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Abstract-Nonstationary ultrasound Doppler sig-
nals, those are changing with time and frequency
simultaneously, are widely observed in biologi-
cal and speech signals. A Cohen’s class time-
frequency (TF) analysis can analyze nonstation-
ary signals with high resolution in time and fre-
quency at a same time. A time-frequency dis-
tribution (TFD) is largely affected by a kernel
function. Thus, there is sometimes a case where
auto-terms (those are signal components) are
covered by cross-terms (those are spurious com-
ponents). In order to apply TFDs to a nonsta-
tionary and nonlinear Doppler ultrasound sig-
nals, experimental data were obtained by mov-
ing a steel ball to and fro by continuously irradi-
ating it with ultrasound in olive oil. The move-
ment of the steel ball was controlled by various
functions. To analyze these signals, four ker-
nels were used: (1) a Wigner kernel, (2) a Choi-
Williams kernel, (3) a figure eight kernel, and
(4) a 2nd figure eight kernel. Using our 2nd fig-
ure eight kernel, the demodulation accuracy was
improved even with noise.

Keywords-Cohen’s class, time-frequency analy-
sis, Wigner distribution, Choi-Williams distri-
bution, a figure eight kernel, a 2nd figure eight
kernel, ultrasound Doppler signal

1 INTRODUCTION

A time-frequency (TF) analysis has been widely used
recently for a biological signal analysis and a speech sig-
nal analysis in which dominant frequency components
change with time. A Cohen’s class TF analysis can an-
alyze nonstationary signals with high accuracy [1].
A short-time Fourier transform (STFT) and its mag-

nitude squared, a spectrogram, are known as the sim-
plest and most useful TF transforms because they repre-
sent a generalization of traditional power spectral tech-
niques to nonstationary signals. Although the STFT
satisfies the properties, high-resolution spectra cannot
be obtained due to the uncertainty relationship between
time and frequency [2].
A Wigner distribution (WD) [3]- [5] has high reso-

lution in time and frequency simultaneously in the TF
plane. However, it does not satisfy the non-negative dis-
tribution condition. Moreover, the WD has many cross-
terms, unavoidably generated by the bilinear structure
of the Cohen’s class TF distribution (TFD), which are
spurious components. Thus, various kernel functions
have been proposed to satisfy the required conditions
of a kernel, such as the marginal condition, and to re-

duce the cross-terms [1], for example, RID [6, 7], Bessel
distribution [8], and so on [9, 10].
In those kernels, a Choi-Williams distribution

(CWD) [11] with an exponential kernel is a represen-
tative one. The CWD reduces cross-terms well for a
chirp Doppler signal in which the Doppler shift changes
linearly. Nevertheless, in a case where the Doppler shift
changes sinusoidally, it is impossible to reduce the cross-
terms even by the CWD.
Therefore, a new kernel, called a figure eight (FE)

kernel, is proposed to reduce the cross-terms even in
that case [12].
Furthermore, authors proposed a new kernel design

method with new point of view [13]. The new kernel is
called a 2nd figure eight (FE2) kernel.
There is no definite criteria what kernel should be

utilized in the practical use. It depends on the charac-
teristics of a signal to be analyzed. There is a proposal
of a signal-dependent kernel function [14] that an ambi-
guity function is calculated first, and a kernal function
adjusted to a shape of the ambiguity function is ob-
tained.
However, in the case where the signal-to-noise ratio

(S/N) is low, a signal-non-dependent kernel function
should be designed to consider the characteristics of the
signal. It is difficult to grasp the characteristics of the
signal masked by the noise.
In this paper, for the first step to analyze the noisy bi-

ological nonstationary signal with high accuracy, TFDs
are applied to simulation data, experimental data ob-
tained by an ultrasound Doppler sinusoidal shift signal,
and the noisy signal made from experimental data and
synthesized noise.
The ultrasound Doppler sinusoidal shift signal is gen-

erated in olive oil by moving a steel ball to and fro by
continuously irradiating it with ultrasound.
The TFDs are as follows: (1) WD, (2) CWD, (3) FE

distribution (FED), and (4) FE2distribution (FE2D).
As a result, it is confirmed that a highly accurate

TFD can be obtained with the FED even by a noisy
signal, and a much more highly accurate TFD can be
calculated with the FE2D.

