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Abstract- It is a difficult task to fit a neuronal model to data 

under multiple stimulation protocols. The protocol of 

weakest stimulation was used first to fit the model at the 

initial stage. The strategy of fitting an action potential (AP) 

consisted of three parts: passive parameter fitting, 

reduction of spatial complexity, reduction of temporal 

complexity. The nearly linear response of a neuron in the 

early depolarization well before AP initiation was used to 

fit the passive parameters with all the ion channel densities 

set to zero. We separated the fitting of the intervening part 

between the two electrodes from that beyond the dendritic 

electrode to reduce the spatial complexity by using 

dendritic voltage clamp simulation. The decomposition of 

stimulation protocols and the time course of an AP proved 

feasible and successful. 
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I. INTRODUCTION 

 

Neurons have widely diversified complex morphology of 

dendritic trees. Besides the passive properties of neuronal 

membrane that comprise specific membrane resistance and 

capacitance, specific intracellular resistance, neurons are 

endowed with a repertoire of voltage-dependent ion channels 

on their cell membranes.  So far, many different voltage 

dependent ion channels have been identified, such as fast 

sodium, delayed potassium, transient potassium, 

high-threshold calcium, low threshold calcium, 

calcium-dependent potassium ion channel. The characteristic 

behaviors of ion channels are very nonlinear and diverse. 

Moreover, the density and type distribution of the ion channels 

on neuronal membranes are also inhomogeneous. Both of our 

experimental and simulation results reveal the complexity of 

dendritic signal integration and sites of AP initiation. The 

simulation gives us some significant insight into the 

underlying mechanism. However, the equivalent model of 

electrophysiological behavior of a neuron is an intrinsic 

nonlinear distributed system with at least several dozens of 

parameters in real number.  Because many different choices of 

parameter set of a model with an invariant structure and 

invariant types and distribution of ion channels can produce 

the same simulated behavior, it is extremely important to 

constrain the model parameter range by fitting the model 

behavior to known experimental data as more as possible to 

avoid equivocal results. 

   To make the fitting feasible, it is indispensable to carefully 

design the strategy for fitting the neuronal model to 

experimental data because of the high dimension of the 

parameter space that can not be exhaustively explored. It is 

almost impossible to implement a fully automatic algorithm 

that can fulfil the fitting task in place of human intelligence 

based on a cluster of connected work station computer systems. 

First, the behavior of the model can be dramatically altered 

due to very small change of one or two parameters. Secondly, 

the goodness of a fitting in terms of physiological significance 

can not be judged merely by fitting errors. Some key parts of 

the target data curves are much more important than others in 

the context of the fitting of interest. But the errors of those 

parts only take a small fraction of the total error. Furthermore, 

there are many local minima with the same amount of fitting 

errors, but the fitting qualities in terms of physiological 

significance can be very different. Now, we introduce an 

effective strategy for the fitting of nonlinear model of neurons. 

 

II. METHODOLOGY 

A. Physiology 

 

   Our experimental procedure followed those in Chen et al. [2]. 

400-micron thick slices were cut from rat olfactory bulbs. 

Mitral cells and their cell bodies were identified under infrared 
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differential interference contrast microscope. During the 

recording of whole-cell patch clamp, one electrode was placed 

on a distal site of the primary dendrite, the other on the somatic 

region. The dendritic electrode was placed as far from the cell 

body as possible to obtain as long the inter-electrode distance 

as possible. There were a total of three cells. Two of them were 

stimulated with current injection and the other with brief 

synaptic shocks to the olfactory nerve (ON). The current 

injection and the synaptic stimulation protocols followed our 

previous published papers [1,2]. Briefly, The four protocols of 

current injection stimulation included: weak and strong 

stimulation of current injection at the dendritic electrode, 

weak and strong stimulation of current injection at the somatic 

electrode. The intensity of ON shock was controlled at weak, 

median and strong level which caused weak, median and 

strong excitatory post-synaptic potential (EPSP). 

 

B. Modeling and Simulation 

 

    The morphological structure, kinetic equations and density 

distribution of voltage-dependent ion channels of the 

Hodgkin-Huxley models can be found in our previous paper 

[1].  They were invariant here. Our model under current 

injection protocols contained a total of 43 parameters that 

needed to be fit to the dual patch recording data. The intensity 

and time interval of the stimulating current were known from 

the experiment. The equations of the glutamatergic EPSP can 

be found in [5]. EPSP consisted of both α -amino-3-hydroxy- 

5-methyl-4-isoxazole propionic acid (AMPA) and 

N-methyl-D-aspartate (NMDA) components. The time 

constants for AMPA and NMDA components were obtained 

from [6]. Besides the 43 parameters, there were two additional 

unknown parameters that needed to be fit for each EPSP 

stimulation protocol. All the unknown parameters were fit to 

the data for each cell with the same strategy stated below. The 

simulation of the models was carried out with NEURON [3]. 

 

III. RESULTS 

 

    Each stimulation protocol generated a pair of AP curves. 

There were four pairs (total eight curves) of APs to which the 

behavior of the model with just one set of parameters needed 

to be fit simultaneously. For the cell of EPSP stimulation 

protocol, the membrane potential of the model with just one 

set of parameters should be fit to three pairs of data. The 

stimulation intensities of the current injection were: 0.4nA and 

0.8nA for weak and strong somatic stimulation, 0.5nA and 

0.8nA for weak and strong dendritic stimulation. However, the 

EPSP intensities were unknown although the intensities of 

pre-synaptic shocks to the ON were known. 

