
Abstract- Parameter and architectural selection for Multiple 
Layered Perceptron (MLP) classifiers involve a number of 
heuristic design procedures. The aim in the design process of 
such classifiers is to achieve maximum generalization and avoid 
over-fitting of the training data. It has been the objective of this 
study to develop a symbolic prediction model to calculate the 
point at which training should cease for a given Neural Network 
(NN) based 12-lead ECG classifier to ensure maximum 
generalization. This prediction model has been obtained by 
means of Genetic Programming (GP), where a GP individual 
has been evolved to generate a symbolic model that predicts the 
optimal number of training epochs for three different ECG 
myocardial infarction classifiers: Anterior Myocardial 
Infarction (AMI), Inferior Myocardial Infarction (IMI), and 
Combined Myocardial Infarction (CMI). The GP model 
demonstrated to be a very accurate method showing no 
significant differences between the optimal number of epoch 
values and the predicted values for both: train and test data sets 
for the three aforementioned pathologies. 
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I. INTRODUCTION 

 
The main objective when classifying the ECG is to 

allocate patients into a probable list of cardiac pathologies. 
This classification process can be described within three 
functional modules: beat detection, feature 
extraction/selection, and classification [1, 2]. A NN based 
ECG classifier consists of artificial neurons assembled 
together in successive layers; such a NN structure is referred 
to as an MLP. The number of nodes and the number of 
hidden layers in an MLP are not fixed and are highly 
application specific [3]. An ECG classifier based on an MLP 
must first undergo training through a process of supervising 
learning. Following training, as determined by the training 
algorithm, the network is exposed to a set of unseen data in 
order to evaluate the performance of the network. When 
employing an MLP as a classifier of an unknown ECG signal, 
the input to the network is the input feature vector as 
produced following the stages of beat detection and feature 
extraction. The number of nodes in the hidden layer and the 
number of hidden layers themselves are varied during 
different attempts of training. Each neuron in the output layer 
represents a specific diagnostic class. Therefore, based on the 
input feature vector presented to the network, the output 
neuron with the largest output value is indicative of the 
presence of a specific diagnostic class. The current work is 
related to a previously developed classification framework for 
12-lead ECGs based on a bi-group NN configuration (BGNN) 

[4]. In the case of the aforementioned architecture (BGNN) 
only one neuron is associated with the output layer, in other 
words one classifier is able to predict the presence or absence 
of a particular pathology.  The training and selection of the 
network is a heuristic procedure and many efforts have been 
achieved to produce the optimal classifier.  A well-designed 
MLP will show high levels of generalisation if a correct 
input-output mapping is obtained even when the input is 
slightly different from the examples used to train the network. 
Many issues have been associated with the design process of 
an MLP, but the problem of locating the point at which the 
network is considered to be trained is still regarded as 
unresolved. Conventional methods will cease training 
whenever the point at which the minimum error for the 
training data is reached. These methods involve many risks, 
as it is not possible to know when to stop training for 
maximum generalisation and avoid over-fitting. Over-fitting 
occurs when the NN memorises the training data, and 
subsequently if unseen data is presented poor generalisation is 
attained. For this reason, it is possible to over-fit a NN if the 
training of the network is not stopped at an optimal point.  
 

II. METHODOLOGY 
 

The database used in this study comprises six different 
parameters, one of them being the dependent variable. These 
parameters have been identified as the variable design 
parameters in the development of each of the BGNNs and for 
this reason these are the most likely variables to potentially 
effect the position at which the point of maximum validation 
performance occurs. The five independent parameters are 
used as the input to the prediction model, and these are as 
follows: 

 
1. Number of nodes in the hidden layer (n). 
2. Feature Selection method employed (fs) 
3. Number of files in training set (N) 
4. Size of input feature vector (s) 
5. Number of epochs for the NN to attain 

maximum performance during training (m). 
 

Fig.1, shows a block representation of the prediction 
model were the number of epochs at which the NN attains 
maximum performance (number of epochs) is represented as 
the output or the dependent variable of a non-linear symbolic 
model, as follows: 
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In (1) F is a non-linear function represented by a 
symbolic expression with arithmetic functions of plus, minus, 
product, and protected division and (a1,…,an) is a predefined 
vector of float type constants.  

Only BGNN based performance data for myocardial 
infarction classification was used in this study for AMI, IMI, 
and CMI. Each data set was segmented with two thirds 
allocated to training data and one-third as test data for later 
evaluation of the GPs performance. In this work, GP has been 
investigated and applied for the development of a symbolic 
prediction model that matches equation (1) and models the 
black box representation illustrated in Fig 1.  
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Fig 1. GP based Prediction model to determine number of epochs to cease 
training. 
 
