.  

PCSM’s performance in terms of the ROC parameters could be sampled across the score 

range for each bootstrapped data set.  Confidence Intervals could then be built around a 

discrete set of points along the mean ROC.  
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Appendix A.  Matlab Code for Bootstrap Resampling 
 
 
clear 
clc 
% 
%This command calls the M-file that holds the 141 Failure observations 
%It should be in the same folder as this code to execute properly 
%SEE the M-file for a list of variables in the data set 
 
FailsData 
 
n=163; 
BOOT=zeros(n,size(fails,2)); 
f=length(fails); 
x=1/f; 
failnum=0:1:f; 
interval=0:x:1; 
intervals=[failnum' interval']; 
obs=zeros(f,1); 
 
random=rand(n,1); 
 
for bootnum=1:n 
    %index=(find(random(bootnum)>=intervals(:,2))); 
    %result(bootnum)=intervals(length(index)); 
    k=ceil(random(bootnum)*f); 
    obs(k,1)=obs(k)+1; 
    BOOT(bootnum,:)=fails(k,:); 
end 
save BootstrapData.out BOOT –ASCII 
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 Appendix B.  Matlab Code for BAT Equating Table Application 
 
 
 
clear 
clc 
 
%The “data.m” file contains the data to be transformed in the following format 
% input=[SSN    EQMPOT     ITMR      TMSD     AIAP      AIAR]; 
 
data 
 
%The look-up table is held here in the code, but could also be held in a separate .m file 
%This is just a sample of part of one of the look-up tables  
 
lookup=[-1000 -2.1359 

-2.55 -2.1099 
-2.5 -2.0833 
-2.45 -2.056 
-2.4 -2.028 
-2.35 -1.9994]; 

 
result=zeros(length(input),1); 
 
for n=1:length(input) 
    index=(find(input(n,2)>=lookup(:,1))); 
    result(n)=lookup(index(end),2); 
    output(n,1)=input(n,1); 
    output(n,2)=input(n,2); 
    output(n,3)=result(n); 
end 
 
save “FILENAME”.out output –ASCII 
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Appendix C.  Instructions For Preprocessing Network Weights 
 
Access the network weights after training a network in Neural Connections involves 
several steps.  The goal is to reproduce the weights as seen in the figure below.  This 
window can be seen by clicking on the network tool/Status from within a trained network 
in Neural Connections. 
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Text File Preprocessing Instructions 

1.  Open the network architecture from within a .TXT file by clicking File/Open and 
browsing to the .NNI Neural Connection network file that has been trained and saved. 
 
2.  See the Neural Connection User’s Guide for help locating the “BEST WEIGHTS.”  If 
the standardization option was selected from within the network tool dialog box, them   
the feature means, standard deviations should also be located at “INPUT NORM.” 
 
3.  Delete all other data including the headings “BEST WEIGHTS” and “INPUT NORM”  
leaving only the actual data.  Note that the output weights are simply appended to the end 
of “BEST Weights” data with no method of identifying them.  Once the VBA macro is 
run, the last two rows of the weights are really the output weights.   
 
4.  The vectors of means and standard deviations are separated by a third vector of 
numbers that is placed in the middle.  The author does not know what these numbers 
represent.  Each vector begins with the number of features.  Locating this number will aid 
in adding carriage returns to separate the means from the standard deviations.  Delete the 
unknown numbers that are found between the means and standard deviations. 
 
5.  Now you should have three “blocks” of data in the text file; the best weights, the 
means, and the standard deviations.  This is a comma delimited file, so add a comma at 
the very beginning of the first row of the means vector and standard deviations vector.  
 
6.  Every new row of the text file should begin with an under score.  The only exception 
is for the very first data point in the text file & the two commas added in step 5. 
 
7.  Save the text file. 
 
8.  Open an Excel spreadsheet with the code in Appendix D written as a macro.  Set up a 
sheet named “New” by labeling nodes along the rows and the features along the columns.  
Begin the nodes with node 0 and the features with a column for the bias.  Label the last 
two rows for the output nodes. 
 
9.  Ensure that the file path to the text file is correct in the VBA macro 
 
10.  Ensure that the cell where you wish to place the first weight is named “matrixstart” 
 
11.  Ensure that the numbers used in several places in the VBA code are correct for your 
specific number of nodes and variables.  
 
