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Abstract — We describe in this work digital approach for
cochlea’s stimulation. This would concern the design of an
electronic micro-stimulator as well as the speech processing
dedicated to drive this device. The design was versatile and
numerical, that's why this under-the-skin micro-stimulator
could be adapted to any external sound analyzer that could be
driven by a digital processor ‘DSP’. The design includes a
transmission bus for differentiating two main stages. the
decoding stage and the stimulation stage. The electronic circuit
was then built around a logical processing unit that pilots the
stimulation stage. After processing sounds by the external sound
analyzer, appropriate numerical data would be transmitted to
this internal micro-stimulator through a communication link
mounted around an inductive coupling. The main functions
assured during internal processing permitted to determine with
great flexibility the stimulation current level to generate at each
specified channel as well as the stimulation rhythm. The
proposed speech processing consisted in filtering the acoustical
signal by using one or the combine of these two algorithms: The
FFT algorithm and the FIR-filter bank algorithm. Thisfiltering
was in fact a sounds energy extraction that served for
estimating stimuli shape. It permitted not only to process speech
signal with great flexibility for delivering appropriate stimuli,
but also to facilitate clinical adjustments. Its digital approach
permitted to be adaptable to any apparatusdriven by a ‘DSP'.
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|.I INTRODUCTION

Among the serious disabilities, deafness threatens an
important part of the population because it causes at least
social disintegration. When deafness happened accidentally
during life, some candidates report that they suffer a lot
because they were accustomed with the hearing faculty [1].
Recent design of hearing aid systems dedicated to restore the
hearing could be in different forms. Two basic forms are
actually used: The conventional hearing aid type dedicated to
restore non severe hearing loss, and the cochlear prostheses
dedicated to restore totally or profoundly hearing loss.
Different interesting results were well proven which enhance
then their efficiency in curing deafness[1, 2, 3,4, 5, 6, 7].

For cochlear prostheses, these devices are composed of an
external part for processing speech signals and for driving an
internal par located under the skin, referred to as the implant
which is dedicated to stimulate the nervous endings of the
cochlea (Fig.1) [1, 8, 9, 10, 11].
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Fig. 1: DSP-driven cochlear prosthesis system.

In actual apparatus, the external sounds processing board is
in general a standard architecture and is built around a digital
signal processor ‘DSP' [1, 7, 9]. The internal part, however,
needs more improvements in order to maximize flexibility for
stimulation. Different multi-channel (and/or multi-electrode)
cochlear-prosthesis systems have been developed over the
past few vyears. Different results were also obtained,
depending on the stimulation strategy used and the patient
conditions [1]. Actually, the circuit conception of the internal
part varies from the numerical form to the analogue form. The
numerical form is more flexible and permits to have different
possibilities for stimulation, so that the chance to achieve
apparatus adaptation is more evident [2, 3, 4, 5].

For driving this micro-stimulator, signa processing in
particular, played an important role in the development of
different techniques for generating electrical stimuli
according to the speech signal [9, 10, 11]. One of the first
techniques used (FO/F2 and the FO/FU/F2) extracted and
presented information about the fundamental frequency (FO)
and the second and third formant of speech (F2,F3) [1, 2].
The fundamental frequency was used to fix the stimulation
pulse rate, while the second formant alowed the
determination of the stimulation site and the current level of
the stimuli. Another technique called Compressed Analogue
‘CA’, was based on four-fixed band-pass filtering modules
distributed over a 4kHz-sound spectrum [12]. It consisted
simply in conveying the contents of the filtered signal to the
cochlea over its corresponding electrodes. CA technique was
improved by including interleaved pulses for stimulation and
was referred to as continuous interleaved sampling ‘CIS'. The
digital version of al of these techniques gave better results,
but they suffered from alack of flexibility [1, 12].

We present in this paper a digital version and of an electronic
circuit of a versatile stimulator, which was conceived with



Report Documentation Page

Report Date Report Type
25 Oct 2001 N/A

Dates Covered (from... to)

Title and Subtitle
Digital Approach for Cochlea’ s Stimulation: A Programmable
Micro Stimulator Driven by a Flexible Speech Processing

Contract Number

Grant Number

Program Element Number

Author (s)

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Addr ess(es)
Department of Electrical Engineering ENIS, University of Sfax
BPW 3038 Sfax - Tunisia

