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Abstract-This study focused on man-machine interface of FES 
system for restoring gait of hemiplegic patients. A method of 
recognition of lower limb movements using an artificial neural 
network (ANN) was examined in monitoring restored motions 
and in giving control command with normal subjects and a 
hemiplegic patient. Acceleration signals were measured with a 
three-axis accelerometer attached to the heel of the normal side 
(right side) during walking for using in the recognition. Subjects 
performed some specific movements by their normal lower 
limbs supposing control command input in the walking 
measurements. The ANN recognized three different walking 
patterns, which were level floor walking, going up and down 
stairs, based on the acceleration waveforms with about 80% of 
recognition rate for normal subjects and above 70% for the 
patient. A similar structure of the ANN discriminated four 
specific movements by the lower extremity with more than 90% 
of recognition rate after the third performance of the movement 
simulated by using recognition and mis-recognition rates for 
experimentally measured data. The method was found to be 
useful in monitoring FES movements for safety and in giving 
control commands to the FES system without using upper limbs. 
Keywords -  FES, neural network, gait, hemiplegics 
 

I. INTRODUCTION 
 
 Walking of hemiplegic patients on level floor has been 
improved by controlling ankle dorsiflexion using functional 
electrical stimulation (FES). The main purpose of this 
method is to correct the drop foot during walking. The 
method usually uses foot switches to detect the toe off and 
the heal contact of the paralyzed foot. Electrical stimulus 
pulse train is applied to muscles, mainly the tibialis anterior, 
on the basis of predetermined stimulation data during the 
swing phase detected by the foot switches. 
 It is required to make secure the patient’s safety during 
FES gate for practical use. From this point of view, 
monitoring restored motions can be an important function of 
FES system in addition to feedback control. Although non-
restraint measurement of walking [1] and detection of gait 
phase [2] have been studied, detection of walking pattern at 
every step has not been realized. 
 For going up and down stairs freely in addition to level 
floor walking, it is necessary to control a lot of muscles 
relating to the ankle, the knee and the hip joints using 
appropriate stimulation data to restore different walking 
patterns. That is, a lot of control commands are required to 
restore many movements. In restoring motor functions of 

lower extremity, a patient also uses usually crutch, cane, stick 
and so on. In this case it is not desirable to use upper 
extremities for giving control commands because of assuring 
the safety of patients. Alternatives to using upper extremities 
for the command input may be to use head, shoulder or lower 
limb of the normal side. 
 We have shown that an artificial neural network (ANN) 
had the ability to recognize a specific movement measured 
with the three-dimensional position sensor [3]. Using this 
technique, we focused on developing man-machine interface 
of FES system for monitoring restored motions and giving 
control commands. In this paper, the ability of an ANN was 
examined in recognition of walking patterns based on 
acceleration waveforms measured with a 3-axis 
accelerometer during walking on the level floor, going up and 
down stairs with neurologically intact subjects and a 
hemiplegic patient. The ability of recognition of some 
specific movements for giving control commands was also 
examined using the similar structure of the ANN. 
 