12.  Note that Neural Connections automatically adds a bias term and an associated node.  
Also note that the node count begins at zero, therefore the VBA starts at zero also.  When 
inputting the number of nodes in  the VBA code, do not include the bias node.  Simply 
use the number of nodes you specified in the network tool dialog box. 
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Appendix D.  VBA Code For Accessing Network Weights From Neural Connections 
 
'This file compiles Neural Network “BEST Weights” from a text file that is comma 
‘delimited & has underscores at the beginning of each line 
‘The text file must be preprocessed manually to delete everything except the “BEST 
‘Weights” and the “Input Norm” data, which holds the means and standard deviations 
‘used to standardized the data prior to training the network 
 
Sub NetWts() 
 
Dim countrow As Integer, 
Dim countcol As Integer 
Dim newcell As String 
Dim character As String 
 
newcell = "" 
countrow = 0 
countcol = 0 
 
‘The file path must be correct and end with the name of the txt file containing the weights 
 
Open "C:\THESIS\MLP Recode FlyAero\weightsA34NP-.txt" For Input As 1 
 
Do While Not EOF(1) 
    character = Input(1, #1) 
    If character <> "_" Then 
    If character <> Chr(13) Then 
    If character <> Chr(10) Then 
    If character <> "," Then 
        newcell = newcell & character 
 
        Else 
            Worksheets("New").Range("matrixstart").Offset(countrow, countcol) = newcell 
            newcell = "" 
 
'the number here is the number of actual variables not including a bias 
 
            If countcol < 34 Then 
                countcol = countcol + 1 
 
                Else 
                    countcol = 0 
                    countrow = countrow + 1 
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'the number here is the number of nodes + the number of outputs 
 
                    If countrow = 36 Then 
 
'the number here is always 2 more to move the means and std devs down in the SS 
 
                        countrow = 38 
 
                    End If 
                'End Else 
            End If 
 
'the number here is the same as the number above for countrow = ?? 
 
            If ((countrow > 36) And (countcol = 0)) Then 
                countcol = 1 
            End If 
        'End Else 
 
    End If 
    End If 
    End If 
    End If 
 
Loop 
 
Worksheets("New").Range("matrixstart").Offset(countrow, countcol) = newcell 
 
Close #1 
End Sub 
 



 

207 

 

Appendix E.  Mean SNR's For All Features Considered 
 
 

PCSM Included (N = 8) PCSM Excluded (N = 5) 
Rank Feature Mean SNR Rank Feature Mean SNR 

1 Pilot 15.05 1 BAT 21.14 
2 BAT 14.62 2 Pilot 21.07 
3 ROTC 12.02 3 Nav 17.39 
4 Quant 11.47 4 Quant 15.91 
5 AERO34 10.88 5 AIAR 15.49 
6 ITMR 10.46 6 PS2Z2 15.26 
7 BAT_Age 10.21 7 ITMP 15.23 
8 PS2Z2 10.14 8 ROTC 14.78 
9 PCSM 9.86 9 TMSD 14.12 
10 AERO2 9.63 10 AERO34 14.00 
11 H2CX1 9.21 11 ITMR 13.95 
12 Instruct 8.97 12 BAT_Age 13.38 
13 TMSD 8.84 13 PS2Y2 12.65 
14 PS2Y2 7.94 14 AIAP 12.29 
15 Nav 7.65 15 PS2X2 11.83 
16 AIAR 7.51 16 AERO2 11.81 
17 ITMP 7.46 17 H2CX1 11.79 
18 PS2X2 6.82 18 Instruct 10.59 
19 Verbal 5.23 19 AD 9.83 
20 Ed_Level 4.90 20 Ed_Level 9.51 
21 FLY57 4.81 21 FLY57 8.76 
22 FLY89 4.69 22 MultiInstrm 8.65 
23 AIAP 3.72 23 Verbal 8.57 
24 Other_Stat 3.54 24 Other_Stat 8.41 
25 FixSngl 3.49 25 ANGAFR 8.41 
26 AERO1 3.35 26 FixSngl 8.16 
27 ANGAFR 3.14 27 FLY89 8.12 
28 AD 2.98 28 OTS_Civ 8.07 
29 Acad 2.84 29 FLY14 5.84 
30 FLY14 2.23 30 AERO1 5.28 
31 OTS_Civ 1.58 31 Acad 5.15 
32 MultiInstrm 1.19 32 GPA 4.10 
33 GPA 0.10 33 OTS_AD 3.12 
34 OTS_AD -0.75    
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Appendix F:  DATA_A Factor Loadings Matrices 
 