    In order to reduce the computational complexity, an AP was 

temporally divided into three parts: passive depolarizing 

charging, onset and upstroke, and the downstroke with the 

afterpotential. In fact, the main mechanisms of the three parts 

are markedly different. 

    The passive charging of the membrane potential is largely 

caused by the early part of EPSP (or current injection). The 

region of symmetrical transfer impedance determined this 

early passive part. The forward transfer impedance was the 

quotient of the somatic membrane potential divided by the 

intensity of the injected current at the dendritic electrode. The 

backward transfer impedance was that of the dendritic 

potential divided by the intensity of the injected current at the 

somatic electrode. If the time curves of the forward and 

backward transfer impedance were superimposed well, this 

time region was identified as linear charging interval which 

was shown in Fig.1.  In this passive region, only passive 

electrical and morphological parameters (total seven 

parameters) were fit. 

Fig.1. Symmetrical interval of transfer impedance.  The 

neuron’s behavior in the symmetrical region was linear. 

  

A critical fitting approach was adopted to separate the 

fitting of the intervening part between the two electrodes from 

that beyond the dendritic electrode. The waveforms of 

experimentally measured dendritic APs were used in place of 

the simulation curves. Because the simulated dendritic 

membrane potentials were voltage-clamped to the data, the 

parameters of the distal primary dendrite beyond the dendritic 

electrode, tufted dendrites and the synaptic stimulation were 

masked off and would not interfere with the parameters of the 
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other part during the somatic AP fitting. Only the parameters 

of the neuronal part below the dendritic electrode were varied 

to fit the somatic data. The superposition of two pairs of 

simulation and data of multiple stimulation protocols was 

shown in Fig.2. The simulation of dendritic potentials in the  

 

Fig.2 Superposition of data (dashed lines) and 

simulation (solid lines) which was voltage-clamped. A 

and B show two stimulation protocols. 

 

left column were voltage-clamped.  After the APs at the soma 

were fitted, the parameters of the fitted part were fixed. Then 

the voltage-clamp was removed, and the parameters of the part 

beyond the dendritic electrode and the synaptic stimulation 

were varied to fit the dendritic data. 

 

Fig.3 Successive fitting process of the passive part and 

the onset-upstroke of the APs.  

 

    The activation kinetics of the sodium ion channel is mainly 

responsible for the onset and upstroke of the AP; while he 

inactivation of sodium ion channel and the activation of the 

potassium ion channel determine the downstroke and 

afterpotential. During the fitting of the APs, the passive 

parameters were fixed and the fitting weights of the passive 

charging regions were set to large values so that the well-fitted 

passive charging would not be altered by the active parameter 

fitting, which was shown in Fig.3. The fitting of the onset and 

upstroke used only the activation parameters of the sodium ion 

channel. After the onset and upstroke was well fitted, the 

parameter values of  activation of sodium channel were fixed. 

Then the inactivation parameters of the sodium ion channel 

and activation parameters of the potassium ion channel were 

fit.  

As we mentioned earlier, many choices of parameter sets 

can give a good fitting of simulation of the model to data. Even 

if the model with a certain set of parameters could produce a 

quite satisfactory simulation to the data just for one 

stimulation protocol, it was very likely that the simulation of  

 

Fig.4. Superpositon of data and simulation of the 

models constrained with only one stimulation protocol 

(weak depolarization at the dendrite).  

 

the model could not fit the data under other stimulation 

protocols as shown in Fig.4 and 5. However, it was very 

difficult to fit the model with one set of parameters to all the 

data of four stimulation protocols at the initial stage of fitting. 

First, only one stimulation protocol was used to fit the 

dendritic and somatic potential to the corresponding data, 

which was shown in Fig.4C. The fitted model with different 

sets of parameters were not well constrained under the other 

three stimulation protocols and the superposition of many 

simulation traces was fuzzy around the data curves as shown 
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in Fig.4A,B and D. After the completion of the fitting for one 

stimulation protocol, we added a second stimulation protocol 

in the fitting. With the addition of more stimulation protocols, 

the model was more constrained and able to produce better 

simulation under all stimulation protocols. The model 

constrained with the data of two protocols produced better 

simulation than with that of only one protocol, which was 

shown in Fig.5. This strategy of gradual addition of constraints 

is much more feasible than that of using all the constraints 

together at the very beginning. 

Fig.5. Superpositon of data and simulation of the 

models constrained with two stimulation protocols 

(weak and strong depolarization at the dendrite).  

 

IV. DISCUSSION 

 

    In fact, the parameters of the model are related with each 

other. The change of one parameter value will usually affect 

other parameters’ values more or less to maintain the good 

quality of fitting. Therefore, the fitting of the above 

approaches must be carried out alternatively for several times 

until the results of all the fitting approaches converged to an 

acceptable degree. If the fitting falls into an undesired local 

minimum, human interference was necessary. The fitting of 

the early passive charging part has a significant influence on 

the goodness of the fitting of AP onset, which is the most 

difficult part to fit. To consolidate the successful fitting results 

of the previous stages, it is very important to wisely set the 

fitting weights for different regions of the curves. The 

evaluation of the quality of a fitting result should be made by 

both physiologists and neural computational scientists. 

V. CONCLUSION 

    The fitting of a neuronal model to dual patch recording data 

for multiple stimulation protocols can be decomposed into 

several less complex approaches. This decomposition can 

dramatically reduce the computational complexity of the 

fitting of a non-linear model and make it possible to perform 

the fitting on an average Unix work station or fast personal 

computer. With this strategy, we successfully fit three mitral 

cells perfectly. 
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