
Abstract-Monochrome image representation and segmentation 
based on the pseudo-color transformation and principal 
components transform (PCT) are presented in this paper. The 
HLS family of color models is employed to map a monochrome 
image into a new multidimensional color space where image 
features are enhanced by color representation. An optimal 
decomposition is then applied using the PCT transformation of 
the color space, in which image features are better defined and 
the automatic image segmentation is easily performed using the 
PCT-guided median splitting. Attempts are also made to 
compare the proposed segmentation with the fuzzy c-means 
(FCM) clustering in terms of the quality and computational 
complexity involved in segmentation. Results from 
mammograph and MRI image representation and segmentation 
are presented. 
Keywords - Color model, pseudo-color transformation, PCT, 
segmentation, fuzzy c-means 

 
I. INTRODUCTION 

 
A color model is a 3D coordinate system used to represent 

a particular color organization [1]. Various application-
oriented color models, such as the CMY, YIQ, LHS and HSV 
models for color image manipulation can be derived from the 
RGB model by linear/nonlinear transformations. How to use 
color models in image processing is still a challenging task. A 
color image can be represented the way humans perceive 
colors using the HLS family of models (HLS, HSV, GLHS 
[2]), in which not only intensity, but also hue and saturation 
are provided for more accurate image processing and 
analysis. For monochrome images of low quality, pseudo-
color processing has been employed where traditional image 
enhancement was unable to improve image contrast and 
clarity [1]. Algorithms on color image segmentation have 
been suggested [3-5]. A pseudo-color transformation using 
the HLS family of models is presented in this paper as a way 
to map the monochrome image into a three dimensional RGB 
color space, in which segmentation is implemented.  

Applications in medical image contrast enhancement and 
segmentation are introduced. Pseudo-color transformation is 
used in the representation of mammographic images. With 
PCT, stronger color image representations with the 
corresponding three RGB components are displayed, which 
provide radiologists with additional information for analysis. 
Based on the pseudo-color and PCT transformations, an 
automatic image segmentation is implemented where PCT is 
applied to 3D color space, resulting in uncorrelated new 
components, which makes automatic classification and 
segmentation possible by simply median splitting the 
histogram of each component. Results from mammograph 
and MRI images were selected, which are also compared to 

that using the fuzzy c-means (FCM) algorithm [6] and the 
traditional edge filtering method [7], showing good 
performance of the proposed segmentation method.  
 

II. METHODOLOGY 
 

Linear or non-linear image intensity transformation is the 
traditional method used to change the image contrast. Here, a 
novel transformation of mapping the image intensity to the 
multidimensional color space is introduced. 

 
1) Pseudo color transformation using the HLS family of 

models: The purpose of pseudo-color transformation is to 
transform gray level differences to color differences by 
assigning the gray image to hue (H). The light/value (L/V) 
and saturation (S) components are original or scaled values of 
the image intensities. The transformation result is then 
represented in terms of a RGB color image, in which small 
difference between two gray levels can be differentiated by 
the distance between the [r g b] vectors of two points in the 
color space. The proposed color transformation is similar to a 
weighted classification, in which the weights are proportional 
to the gray level. Fig. 1 shows the diagrams of the gray level 
(0~255) to RGB color space transformation using the HSV 
color model. Multi-channel images can also be inputted into a 
color model to fuse information in color space. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Pseudo-color transformation using HSV color model  
 

2) Principal component transformation in color space: 
PCT transform (Karhunen-Loève transform) has been used in 
color image processing [4-5] as a means to project the RGB 
components on the eigenvectors of the covariance matrix 
(principal components). The transformed image includes one 
color plane with the maximum variance. Given pixel’s RGB 
vector: x=[r g b], the 3D covariance matrix is computed using 
the following equations:  
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where N is the number of pixels, mx is the mean vector, and 
Cx is the covariance matrix. The eigenvector matrix A is used 
to project the data set in color space onto the principal 
components. By scaling the resulting component vector 

xAX ⋅=  to the range of 0~255, a new color image is 
generated, in which the components are uncorrelated and the 
variance between components is maximal. The component 
corresponding to the largest eigenvalue contains the largest 
variance. The second component is orthogonal. Although 
smaller variance is contained in the third component, smaller 
changes such as noise and fine details emerge. There is also 
larger discriminate power in features in the new color image. 
Therefore, a PCT transformed image shows better feature 
contrast in both color representation and separate component. 
 