 
Unrotated Factor Loadings 
 

 

Component Matrixa

.527 .562 .239 .107 -.012 .103 .069 .134

.140 .582 -.635 .002 -.009 -.397 .139 .056

.851 -.232 .045 .002 -.247 .010 .030 .022

.259 .772 .324 .176 .015 .141 .041 .169

.070 .753 .400 .196 .005 .095 .016 .151

.150 .605 .443 .035 .039 -.125 .002 -.041

.129 .792 .488 .143 .023 -.012 .012 .069

.639 -.131 .086 -.367 .457 -.062 -.006 -.072

.749 -.066 .130 -.312 .376 -.057 -.060 -.126

.824 -.251 .007 .165 -.273 -.015 .031 .045
-.260 -.338 .471 .110 -.035 -.100 .063 -.018
-.235 -.415 .609 .007 -.025 -.178 .095 .034
-.241 -.380 .573 .033 .027 -.199 .120 .063
-.206 -.373 .580 .013 -.042 -.201 .081 .041
-.024 -.393 .223 .032 .041 .401 -.049 .018
.237 .035 -.074 -.054 .175 .204 .103 .097
.163 .348 -.462 .032 -.017 .007 .101 .017
.061 .133 .170 -.036 -.226 .160 -.633 -.350
.134 -.303 -.034 .006 .175 .707 .188 .109
.059 .105 .097 .218 .155 .007 .367 -.261

-.801 .051 -.131 .253 -.327 .077 -.016 .088
.080 .024 -.009 -.009 .129 .000 .293 -.107
.299 .040 .032 .267 .066 .168 .155 -.601
.365 .260 .217 -.497 .024 -.040 -.301 -.092
.300 -.328 -.073 -.060 .339 -.145 -.176 .521
.168 -.141 -.027 -.006 .044 -.211 .361 -.180
.115 -.035 .010 .030 -.033 .231 .136 .289
.752 -.159 .046 -.213 -.512 -.009 .144 .055
.754 -.161 .050 -.213 -.510 -.008 .145 .054
.523 -.251 -.070 .606 .117 -.117 -.187 -.002
.563 -.279 -.067 .537 .055 -.079 -.154 .029
.420 -.236 -.070 .598 .126 -.096 -.163 .022

PILOT
BAT
FLTHR_CD
NAV
QUANT
VERBAL
ACAD
BAT_AGE
ED_LEV_C
AERO_CD
H2CX1
PS2X2
PS2Y2
PS2Z2
ITMR
ITMP
TMSD
AIAP
AIAR
GPA
ROTC
OTS_AD
OTS_C
AD
ANG
AFR
OTH_STAT
FIXED
SINGLE
MULTI
INSTRUM
INSTRUCT

1 2 3 4 5 6 7 8
Component

Extraction Method: Principal Component Analysis.
8 components extracted.a. 
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Varimax Rotates Factor Loadings 
 

 
 

Rotated Component Matrixa

.720 -.215 .263 .190 .120 .081 .063 -.016

.134 -.772 .003 -.048 -.018 -.482 .142 -.270

.011 -.045 .758 .334 .371 .114 .045 .028

.899 -.190 .030 .020 .008 .060 .013 -.002

.884 -.067 -.083 -.077 -.048 .000 -.015 .017

.724 .047 -.012 .130 -.074 -.206 .067 .095

.939 -.015 -.055 .024 -.066 -.114 .029 .063
-.024 -.029 .168 .847 .098 .078 .141 -.054
.070 -.052 .262 .848 .166 .051 .126 .045
.008 -.049 .735 .216 .496 .100 .057 .006

