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Abstract- As a component of upper motor neuron syndrome, 
assessment of abnormality in muscle tone, including spasticity 
and rigidity, is a routine clinical examination. The aim of this 
study is to extend a sophisticated motor-driven measurement 
system, developed in our previous research, as a validation 
platform for developing a portable muscle tone measurement 
system. The main features of hand-held muscle tone 
measurement device are small angular-rate sensor for recording 
stretch velocity and light air-bag cuff for measuring the 
pressure difference at two sides of the wrist. To test the validity, 
the measurements recorded from the portable device shows 
good correlation with that recorded from the motor-driven 
system after removing the gravitational effect. To differentiate 
the normal  from abnormal muscle tone, the slope of stretch 
resistance versus position was used to differentiate the normal 
muscle tone from that of a parkinsonism. However, there 
several factors, including the application of air-bag, the 
air-filled pressure, and the stretch velocity, could affect the 
accuracy in using the hand-held device for muscle tone 
assessment. 
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I. INTRODUCTION 

 
Abnormal muscle tone is a featured symptom found in 

upper motor neuron lesions such as stroke, spinal cord injury, 
and Parkinson’s disease. The hypertonia, including spasticity 
or rigidity, could impede normal motor function of spastic 
limb and limit daily life of patients. In clinics, the muscle 
tone is usually assessed in a score form by subjectively 
determining the resistance of a joint to an externally imposed 
passive movement. In laboratory environment, motor-driven 
systems which stretch the paretic limbs with various 
stretching modes for quantifying muscle tone have been 
developed [1][2][3]. However, researchers have criticized the 
motor-driven systems are too cumbersome and inconvenient 
in clinical test environment [4]. Compared to motor-driven 
systems, hand-held systems seem to have advantages in 
providing an on-line quantification of muscle tone, especially 
in clinical routine examination or in surgical room. However, 
the measurement variations introduced by the operational 
preferences of each individual, e.g. varied stretching velocity 
and manual holding resistance etc., have been less 
investigated. The aim of this study is to extend our previous 
motor-driven spasticity measurement system [5] as a 
reference for developing and evaluating a portable muscle 
tone measurement system. 
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II. METHODS 

 
The portable system consisted of three parts including 

resistance measurement device, angular rate sensor and data 
acquis ition system (Fig. 1). The resistance measurement 
device was used to record the flexion and extension 
resistance, derived from a differential pressure sensor 
(DP45-34, Validyne, U.S.A.) connecting to the two chambers 
of the air-bag cuff at two sides of wrist. A series of fittings to 
the valves and vents were checked to ensure whole device a 
leak-tight system (Fig. 2). The angular rate sensor 
(ARS-C142, Watson Industries, U.S.A.) was mounted on 
forearm to record velocity of the stretched limb from which 
the position of elbow joint during stretch can be derived. The 
weight of the angular-rate sensor and air-bag cuff mounted 
on subject’s wrist was less than 80 grams which would not 
interfere the test procedures. The pressure difference and 
angular rate signals were sent to a portable PC via an A/D 
converter with 12-bit resolution. The data were sampled at 1 
KHz and displayed in real-time for monitoring purpose. 
Under a circumstance in which the stretching is not valid, e.g. 
not enough stretching range or velocity, the data will be 
discarded.  

The calibration and validation tests of the portable muscle 
tone system were first performed based on our previous 
motor-driven system. The air-bag cuff was clipped on the 
manipulator under which a sensitive torque sensor was 
mounted directly on the stretching motor of motor-driven 
system. The constant-velocity stretch was elicited by the 
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computer-controlled torque motor. During constant-velocity 
stretching, the pressure difference and stretch velocity from 
the hand-held device as well as the torque and position from 
motor system were recorded simultaneously for further 
comparison.  
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Fig. 2. Pressure measurement device with various fittings and a monitor 
pressure gauge. 