3) PCT-Guided automatic segmentation: Thresholding 
method is a popular approach for image segmentation [1]. 
Many methods are proposed to find the optimal single or multiple 
thresholds based on the intensity histogram of the image [8]. If an 
image is complicated and noisy, it is difficult to find a proper 
threshold automatically. Additionally, the region of interest in 
image such as X-ray or MRI contains mostly smooth 
boundaries, thus the traditional edge detection filters cannot 
locate the boundaries accurately. Based on the color image 
segmentation using PCT and the median split introduced in 
[4], an automatic monochrome image segmentation using 
pseudo-color and PCT transformations is presented. With 
PCT, image features with different discriminate powers are 
derived, median split is then performed to automatically split 
the color space, and each pixel is mapped into the closest 
color region. The segmentation procedure is as follows:  

1. Compute the histograms from the PCT transformed 
three component images [X1 X2 X3];  

2. Find the threshold vector [t1 t2 t3] that divides each 
component into two groups, each having an equal 
number of points; 

3. Divide the RGB color space into 8 regions using the 
thresholds, each region is then assigned a certain color;  

4. A region that contains a small number of pixels is 
merged into a nearby larger region, resulting in final 
segmentation.  

Compared to the automatic thresholding method in [8], the 
PCT-guided segmentation is also based on the statistical 
properties of the image. However, the PCT components 
already contain the optimal thresholds for segmentation using 
median split. Therefore, the computational complexity is 
reduced and less time will be spent in the threshold finding 
procedure. Here, we employed the FCM clustering method to 
evaluate the performance of PCT-guided segmentation. 
  

4) FCM-based segmentation: Fuzzy c-means (FCM) has 
been used as a clustering technique in image classification 
and pattern recognition, and has received extensive attention 

in medical image such as MRI brain image segmentation [6]. 
FCM is an iterative clustering approach. It partitions the data 
set D={d1, d2, …, dN} into NK fuzzy subsets. Given an image 
having N pixels, with NK classes, each pixel represented by 
NC channels, the data set D is an NC-dimensional vector. 
When FCM is used to segment the PCT transformed data set, 
NC=3. FCM clusters the data set by minimizing the sum of a 
squared error of the objective function [6], the calculation 
contains many iteration steps. In the examples presented in 
this paper, approximately 10 to 20 iterations were required for 
the minimization process. 
 

III. RESULTS 
 

Pseudo color image representations based on color model 
and PCT transformations were applied to medical images. 
PCT-guided method and FCM clustering were used in pseudo 
color image segmentation, and comparisons were made using 
mammograph and MRI brain images. Finally, an image edge 
detection has also been derived using the proposed method. 

 
A. Mammograph image transformations 

 
Pseudo-color transformation is suitable for X-ray image 

enhancement due to the smooth and low contrast nature of the 
image. Fig. 2 shows the color image representation of a right 
cranial-caudal mammograph using HSV and PCT 
transformations. There is an abnormal region in the center, 
with a lesion-type calcification and fine-linear-branching 
distribution. Color transformation enhances the contrast of the 
image, and makes the features easily visible in both the color 
transformed and component images. 

 

      
(a)                                                   (b) 
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 (e)                                                  (f) 

 

Fig. 2. Pseudo-color image representation based on HSV and PCT 
transformations. (a) Mammograph from the Digital Database for Screening 
Mammography of the University of South Florida: C_0341_1.RIGHT_CC;  
(b) Pseudo-color transformation using HSV color model; (c) PCT 
transformation of (b); (d-f) RGB components of (c). 
 
B. Mammograph  image segmentation 
 

Like other X-ray images, mammograph is too smooth to 
visually locate accurate region boundaries. The pseudo-color 
transformation and PCT-guided segmentation approaches 
demonstrate their utility to enhance and segment the internal 
features and regions. Fig. 3 shows the PCT-guided image 
segmentation and FCM-based segmentation results based on 
the color space transformation shown in Fig. 2. The input data 
set of FCM is from the PCT transformed image X, therefore, 
the FCM data set is D=X with NC=3. The class number is set 
to NK=4. The two methods have similar results in 
segmenting the main regions and features in mammograph. 