-.051 .637 -.061 -.129 .016 -.009 .044 .008
-.051 .793 -.002 -.034 -.040 -.039 .036 -.064
-.033 .752 -.048 -.033 -.021 -.048 .061 -.117
-.026 .746 .017 -.033 -.026 -.070 .024 -.069
-.157 .318 .009 .017 .063 .468 -.074 .127
.058 -.166 .047 .199 .035 .262 .079 -.099
.073 -.584 .046 -.048 .013 -.064 .101 -.084
.124 .005 .038 .069 .039 -.083 -.415 .670

-.152 -.015 .034 .067 .030 .805 .100 -.002
.155 .027 -.069 -.026 .082 .027 .506 .068

-.112 .061 -.335 -.801 -.208 -.050 -.176 .009
.018 -.031 .007 .077 -.037 .043 .328 -.055
.069 -.088 .073 .078 .248 .085 .496 .493
.255 -.064 .207 .556 -.234 -.132 -.241 .213

-.167 .050 .017 .407 .320 .108 -.285 -.503
-.128 .051 .161 .098 .040 -.126 .423 -.084
.079 -.026 .138 -.046 .020 .314 -.035 -.210
.012 -.052 .934 .207 .068 .044 .014 -.001
.012 -.048 .934 .209 .069 .046 .016 .000

-.018 -.025 .144 .100 .858 .012 .046 .022
-.037 -.024 .237 .110 .804 .056 .032 .005
-.022 -.011 .077 .043 .797 .028 .042 -.004

PILOT
BAT
FLTHR_CD
NAV
QUANT
VERBAL
ACAD
BAT_AGE
ED_LEV_C
AERO_CD
H2CX1
PS2X2
PS2Y2
PS2Z2
ITMR
ITMP
TMSD
AIAP
AIAR
GPA
ROTC
OTS_AD
OTS_C
AD
ANG
AFR
OTH_STAT
FIXED
SINGLE
MULTI
INSTRUM
INSTRUCT

1 2 3 4 5 6 7 8
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 11 iterations.a. 
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Appendix G:  Data Provided to RANGE J for Correlation Correction 
 
 

 
 

Variable Mean Std Dev Mean Std Dev
pcsm 48.64 32.84 63.44 30.87
pilot 70.28 19.86 78.41 16.37
bat 51.34 23.42 54.75 22.12
flthrcd 3.09 3.45 4.52 3.57
nav 66.79 21.06 73.6 18.28
hc2x1 5226.93 1624.12 5081.86 1429.85
ps2z2 6214.25 5211.62 5794.87 3635.89
itmr 748.36 216.84 745.62 205.48
tmsd 237.7 39.04 247.24 35.66
aiap 69.03 13.21 69.28 12.73
pass/fail Unknown Unknown 0.94 0.23

Unrestricted Population Restricted Sample

 
 
 
 
 
 
 
 

 
 

pcsm pilot bat flthrcd nav hc2x1 ps2z2 itmr tmsd aiap pass
pcsm 1 0.668 0.580 0.690 0.438 -0.367 -0.367 -0.254 0.387 -0.053 0.189
pilot 0.698 1 0.217 0.345 0.828 -0.200 -0.162 -0.145 0.170 0.097 0.180
bat 0.630 0.300 1 -0.035 0.233 -0.441 -0.498 -0.469 0.577 -0.237 0.080
flthrcd 0.677 0.340 0.024 1 0.053 -0.097 -0.057 0.081 0.039 0.048 0.143
nav 0.507 0.856 0.299 0.086 1 -0.174 -0.144 -0.191 0.159 0.117 0.128
hc2x1 -0.374 -0.243 -0.455 -0.120 -0.188 1 0.327 0.184 -0.388 -0.066 -0.083
ps2z2 -0.350 -0.234 -0.492 -0.074 -0.206 0.376 1 0.180 -0.245 -0.021 -0.089
itmr -0.265 -0.184 -0.453 0.045 -0.213 0.184 0.185 1 -0.140 -0.015 -0.047
tmsd 0.453 -0.253 0.600 0.103 0.223 -0.408 -0.271 -0.149 1 0.032 0.080
aiap -0.020 0.125 -0.151 0.043 0.118 -0.108 -0.095 -0.063 0.099 1 0.033
pass 0.219 0.201 0.119 0.154 0.169 -0.112 -0.131 -0.068 0.028 0.050 1

Uncorrected Correlations in the Sample

Correlations Corrected to Estimate the Population
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