2 COHEN’S CLASS TFD AND KERNEL
FUNCTIONS

The Cohen’s class TFD C(t, ω) is defined as follows:

C(t, ω) =
∫ ∫ ∫

e−jθt−jτω+jθuφ(θ, τ)z(u +
τ

2
)

· z∗(u − τ

2
)dudτdθ
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=
∫ ∫

e−jθt−jτωφ(θ, τ)A(θ, τ) dτ dθ (1)

A(θ, τ) =
∫

ejθuz(u+
τ

2
)z∗(u − τ

2
) du (2)

where φ(θ, τ) is a kernel function, z(t) is an analytic
signal, and z∗(t) is a complex conjugate of z(t). The
term A(θ, τ) is an ambiguity function.
The TFD C(t, ω) is directly influenced by the kernel

φ(θ, τ). The kernel φ(θ, τ) must satisfy requirements
such that the TFD has the required properties [10].
In the case of φ(θ, τ) = 1, the TFD is WD. To reduce

the cross-terms of WD, various kernel functions have
been proposed [1].
The CWD, which is an exponential function that has

been proposed by Choi and Williams, reduces cross-
terms and is good for linear chirp signal.

φ(θ, τ) = e
−θ2τ2

σ (σ > 0) (3)

CWD in this paper was calculated by σ = 2.0.
In order to ascertain a nature of an ambiguity

function, the ambiguity function is calculated analyti-
cally [12] in the following two cases: (1) for a signal that
is a sinusoidal and an ultrasound Doppler chirp (linear
shift) signal, and (2) for a signal that is an ultrasound
Doppler sinusoidal shift signal.
The analytic signal z(t) can be obtained from real

data x(t) using two FFTs: a forward FFT of given real
data, multiplication of the resulting positive harmonics
by 2 and negative harmonics by 0, and then an inverse
FFT.
The discrete expressions of Eqs. (1) and (2) are as

follows:

A(p,m) =
N−1∑
i=0

z(i+m)z∗(i − m)W−pi
N (4)

C(n, k) = 2

N
2 −1∑

m=−N
2

N−1∑
p=0

φ(p,m)A(p,m)W pn
N Wmk

N (5)

where
WN = e−j 2π

N . (6)

In the case of a sinusoidal signal, A(θ, τ) is distributed
only on the τ axis in the (θ, τ) plane.
In the case of an ultrasound Doppler chirp (linear

shift) signal, A(θ, τ) is on θ = −cτ in the (θ, τ) plane.
If we consider that one sinusoidal signal is shifted by

one sinusoidal Doppler, the term A(θ, τ) is distributed
like a figure eight around the τ axis in the (θ, τ) plane.

3 A FIGURE EIGHT KERNEL [12]

From the previous considerations, it is clear that the
ambiguity function has the following behavior. (1) The
ambiguity function distributes on the τ axis in the case
of a sinusoidal signal, and (2) the ambiguity function
distributes around the τ axis in the case of an ultrasound
Doppler sinusoidal shift signal.

On the other hand, it is already known that the auto-
terms (original signals) distribute passing through the
origin of the (θ, τ) plane, and the cross-terms (spuri-
ous signals) distribute passing through the other points
separated from the origin.

φ(θ, τ)=




exp
[− 1

σ{a2θ2 − 4r2(a2 − τ2)τ2}]
(for {·} ≥ 0)

1
(for {·} < 0 and τ = 0)

(7)

r =
b

a
. (8)

The discrete expression is as follows:

φ(p,m) = exp
[
−(2π

N
)2
1
σ

{
a2p2 − 4r2(a2 − m2)m2

}]
.

(9)
Figure 1 shows a contour plot of the FE kernel. We call
it a figure eight kernel as the shape of the contour plot
looks like a figure 8.
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Figure 1: A contour plot of FE kernel.

In this paper, the FE kernel was calculated by N =
256, a = N/16, r = 1/2, and σ = N/4. When the
TFD was calculated, each 128 data of both sides (total
256 data) were used. Thus, 512 data must be used to
calculate if the TFD of 256 data was obtained.

4 A 2ND FIGURE EIGHT KERNEL [13]

The Cohen’s class TFD C(t, ω) is expressed as follows:

C(t, ω) =
∫ ∫ ∫

e−jθt−jτω+jθuφ(θ, τ)z(u+
τ

2
)

· z∗(u − τ

2
)dudτdθ (10)

=
∫ ∫

e−jτωΨ(µ, τ)z(t+µ+
τ

2
)

· z∗(t+ µ − τ

2
)dµdτ (11)

where Ψ(µ, τ) is an inverse Fourier transform of the ker-
nel function φ(θ, τ) with respect to θ. The TFD C(t, ω)
is directly influenced by the kernel φ(θ, τ) and an inverse
of it, Ψ(µ, τ).



-50 0 50
-60

-40

-20

0

20

40

60

FE2 Kernel

mu

ta
u

Figure 2: A contour plot of FE2 kernel.

