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Abstract-This study reported the multi-component decaying 
behavior on high-b-value diffusion-weighted MR images. 
Signal intensity was measured in different regions of the brain.  
Results showed that gray matter and cerebrospinal fluid 
exhibited single exponential decaying characteristics while 
multi-component decaying behavior was observed in some 
white matter areas with complicated neural fiber orientations.   
 

Ⅰ. INTRODUCTION 

 

Diffusion-weighted MR imaging (DWI), in particular 
mapping of the diffusion tensors, has been proven useful in 
depicting neural fiber orientations by making use of the 
anisotropy of structure-restricted diffusion [1], [2]. Due to 
scan time consideration, mapping of the diffusion tensors is 
often performed with only two b values, on the order of 0 
and 1000 sec/mm2 in the human brain. On the other hand, 
during the development of many neurological disorders in 
human brain, alterations in the apparent diffusion 
coefficient (ADC) of water have been detected [3], [4]. So 
far, most studies performed with conventional MRI 
hardware report diffusion measurement in terms of a single 
ADC. In other words, the signal decay caused by water 
diffusion is assumed to be mono-exponential. With the 
advent of advances in hardware technology, high-b-value 
(>1000 sec/mm2) DWI is made feasible in clinical MR 
systems and it has been shown that the diffusion signal 
decay is no longer monoexponential under high b values 
[5]. 

In this study we report the investigation of the 
multi-exponential behavior observed on DWI with b values 
up to 3000 sec/mm2. We provide an explanation for this 
behavior and address the cautions in its applications. 
 
 

Ⅱ. MATERIALS AND METHODS 
 

A. Image Acquisition 
 

Transaxial echo-planar diffusion-weighted images of the 
brain were acquired from healthy volunteers using a 1.5T 
system (General Electric Signa Horizon, Milwaukee, 
Wisconsin) with multiple b values of 0, 500, 1000, 1500, 
2000, 2500, and 3000 sec/mm2 (TR/TE=4700/118, in-plane 
resolution 1.2x2.5 mm2). Diffusion-weighted gradients 
were applied along three orthogonal directions 
(superio-inferior, anterio-posterior, and right-left) for all b 
values. Signal intensity measured in different regions of the 
brain was fitted by both monoexponential and 
biexponential models as described in the next paragraph. 
Then, the signal intensity was plotted in logarithmic scale 
versus the b values. Any observed nonlinear behavior was 
recorded, and the ADC obtained with b=0 and 1000 was 

compared to that obtained with b=0 and 2000. 
 
B. Mathematical Models 
 
1. Monoexponential: 

)exp(0 bDSS −−−−====  
where D is the ADC, S0 and S are the signal intensity 
without and with diffusion weight respectively. This 
model assumes monoexponential decaying behavior with 
the increase of b values. 
 

2. Biexponential: Since the fiber orientation in brain tissue 
is complicated, the overall diffusion behavior of a region 
can be regarded as the contribution of several 
compartments determined by the fiber tracts. In 
biexponential model, we divided water diffusion into 
two components. 

[[[[ ]]]])exp()exp( 22110 bDfbDfSS −−−−++++−−−−====  
f1 + f2 = 1 

where f1 is the fraction of primary component, i.e. the 
fraction of principle orientation of fibers enclosed, D1 is 
the primary ADC, f2 is the fraction of residual 
component and D2 is the mean ADC contributed by other 
minor diffusion compartments.  

 
C. SNR simulation 
 

To assess the influence of noise, simulated DWIs, 
superimposed with Gaussian noise, were generated with 
signal-to-noise ratio (SNR) 6, 4.5 and 2. Referring to the 
literature ADC range of human brain tissues, D was 
assigned 0.001 mm2/sec in monoexponential model while 
D1 and D2 were given 0.001 mm2/sec and 0.0001 mm2/sec 
respectively in biexponential model. 
 