II. METHODOLOGY 
 
A. Measurement of lower movements of the normal side 
 Subjects were 5 neurologically intact male (22-24yrs.) 
and a hemiplegic patient (female, 55yrs.). Three-axis 
accelerometer (8692C50M1, KISTLER) was attached to the 
heel of the shoe of normal side (Fig.1). The right side was 
assumed to be the normal side in the case of normal subjects. 
Foot-switches were attached on the heel and the thumb pad of 
the foot of the normal side in order to detect the stance and 
the swing phases for ANN learning. Both acceleration and 
foot-switch data were recorded with data recorder (RD-135T, 
TEAC). These data were low pass filtered (fc=20Hz) and 
sampled at 200Hz into personal computer after measurement. 
 Walking patterns for measurement were i) straight 
walking on the level floor, ii) going up stairs and iii) going 
down stairs. In each walking measurement, subjects 
performed specific movements by their normal side for 
supposed control command input at 1) the start of level floor 
walking, 2) the start of going up stairs, 3) the start of going 
down stairs and 4) the stop of walking. Specific movements 
were #1) knee flexion for command 1), #2) upward 
movement of the knee for command 2), #3) inner rotation of 
the lower thigh with toe contact for command 3) and #4) 
plantar-flexion of the ankle with toe contact for command 4).  
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 The first step was made by the normal side in the level 
floor walking and going up stairs. In the case of going down 
stairs, the paralyzed side made the first step. The hemiplegic 
patient used the stick during level floor walking and the grab 
rail during stair walking. There is no other restriction for 
subjects during walking. The numbers of measurements were 
10 for three walking patterns with normal subjects, 10 for 
level floor walking and 5 for stair walking patterns with the 
patient. In the case of stair walking of normal subjects, one or 
two steps of the normal side on the level floor were included 
before and after the stair walking. In order to lightening a 
burden on the patient for the measurement, we instructed her 
to stop stair walking halfway.  
 
B. Recognition of walking patterns for monitoring 
 Level floor walking, going up and going down stairs were 
recognized by the three-layer feed-forward style ANN shown 
in Fig.2. The numbers of neurons were 60 for the input layer, 
10 for the hidden layer and 3 for the output layer. Measured 
acceleration signals were low pass filtered (fc=3Hz) and 
sampled at 20Hz for the input to neurons of the input layer. 
The number of the neuron of the input layer was 60 (20 for 
each component) because the swing phase was about 1s. 
Changes of the acceleration signal from the amplitude of 1~ 
20 samples before were given to each neuron of the input 
layer for the period of 1s before the recognition (see Fig.2). 
Each neuron of the output layer outputs the recognition result 
of level floor walking, going up or going down stairs, 
respectively. 
 Error back propagation algorithm was used for learning of 
the ANN. Teacher signal HIGH (numerical value was 0.99) 
was applied at the end of the swing phase detected by the foot 
switches i) between the second step and the step before the 
stop for level floor walking, ii) between the second step from 
the bottom of stairs and the top step for going up stairs and 
iii) between the second step from the top and the first step on 
level floor just after the stair walking for going down stairs. 
Teacher signal LOW (numerical value was 0.01) was given at 
other time. Amounts of adjustment of connection weights 
were 5 times of the calculated value at when teacher signal 
was HIGH (0.99), while those at when teacher signal was 
LOW (0.01) were the calculated values. The adjustments 

were accumulated and added to connection weights after all 
the learning data were given. The adjustment of weights was 
repeated until the squared error function was less than 
reference value. The maximum repetition number of the 
learning was 40,000. Learning coefficient was 0.02. Initial 
value of coefficient of the inertia term was 0, the increment 
of the coefficient was 0.01 and the maximum was 0.9. 
 Each neuron of the output layer made numerical value 
between 0 and 1.0 using sigmoidal function. The output value 
that was larger than or equal to 0.5 meant that the neuron 
detected the movement. When detection results of all output 
neurons were correct, the ANN made correct recognition.  
 
C. Recognition of specific movements for control commands 
 A method of recognizing specific movements was studied 
for using in control command input. Structure of the ANN 
used in specific movement recognition was similar to the 
ANN for walking pattern recognition. The difference was the 
number of neurons in the output layer. Four neurons were 
used in the output layer for specific movement recognition. 
Each neuron detected each movement described in section II 
A. Signal conditioning for the input to the ANN was the same 
as for the ANN for walking pattern recognition.  
 Two measured data for each walking were used for the 
ANN learning. Acceleration signals during movement #2 and 
#3 in the learning data were copied and added to the end of 
the learning data three times. Teacher signal HIGH 
(numerical value was 0.99) was applied at the end of specific 
movement and LOW (numerical value was 0.01) was applied 
at other time. The other parts of learning method were the 
same as that for walking pattern recognition. Output value 
also had same meaning as that of walking pattern recognition. 
 