Performing Organization Report Number

Sponsoring/M onitoring Agency Name(s) and Addr ess(es)
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document

contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
uu

Number of Pages
4




different independent stimulating channels [3, 5]. This under-
the-skin micro-stimulator is dedicated to operate with any
DSP-driven  cochlear-prosthesis  systems for executing
numerical data with great flexibility. For driving this micro-
stimulator, we propose a digital speech processing technique
based either on programmable Fast Fourrier Transforms
‘FFT" algorithms or on Finite Impulse Response ‘FIR’ filter
bank algorithm [1, 9, 10, 11]. This filtering was in fact a
sounds energy extraction that served for estimating stimuli
shape. It permitted not only to process speech signal with
great flexibility for delivering appropriate stimuli, but also to
facilitate clinical adjustments. Its digital approach permitted
to be adaptable to any apparatus driven by a‘DSP'[1, 11].

|1.DIGITAL DESIGN OF THE STIMULATOR

The major parts in the electronic circuit designed for this
stimulator were built around a logical processing unit for
commanding the stimulation stage. This would include a
transmission bus, which could differentiate the two main
stages: the decoding stage and the stimulation stage. When
receiving binary transmitted data from the external processing
part, this logic unit detects and decodes information for
commanding the dtimulation channels. Channels were
conceived to work independently and were merely formed by
CMOS-current sources delivering positive and negative
stimuli to the biological tissue. A speciad electrode for
reference (ground level) was necessary for distinguishing the
positive and the negative forms of the stimuli [3, 5].

delivering exactly the opposite charge. This was mandatory
for avoiding cells damage by the charge accumulation [1, 5].
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Fig. 3: Schematic of the Stimulator Principle.

[11.MAIN FUNCTIONS OF THE STIMULATOR

The inner part of the cochlear prosthesis, the implant,
includes the main circuit of the micro-stimulator, the power
supply circuit and the electrode array. It is necessary to
encapsulate all these things in a biocompatible hermetic case,
which will be placed surgically under the skin. The skilful
surgeon will place the electrode beam in the cochlea via the
round window [3, 5]. In this application, we were interested
merely in the design of the main circuit of the micro-
stimulator. The major parts of this circuit were designed
around a logica decoding unit recelving necessary
information from the memory register. When receiving
transmitted data from the external processing part, this logical
decoding unit decodes information for commanding the
stimulation channels. Transmitted data from the external
board must me programmed according to stimulator
specification. Henceforth, we had provided in the memory
register four independent areas that were specified as follows:

]

Area A AreaB AreaC AreaD

Heading Duration of Electrode | Current level
stimuli number

L bytes K bytes J bytes | bytes

Fig. 2 : Schematic of the Stimulator Principle.

In general, after sounds processing, appropriate humerical
data would be transmitted from the external sound analyzer to
the internal micro-stimulator through an inductive link (radio-
freqguency communication link), using for example an
amplitude-modulated carrier. In one recent application using
one DSP-driven cochlear prosthesis system [1], the externa
processing permits sound energy extraction through different
calculation methods. These extracted energies during one
processing phase, serve to estimate stimulating pulses to
convey into the inner ear (cochlea) via the implanted receiver.
Transmitted data specifies stimulation current level to
generate at each specified channel as well as stimulation
rhythm [3, 5, 6]. Each stimulating pulse is composed of two
phases: When positive charge was delivered to the biological
tissue, current source must recuperate the injected charge by

to detect each word of command. This is necessary because
the risk of confusion as well as the processing of erroneous
of areas B, C and D would be then authorized.

Area B: The K bytes of this area would specify the

active electrode.
Area D: The | bytes of this area would specify t
level for stimulation.

CMOS-current sources delivering positive and negative



delivered to the biological tissue, current source must
recuperate the injected charge by delivering exactly the
opposite charge (negative). It was mandatory in order to avoid
cells damage due to charge accumulation when using only
onetype stimuli. A memory is necessary for delivering
received data to the logical unit, as well as a clock for the
reception of serial transmitted data that pass through a shift
register. A synchronisation stage functioning with a counter
rhythm assure the identification of each stimulation phase,
and hence the avoidance of errors and conflicts.

A transmission bus in this circuit was used because of the
complexity of the various stages used in this conception. The
stimulation stage could be identified separately by this bus,
and it is composed of eight control source stages that could

command the eight current sources. Each current source was
designed in CMOS technology and could deliver an
appropriate current level, which is henceforth provided by a
digital to analogue converter ‘DAC’. The latter will receive
the exact level of current as well as its duration from the
memorised data. One could clearly notice the full and the
flexible programming that we had provide in this conception,
and especially the independent functioning of these eight
stimulation channels. The design of this numerical circuit
prove its adaptability to any exterior digital commands, and
the only thing to consider in this programming is specific
format of the transmitted data which could command the
global functioning of the micro-stimulator circuit.