D. Curve fitting 
 

Least-squares algorithm was adopted to find D, D1, D2, 
f1 and f2. R2 was calculated, where R is the multiple 
correlation coefficient. In different regions of the brain, the 
fitted ADCs were compared with the literature values. 
There must be discrepancies because more than one 
diffusion compartments were considered here. However, it 
is rational to use the literature CSF ADC (2.94+/-0.05 
(x10-3 mm2/sec)) as the upper limit of the ADCs obtained in 
other brain tissues. Moreover, we excluded any fitted ADC 
exceeding 1.5 times the literature value of the tissue. 
 
 

Ⅲ. RESULTS 
 

Fig.1 and Fig.2 show the result of simulation. In both 
mono- and bi- exponential models, noise plays an 
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important role as b value exceeds 2500. In addition, when 
SNR drops to 2 (2.5 actually) or less, the simulated result 
begins to deviate from the ideal condition and this may lead 
to misinterpretation of mono- or multi- exponential decay.  

The anatomical regions of interest are shown in Fig.3. 
Fig.4 shows the signal intensities of the diffusion-weighted 
images in cortex gray matter, corpus callosum and optical 
radiation, plotted in logarithmic scale versus the b values.  
The cortex gray matter and cerebrospinal fluid (not shown 
here) exhibited single exponential decaying characteristics.  
In the white matter, however, variant behaviors were found 
in different regions.  It is seen that the corpus callosum 
and optical radiation, where there exist complicated neural 
fiber orientations within the chosen regions of interest, 
demonstrated non-linear multi-exponential decaying 
compartments along some directions.  In the corpus 
callosum for example, ADC calculated from b=0 and 1000 
(along left-right direction) was higher than that obtained 
with b=0 and 2000 by a factor of 2. 
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Fig. 1. Assessment of noise interference in curve-fitting in mono- 
exponential model (D = 0.001 mm2/sec). Simulated DWIs superimposed 
by Gaussian noise were generated with SNR 6 (upper), 4.5 (middle) and 2 
(lower) respectively. The signal intensity was plotted in logarithmic scale 
versus the b values. Solid line is the ideal mono-decay and dotted line is 

obtained from simulation. 
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Fig. 2. Assessment of noise interference in curve-fitting in biexponential 
model (D1 = 0.001 mm2/sec, D2 = 0.0001 mm2/sec). Simulated DWIs 
superimposed by Gaussian noise were generated with SNR 6 (upper), 4.5 
(middle) and 2 (lower) respectively. The signal intensity was plotted in 
logarithmic scale versus the b values. Solid line is the ideal biexponential 
decay and dotted line is obtained from simulation. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The anatomical regions of interest: (a) cortex gray matter, (b) 
corpus callosum and (c) optical radiation. 
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Fig. 4. The DWI signal intensities in cortex gray matter (upper), corpus 
callosum (middle) and optical radiation (lower) are plotted in logarithmic 
scale versus their corresponding b values. Diffusion-weighted gradients 
were applied along three orthogonal directions: anterio-posterior (AP), 
right-left (RL) and superio-inferior (SI). 
 
 
 

Ⅳ. DISCUSSIONS AND CONCLUSIONS 
 

Diffusion is known to be anisotropic, with the 
preferential direction of movement along the white matter 
track (i.e., highest ADC).  We thus attribute the 
multi-exponential behavior as arising from an inclusion of 
neural fibers along different orientations in a single region 
of interest.  In cortex gray matter consisting of cell bodies, 
no noticeable multiple diffusion compartments (fiber tracts) 
exist. Hence, diffusion-induced signal decay is contributed 
by only one component, i.e. monoexponential or linear in 
logarithmic scale. In areas such as the corpus callosum 
where the fiber directions are complicated, DWI with low b 
values presumably reflects the fastest decaying component 
(i.e., fibers along the direction of diffusion-sensitizing 
gradients).  Therefore, the existence of slow ADC 
compartments can only be visible on DWI with high b 

values.  The findings from this study further suggest that 
the interpretation of white matter track should be taken 
with care if mapping of the diffusion tensor were 
accomplished with only low b values. 
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