III. RESULTS 
 
 An example of measured acceleration signal during level 
floor walking is shown in Fig.3. The subject performed 
specific movements at the beginning of walking (movement 
#1) and just after the final step of walking (movement #4) in 
this walking. From the second step of the normal side to the 
step before the final one were used for the learning and the 
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Fig.1 Arrangement of an accelerometer and foot switches for the 
right foot. Directions of the 3-axis accelerometer are shown in 
the figure. 
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Fig.2 Structure of the artificial neural network (ANN) used for 

recognition of walking patterns. The value of n was 20. 
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recognition. 
 
A. Recognition of walking patterns 
 Recognition rate was defined as the ratio of the number of 
correct recognition to the total number of steps and 
movements for recognition [%]. Recognition rates to 
unlearned data (7 measured data for normal subjects, 3 data 
for the patient) are shown in Table 1. Mean recognition rates 
were about 80% for normal subjects and about more than 
70% for the patient. 
 With the 6 subjects including the patient, the mis-
recognitions that output numerical value was less than 0.5 
and that different movement was detected at when teacher 
signal was HIGH (0.99) were 61.1% and 2.6% of total 

number of mis-recognition for level floor walking, 61.5% and 
3.7% for going up stairs and 67.2% and 6.0% for going down 
stairs, respectively. The other mis-recognition (36.4% of total 
number of mis-recognition for level floor walking, 34.8% for 
going up stairs and 26.8% for going down stairs) was the case 
of the output numerical value was larger than or equal to 0.5 
at when teacher signal was LOW (0.01).  
 
B. Recognition of specific movements 
 Table 2 shows the recognition results of specific 
movements for unlearned data. The recognition rate was 
defined as the ratio of the number of correct recognition to 
the total number of performed movement. The numbers of 
unlearned data were 24 for normal subjects and 14 for the 
patient.  
 Recognition rate to four specific movements was over 
70% for normal subjects. Most of mis-recognitions were 
caused by low output values (less than 0.5) at when teacher 
signal was HIGH. In this case, the ANN did not detect a 
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Fig.3 Measured acceleration signals (X, Y and Z components) after 3Hz LPF (level floor walking). ‘FS’ means output of the foot switches. ‘on’ and ‘off’ show stance and swing phases of the normal side, respectively. Subjects performed specific movement #1 (a), the first step of the normal side (b), level floor walking (c) and the final step and specific movement #4 (d). 
subject level floor upstairs downstairs 

B 59.2 76.2 81.0 

C 79.6 88.1 91.3 

D 91.8 91.3 73.8 

E 71.4 77.8 69.8 

mean 79.3 83.5 79.8 

patient 69.2 76.2 70.8 
Table 1 Recognition results of walking patterns to unlearned 
data [%] 

Table 2 Recognition results of specific movements to unlearned data [%]. The numbers of performed specific movements were 40 for 
movement #1, 8 for #2 and #3, and 24 for #4 in the case of normal subject. In the case of the patient, those were 8, 3, 3, and 8 for each 
movement, respectively. The numbers of movements and steps at when teacher signal was LOW were 264 for normal subjects and 109 
for the patient. For mis-recognition, the ratio of it to the total number of movements and steps is shown. 

 correct recognition mis-recognition 
teacher signal HIGH LOW HIGH HIGH LOW 

0.5≤ 
output value 

#1 #2 #3 #4 mean 
< 0.5 < 0.5 

other 
movements 

detected 
0.5≤ 

normal A 82.5 75.0 62.5 50.0 70.0 100.0 20.0 10.0 0.0 
B 92.5 75.0 75.0 91.7 88.8 100.0 5.0 6.3 0.0 
C 70.0 87.5 87.5 70.8 73.8 99.2 21.3 5.0 0.76 
D 80.0 75.0 50.0 70.8 73.8 96.6 25.0 1.3 3.4 
E 75.0 75.0 100.0 75.0 77.5 99.2 16.3 6.3 0.76 