 

III. GENETIC PROGRAMMING FOR THE IMPLEMENTATION OF 
THE PREDICTION MODEL 

 
In this section the proposed GP system for the prediction 

model already discussed is described. GP is an automatic 
method for creating a working computing program for a high 
level statement of a problem. GP can be defined as a search 
method based on natural selection rules [5, 6]. In GP a 
population of candidates to solution programs is evolved. An 
individual of the population (a program) is, the most of the 
time, represented as a tree where some nodes are functions 
and some others are terminal symbols. In order to obtain a 
good individual (the program that solves the problem), 
appropriated functions and terminal sets have to be chosen.  
A fitness function is used to evaluate the performance of each 
individual in the population. Following this, genetic operators 
such as crossover, reproduction and mutation are applied to 
each individual and then some of the fittest individuals are 
selected to survive in further generations. This process 
repeats iteratively until a good candidate solution is found or 
a predefined maximum number of generations are reached. A 
population of 3000 individuals was evolved with a function 
set consisting of arithmetic functions as follows: Addition 
(+), Subtraction (-), Protected division (/) and Product (*). 

The function set can be denoted as: 

/},*,,{ −+=Γ      (2) 
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Fig 2. GP performance for the three myocardial infarction models (AMI, IMI 
and CMI) in data used for the train dataset. 

 
 

The terminal set consisted of the following variables: 
 

•  A set of random float type constants between: 0.0 and 5.0 
(a1), 0.0 and 50.0   (a2) and 0.0 and 500.0 (a3). 

•  Variable n: Number of nodes in the hidden layer. 
•  Variable fs: Feature Selection method employed. 
•  Variable N: Number of files in training set. 
•  Variable s: Size of input feature vector. 
•  Variable m: Number of epochs for NN maximum 

performance during training. 
 
Then the terminal set can be denoted as: 

},,,,,,,{ 321 msNfsnaaa=Τ    (3) 
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The Fitness Function: The fitness function was based on 
absolute raw errors for the desired output parameter (number 
of epochs) and the complexity of each individual to avoid 
large individuals and ensure generalization.  
 

IV. RESULTS 
 

Following the evolution process three individuals were 
found for each of the aforementioned pathologies: 

 
•  For AMI an individual with raw fitness 340.5 and 

complexity 127. 
•  For IMI an individual with raw fitness 487.2 and 

complexity 127. 
•  For CMI an individual with raw fitness 401.0 and 

complexity 151. 
 
Individuals were synthesized in the form of LISP type S-

expressions. Comparison between desired and actual values 
of epochs for the three myocardial infarction models (AMI, 
IMI, and CMI) for both training and testing datasets are 
illustrated in Fig 2 and Fig 3. Performance was measured and 
statistically validated using the Wilcoxon’s signed rank sum 
test for paired data. These results are presented in Table 1, 
showing no significant difference at the p=0.05 level for IMI 
test and CMI test. The AMI test result was just marginally 
significant (it is slightly overestimating the epochs) and this is 
reflected in the differences in the mean +ve and –ve ranks.  
 

TABLE I 
WILCOXON’S SIGNED RANK SUM RESULTS FOR GP PREDICTION MODELS 

 

GP No. of 
Cases 

Mean 
Rank -

ve 

Mean 
Rank 
+ve 

z-
value 

2-
tailed 

sig 

AMI 
Train 29 13.08 16.56 -1.027 p= 

0.304 

AMI 
Test 15 4.17 10.56 -1.989 p= 

0.047 

IMI 
Train 31 16.17 15.89 -1.058 p= 

0.290 

IMI 
Test 15 9.67 6.89 -0.114 p= 

0.910 

CMI 
Train 37 19.56 18.47 -0.008 p= 

0.994 

CMI 
Test 14 9.38 5.00 -1.412 p= 

0.158 
 
 

V. CONCLUSION 
 

GP has demonstrated, in the current study, to be a very 
good method in the given NN reengineering problem. Fig 3 
and Table 1 show that a GP based prediction model not only 
performs very well with training data, but also demonstrates 
high generalization capabilities. The result from this study 
shows that it is possible, given the design parameters of a NN 
ECG classifier, to predict the point at which training should 
cease for maximum generalization. This is a very powerful 
result as it indicates promise to alleviate the lengthy and 
uncertain design process of MLP classifiers. 
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Fig 3. GP performance for the three myocardial infarction models (AMI, IMI 
and CMI) in data used for the test dataset 
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