Conventionally, the kernel was designed in the (θ, τ)
plane.
However, in the case of a complicated signal, such as

an ultrasound Doppler sinusoidal shift signal, the main
part of the signal can be expected to distribute around
the τ axis like a fan [12].
In that case, it is more convenient to design the kernel

in the (µ, τ) plane rather than in the (θ, τ) plane. When
a quadratic or higher derivative of the signal frequency
does no vanish, if Ψ(µ, τ) is taken wider for the µ and τ
direction on the (µ, τ) plane, the frequency components
shifted from the original frequency are added more and
it becomes more difficult to calculate correct TF analy-
sis [13].
Thus the authors proposed a new kernel design

method. By the new method, the kernel satisfies the
desired properties for a kernel [10]. Moreover, the ker-
nel reduces the cross-terms and frequency shifts. That
is

Ψnew(µ, τ) = e−
τ2

σ2 · e− τ2+d2

d2τ2 µ2

∼



e−
τ2

σ2 · e−µ2

τ2 , |τ | < d

e−
τ2

σ2 · e−µ2

d2 , |τ | > d
(12)

where, Ψnew(0, 0)=1, Ψnew(µ, 0) = 0(µ �= 0 ).
Note that Ψnew(µ, τ) is limited in the µ direction by

an exponential (reduces the dross-terms), and is also
limited in the τ direction (reduces the frequency shifts).
In Eq. (12), the contour lines with 1/e in the µ di-

rection is µ = ±τ , when |τ | < d, and is µ = ±d when
|τ | > d. Thus the Ψnew(µ, τ) can be designed to satisfy
the time support property approximately and the shape
of the distribution can be controlled by d.
Figure 2 shows a contour plot of the FE2 kernel. The

FE2 in this paper was calculated by σ = N/8 and d =
N/20.

5 EXPERIMENT

A steel ball 8 mm in diameter was hung by a steel wire
and submerged in olive oil in a container. The steel ball
was set into motion by a sinusoid, triangular or square
waves. An ultrasound transducer was placed on the ex-
tension of the orbit of the ball’s movement. The trans-
mission frequency was 1 MHz and the width of the trans-
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Figure 3: A contour plot of TFD with WD.
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Figure 4: A contour plot of TFD with CWD.
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mitted pulse was 80 µs. The amplitude of the movement
was regulated to obtain a sufficiently large Doppler sig-
nal. A band pass filter was used to remove the noise of
the signal received after orthogonal detection with the
transmitted signal. The sampling frequency was 200 Hz.

6 RESULTS AND DICCUSSION

The real biological data is somehow noisy. Hence, the
experimental data are added by noise up to S/N 0 dB,
that is, the noise is the same magnitude of the signal.
Figures 3 – 6 show the TFDs obtained by the sinusoidal
driving waveform with 0 dB noise and analyzed with
WD, CWD, FED, and FE2D, respectively. These fig-
ures show contour plots of the positive part of TFD.
In spite that the distributions of suprious components

spread over TF plane because of noise, the sinusoidal
shift signal can be observed a little more clearly with
WD shown in Fig. 3. From CWD shown in Fig. 4,
it becomes also difficult to observe the sinusoidal shift
signal clearly by adding the noise.
A portion of sinusoidal shift signal with FED shown

in Fig. 5 is missing. On the other hand, the sinusoidal
changes are rather well recognized by FE2D, shown in
Fig. 6.
Our purpose is to get an exact analysis of a biological

signal. Since the real biological signal can not avoid
noise, the use of FE2 is advisable. Although the noise
immunity of FED is low, we consider that FED can be
useful to the S/N 6 dB because FED demodulates the
sinusoidal components.
As a result, the new FE2 showed high resolution in

TFD and the spurious components were reduced. The
new FE2 can be used to analyze the TFD of the com-
plicated ultrasound Doppler signal.
Using this new FE2, a real biological complicated sig-

nal, such as a signal from flowing blood, can be analyzed
with TFD.

7 CONCLUSIONS

In this paper, we compare four TFDs of Cohen’s class
and investigate the applicability to the biological signals
and speech signals. The simulation data and experimen-
tal data obtained by an ultrasound Doppler sinusoidal
shift signal are utilized to obtain TFDs. Also the noisy
signal is made from the experimental data and synthe-
sized noise.
The ultrasound Doppler sinusoidal shift signal is gen-

erated in olive oil by moving a steel ball to and fro by
continuously irradiating it with ultrasound.
The TFDs are (1) WD (Wigner distribution), (2)

CWD (Choi-Williams distribution), (3) FED (figure
eight distribution), and (4) FE2D (2nd figure eight dis-
tribution).
It is confirmed that a highly accurate TFD can be

obtained with FED even by a noisy signal, and a much
more highly accurate TFD can be calculated with FE2.
We can get a highly accurate TFD of a real compli-

cated biological signal such as a blood flow signal or a
heart sound signal. Furthermore, this result suggests
the possibility that a characteristic of a signal, which

is overlooked by conventional spectral analyses, can be
understood.
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