 

     
(a)                                                (b) 

 

Fig. 3.  Mammograph image segmentation using the proposed and FCM-
based segmentation methods. (a) Pseudo-color transformation and PCT-
guided segmentation; (b) FCM-based segmentation  (NK=4, NC=3). 
 
C. MRI brain image segmentation    
 

In MRI brain image segmentation, images from different 
acquisition methods are used to fuse the available useful 
feature information and compensate for the inhomogeneity in 
each image. Here, MRI T1 and T2 images are used in the 
PCT-guided and FCM clustering segmentation. It is supposed 
that there are four classes contained in a brain image: gray 
matter, white matter, CSF, and background. Fig. 4 shows 

segmentation of MRI brain images. In color transformation 
using the HSV color model, a T1 image was input to H and S, 
and a T2 image was input to V component. The data set used 
in FCM segmentation is T1 and T2 images, therefore, NC=2. 

The similar segmentation results mean that the PCT-guided 
method is close to the optimal criteria that FCM used for 
classification. However, different computational complexities 
are contained in the two methods. The PCT-guided 
segmentation requires simply a pseudo-color transformation, 
PCT, and median splitting of each color component. The 
FCM-based segmentation includes iterative calculations of 
the memberships of different classes related to each sample 
and the cluster center of each class in the multi-channel data 
set [6]. The computational complexity depends not only on 
the image size, but also on the number of iterations and 
clusters. Therefore, the PCT-guided method is more 
computationally efficient than the FCM-based segmentation. 

 

   
(a)                                               (b) 
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Fig. 4.  MRI image segmentation using the proposed and FCM-based 
segmentation methods. (a) MRI T1 image; (b) MRI T2 image; (c) PCT-
guided segmentation; (d) FCM-based segmentation (NK=4, NC=2). 
 
D. Edge detection in MRI image 
 

It is difficult to locate edges in medical images because the 
boundaries are either blurred or distorted by noise due to the 
nature of the acquisition equipment and/or the tissue features. 
Here, the edge detection based on the proposed PCT-guided 
image segmentation was experimented on MRI human body 
images. Because the second and third components of PCT 
transformed image contain more fine details and noise, 
smoothing is needed before median splitting. Fig. 5a is an 
MRI image from the Visible Human. Fig. 5b is the color 
representation after pseudo-color and PCT transformations. 
Fig. 5c shows the edges detected in the first and second PCT 



components, and Fig. 5d is the edge detection using the 
Canny edge detector [7]. It is found that the boundaries of the 
smooth regions and small organs that cannot be detected by 
the edge filtering are clearly delineated using the proposed 
segmentation method. The proposed edge detection can be 
used for any other kind of monochrome images. 

 
 

  
(a)                                                       (b) 
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Fig. 5. MRI image edge detection using the PCT-guided segmentation 
method and edge filtering method. (a) Original MRI image from the Visible 
Human; (b) Color image representation using HLS-based pseudo-color and 
PCT transformations; (c) Edge detection based on PCT-guided segmentation; 
(c) Edge detection using the Canny operator. 

 
IV. DISCUSSION 

 
The proposed pseudo-color and PCT transformations can 

be used in a wide range of image applications, such as 
monochrome image pseudo-color representation, image 
enhancement, region segmentation, and edge detection, 
especially when traditional methods are not applicable. The 
PCT-guided color space segmentation is close to the optimal 
criteria that FCM used in clustering different classes of a data 
set. Therefore, the PCT-guided segmentation can substitute 
for the FCM-based segmentation when computational 
efficiency is required. The pseudo-color transformation is a 
form of 3-dimmensional mapping. Instead of applying the 
proposed method to single monochrome images, multi-
channel images can also be processed. Although other linear 
or non-linear transformations may exist, the proposed image 
transformation can be visualized in terms of color image 
representation, and the advantage is that the information in 
the original image can be totally preserved. Finally, the 
proposed transformation and segmentation approaches are 
simple and fast, which can be implemented in real-time. 

 

V. CONCLUSION 
 

In this paper, an efficient pseudo-color transformation and 
segmentation method based on the HLS family of color 
models and the PCT is presented. Compared to other 
automatic segmentation methods such as Fuzzy c-means 
clustering and image edge filtering, the proposed 
segmentation method is simple, flexible, robust, and 
computationally efficient.  
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