Next, the hand-held device was applied to the 
parkinsonian and normal subjects. The subject supinely lied 
on a bed with shoulder slight abducting and the air-bag cuff 
on his wrist. The absolute pressure in each air bag was set at 
80 mmHg, which could be on-line adjusted according to the 
pressure meter (Fig. 2). During the experiment, the operator 
held the air-bag cuff and stretched the forearm back and forth 
at the selected velocity to observe the measurements from 
hand-held device. 
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Fig. 3. Comparison of velocity and resistance signals recorded from 
motor-driven, (a) and (c), and portable system (b) and (d), respectively. 
 

III. RESULTS 
 
Fig. 3 compares the signals measured from portable and 

motor-driven systems during a 40 deg/sec vertical stretch. 
The average velocity (40.560 ± 0.464 deg/sec) measured 
from angular rate sensor is very close to that derived from 
the motor encoder (40.023 ± 0.476 deg/sec). Similar features, 
indicated by vertical arrows in Fig. 3(c) and (d), can be 
observed form the stretch resistance of two systems. 
However, the torque signal measured from motor-driven 

system includes an upward trend due to the gravitational 
effect. By subtraction of baseline torque induced by gravity, 
the signals from motor-driven and portable systems show a 
good correlation exceeding 0.95 in Fig. 4. 

Typical measurements of stretching velocity profile and 
elicited resistance for a normal and a rigid parkinsonism 
during to-and-fro stretching are shown in Fig. 5. By plotting 
the stretching position versus the stretch resistance, higher 
stiffness, i.e., the slope of position-resistance curve, can be 
observed in rigid elbow joint (Fig. 6). 
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Fig. 4. Good correlation between torque signal from motor system and 
pressure signal from portable system after adjusting their sensitivity.  

 
IV. DISCUSSION AND CONCLUSION 

 
The hand-held muscle tone measurement device takes the 

advantages of small angular-rate sensor and light wrist 
air-bag cuff and shows better portability for clinical use. 
However, several factors could affect the recording accuracy 
of resistance during stretching movement. First, the 
compliance of air-bag could counterbalance the resistance 
during stretching. Thus, an adequate pressure (80 mmHg in 
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Fig. 5. The stretch velocity and resistance of the portable device for a normal, 
(a) and (b), as well as a rigid elbow joint, (c) and (d). 
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Fig. 6. Comparison of stiffness, the slope of stretch resistance versus 
position, between normal muscle tone and rigidity during to -and-fro 
movement. 
 

this study) should be filled into the air-bag to reduce the 
influence of compliance. Another factor is the stretch 
velocity of imposed movement. In previous studies, the 
stretch movement was limited to relatively slow stretch 
velocity such that the acceleration/deceleration effects on the 
resistance were usually ignored [4]. However, higher 
stretching velocity is generally required, especially for 
observing velocity-dependent tests, such as the spasticity 
measurement. At high stretch velocity, the inertia could cause 
change in the resistance measurement. Unlike the constant 
velocity stretch in motor-driven system, higher variation in 
stretch velocity could occur, due to the difference in manual 
manipulation of each individual. These factors could deter 
the application of hand-held device for spasticity assessment.  

 Moreover, using pres sure difference to represent stretch 
resistance seems to be less influenced by the gravitational 
effect (shown in Fig. 3 and 4). This could be due to that the 
pressure difference is the relative resistance between two air 
bags circumvented around the wrist. On contrast, the 
gravitational torque is included in the stretch torque of 
motor-driven system which generally records the reactive 
torque from the base of manipulator. This gravitational 
torque needs to be removed from the reactive torque.  

In conclusion, we evaluated the feasibility of hand-held 
muscle tone device in this study based on our previous 
motor-driven system. The major advantages of using the 
portable system were  its flexibility and minimum 
intervention to the subject. However, several factors should 
be considered, including the air-bag compliance and stretch 
modes when performing the portable muscle tone 
measurement device. Further work should be done on 
standardizing experimental protocols for manual testing of 
muscle tone and extending the hand-held device for 
spasticity assessment. 
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