[ v
Shift Regist
ift Register ## MEMORY A/BICID qT & Counter
| L 4
DATA / CLK DECODING UNIT DAC t
|
TRANSMISSION BUS
Commar]d Commar]d ........................... Commar]d Commar]d
Stage 1 Stage 2 Stage 0-1 Stage d
vV YV LA ; vV
Currmt Currmt .......................... Currmt Currmt
Source 1 Source 2 Source 0-1 Source Q

Fig. 4 : Schematic of one g-channel-stimulator design

[V .DIGITAL SPEECH PROCESSING

The speech processing proposed consisted in filtering the
picked-up sounds for extracting its energy either the ‘FFT’
algorithms or the FIR filter bank algorithms [9, 10, 11]. The
sounds’ spectrum would be divided into specific frequency
bands for evauating the contained energies, which would
serve to estimate the stimulation current levels to be delivered
by the affected stimulation channel of the stimulator
(implant).

The main part of the proposed speech processing technique
was composed either of the chosen FFT agorithms or of the
chosen FIR filter bank [9, 10, 11]. With this filtering, speech
energy extraction was assured by using Parseval relation [1],
permitting then to evaluate band-energy values useful to
estimate the current-pulse level to be delivered by an assigned
stimulation channel. The digital approach used permitted
henceforth flexibility in choosing the convenient spectrum
dividing as well as the convenient algorithm. Several FFT
algorithms could be tested from FFT 16 points to FFT 128
points, in order to evaluate the appropriate algorithm for the

processing. There is no need to fix one long algorithm if the
same result was obtained with one shorter [1].

Similarly for the FIR filter bank, it is possible to choose the
order of each filter and there is no need to choose higher order
if the same clinical result was achieved. So, the clinician
could affect the processed frequency bands to the specified
stimulation channels according to patient convenience. The
considered speech spectrum would be divided by choosing
different dividing forms : linear form, logarithmic form,
opposite logarithmic form or any other convenient form fixed
according to patient comfort [9, 10, 11].

The proposed speech processing technique based on
completely programmable FFT and FIR filter modules could
be adapted to any DSP-driven cochlear prosthesis. This
option points out its versatility, which is indeed suggested in
software environment. Our first in vitro test of this algorithm
was performed on an eight-electrode device driven by a
TMS320C50-DSP-type, and it was aways possible to try
another device driven by a another DSP type and having
different number of electrodes. Globally, the following
guidelines could recapitulate stimulation  agorithm
functioning with any DSP-driven device[1, 9, 10, 11] :



- Spectrum dividing form yielded the specification of the
band limits for FIR filters or for the FFT algorithms.

- Speech processing involved mainly energy extraction using
Parseval relation at FFT or FIR processing outputs. Hence,
the different extracted energies (E1, E2, ..., EN) formed the
total speech energy.

- Stimulating pulse generation, in the assigned stimulation
channels of the cochlear implant, was estimated thanks to the
processed band energiesE1, E2, ..., EN.

- During each stimulation phase, implant received a pulse
succession composed of a synchronization pulse followed by
other succeeding pulses.
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Fig. 5. Digital speech processing algorithm.
V.CONCLUSION

In this digital design, an eectronic circuit of a stimulator
having eight stimulating channels for DSP-driven cochlear
prostheses was presented. This implant-under-the-skin-micro-
stimulator could be adapted to the external sound analyzer of
the prosthesis for receiving and processing transmitted data
with great flexibility. I1ts major parts were designed around a
host logica processing board commanding the eight
stimulation channels. When receiving transmitted data from
the external processing part, this logic unit decodes
information for commanding the eight stimulation channels.
Channels work independently and were merely formed by
CMOS-current sources delivering positive and negative
stimuli, which was mandatory in order to avoid cells damage
due to charge accumulation. The proposed speech processing
was in fact a proof of flexibility and versatility for estimating
stimuli shape from speech energy. In fact, with the designed
stimulator, the speech energy could be extracted by using one
of the FFT algorithm or the FIR-filter bank agorithm. It
permitted not only to process speech signal with great
flexibility for delivering appropriate stimuli, but aso to
facilitate clinical adjustments.
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