mean 80.0 77.5 75.0 71.6 76.8 99.0 17.5 5.78 0.98 

patient 25.0 0 0 87.5 41.0 96.3 31.8 27.3 3.7 
normal A 94.6 84.1 83.3 
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movement and a step. It was 66.0% of the total number of 
mis-recognition in average for the normal subjects. Mis-
recognition caused by detecting a different movement at 
when teacher signal was HIGH (0.99) and detecting a 
movement at when teacher signal was LOW (0.01) were 
21.7% and 12.3% of the total number of mis-recognition in 
average for the normal subjects, respectively.  
 Supposing re-input of control command in the case of 
output value of the ANN was less than 0.5 when a specific 
movement was performed, recognition rates P1, P2 and P3 
were calculated by following equations: 
 P1 = s : first movement 
 P2 = s+rs : second movement 
 P3 = s+rs+r2s : third movement 
where s is the recognition rate for the first movement. Mean 
recognition rate of the four movements was used as the value 
of s for each subject. The value of r is the rate of the number 
of mis-recognition, which was caused by low output value 
(less than 0.5) at when teacher signal was HIGH (0.99), to the 
total number of recognition. Results are shown in Table 3. 
After the supposed third input of control command, the 
system was expected to provide 92.4% of recognition rate in 
average with normal subjects.  
 

IV. DISCUSSION 
 

 In walking pattern recognition, most of the mis-
recognition at when teacher signal was LOW (0.01) was 
caused by specific movements. The ANN mis-recognized 
specific movements for giving control command as one of 
three walking patterns. Especially, movement #2 for the start 
of going up stairs was incorrectly recognized as walking 
pattern of going up stairs. Therefore, performing specific 
movements clearly is expected to decrease the mis-
recognition rate. In the case of normal subjects, it is possible 
to obtain higher recognition rate for specific movements than 
those of experimental results by performing the movements 
more clearly. Selecting specific movements, which is 
different from walking patterns, also can be a solution for 
decreasing the mis-recognition.  
 However, variation of acceleration pattern during walking 
was sometimes observed in recorded signals causing low 
recognition rate, e.g. in the case of level floor walking with 
subject B and going down stairs with subject E. Variation of 
walking speed also made difference in acceleration pattern 
between measurements. Mis-recognition caused by variation 
of acceleration pattern in the same walking has to be solved 
for practical application.  
 For specific movement recognition, the average 
recognition rate after the supposed third command input was 
high (more then 90%) with the normal subjects. This shows 
that the method can be practical. In the case of the patient, 
however, the rate was low. A possible reason for the low rate 
was the difficulty of performing specific movements by the 
normal side with the support of the paralyzed side. Even if it 
was the reason, high recognition rate for the movement #4 
was obtained (Table 2). The movement #4 was plantar-
flexion of the ankle with toe contact. The toe contact of the 
Table 3 Measured (P1) and simulated (P2 and P3) mean recognition 
rates for specific movements [%]. P1 is the measured ratio. P2 and 
P3 mean simulated rates for supposed second and third movement, 
respectively. 

subject P1 P2 P3 

normal A 70.0 84.0 86.8 

B 88.8 93.2 93.4 

C 73.8 89.4 92.8 

D 73.8 92.2 96.8 

E 77.5 90.1 92.1 

 mean 76.8 89.8 92.4 

patient 41.0 54.1 58.3 
normal side is considered to improve the stability during 
performing specific movements by the normal side. This 
indicates that selecting movements carefully is necessary to 
obtain high recognition rate.  
 

V. CONCLUSION 
 
 This study examined the use of ANN for recognition of 
walking patterns and specific movements. Movements were 
measured with a three-axis accelerometer attached to the heel 
of shoe of the normal side. The technique was found to be 
useful for monitoring walking and giving control command. 
The technique is expected to provide information for assuring 
the safety of patients and to improve operationality of the 
FES system for practical use. 
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