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Abstract-A mathematical modeling was adopted to calculate 
the ferric ion diffusion coefficient based on the radiation 
induced magnetic resonance (MR) image intensity change in 
Fricke-agarose gels. A fast magnetic resonance imaging 
acquisition technique was employed to avoid the smearing of 
acquired data due to diffusion over an extended period of time. 
Our results showed that for a Fricke-agarose gel contained 
1mM ammonium ferrous sulfate, 1% agarose, 1mM sodium 
chloride and 50mM sulfuric acid, its ferric ion diffusion 
coefficient is 1.31××××10-2cm2h-1 in room temperature. This value 
falls within the 1 ~ 2××××10-2cm2h-1 range obtained by previous 
studies under varying concentrations of gel ingredients.  
Keywords- MRI- Fricke-infused gel dosimetry, ferric ion 
diffusion, gamma knife radiosurgery 
 

I. INTRODUCTION 

Due to its high sensitivity, superior tissue equivalence and 
three-dimensional characteristics, the Fricke-infused gels 
have been used in various radiation dosimetry applications 
[1]. However, its measurement accuracy has been seriously 
affected by the ferric ion diffusion contamination [2, 3]. It is 
therefore important to find out the magnitude of ferric ion 
diffusion coefficient under specific dosimetric experiment 
conditions [4, 5]. 
     Based on a set of MR images acquired under different 
ferric ion diffusion effect, a least square post-processing 
method was used to calculate the ferric ion diffusion 
coefficient. The corresponding dose distribution profile 
evolutions can be recorded from these MR image intensity 
changes [6]. Because for each MR acquisition is several 
folds faster than the conventional R1-based dosimetry 
methods, it therefore suffers much less smearing of the dose 
profiles and enables a more efficient way to calculate ferric 
ion diffusion coefficient. 
 

II. METHODOLOGY 
 

1) Diffusion: 
Diffusion is governed by the following equation, 

,2

t
D

∂
∂−=∇ ρρ                (1) 

where D is the diffusion coefficient and ρ is the 
concentration distribution. Given an initial concentration 
distribution at )0,,,(,0 zyxt ρ= , the concentration 
distribution at ),,,(, TzyxTt ρ=  can be solved by 

)exp()0,(~),(~ 2 tDt kkk −= ρρ ,        (2) 

where )0,(~ kρ  is the Fourier Transform of 

)0,,,( zyxρ . 
 

  2) Point dose calculation algorithm: 
     In our simulation model, the initial concentration 
distribution at )0,,,(,0 zyxt ρ= , was regarded to be the 
initial dose distribution in a 32×32×32 pixels region 
centered at the gamma knife focal point where the dose of 
each point in the interest volume can be determined based 
on the inverse square law and the linear attenuation 
exponential formula. 
 

3) Gamma Knife irradiation: 
     Irradiation of the Fricke-agarose gel phantom was 
performed using a Leksell gamma knife-B type. A 
maximum dose of 40 Gy was delivered to the center of the 
gel phantom using a 14 mm collimator. 
 
 4) Fricke-agarose gel preparation: 
     The Fricke-agarose gel was prepared by first mixing 
a desired amount of agarose powder with 1500 mL triple 
distilled water and was heated and maintained at the 
temperature (95℃) until agarose powder was completely 
dissolved. Then it was moved to a water bath for cooling 
until the temperature reached 60℃ . A ferrous sulfate 
solution consisting of a mixture of 1 mM ammonium 
ferrous sulfate, 1mM sodium chloride, 50 mM sulfuric acid, 
and 500 mL triple distilled water was then slowly added to 
the agarose solution while constant stirring should be 
applied until the temperature was cooled to 50℃ . To 
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compensate for the oxygen lost during the boiling process, 
the agarose solution was aerated during the cooling process. 
The agarose was then poured into cylindrical container in 
the skull phantom for gamma knife irradiation and MR 
imaging. 
 
 5) MR imaging and dose mapping technique: 
     In our study, MR image is taken with the parameters: 
TR/TE: 500/11ms, slice thickness: 3mm, FOV: 26cm, 
matrix size: 256×256, and NEX: 2. A total of six images 
were taken. The first one is taken before Gamma Knife 
irradiated the gel phantom. The second is taken 
immediately after radiation. The rest four images were 
taken at a delay time of 13min, 32, 59, and 118 min after 
the second image. 
     Based on the Bloch equation and MR physics, it had 
been shown that for T1-weighted spin-echo image with 
TE<<TR, the image intensity change ( S∆ ) is related to the 
absorbed dose (Ds) [6], 

( )( )[ ]baDTRkS s +−−×=∆ exp1         (3) 
where TR is the repetition time, TE is the echo time, k, a, b 
were the coefficients related to proton density, combined 
relaxation rates contributed from water, ferric ions and 
ferrous ions in gel which could be determined by non-linear 
regression. 
 
 6) Least square ferric ion diffusion coefficient calculation: 
     From Eq. (2), ),(~ tkρ  can be obtained from 

)0,(~ kρ  by multiplying it with exp(-D|k|2t), where 
)0,(~ kρ  is the 3D-FFT of )0,,,( zyxρ  and ),(~ tkρ  

is the 3D-FFT of ),,,( tzyxρ . With the four different 
),(~ tkρ , t = 13min, 32min, 59min and 118 min, we can 

derive the expected intensity change )(ρS∆  using Eq. 
(3). Because diffusion follows the convolution process 
shown in Eq. (2), we can find out the actual diffusion 
coefficient, D, in a least square sense, by choosing the value 
that minimizes the standard error between expected values 
and experimental values for any arbitrary D. 
 

III. RESULTS 
Fig 1 illustrated the image intensity change ( S∆ ) 

before and after irradiation. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Image intensity change due to irradiation. 

Fig. 2 is the dose-response characteristic curve in our 
image-based MRI-Fricke-infused gel dosimetry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Dose response curve of the Fricke-agarose dosimeter gel used in this 
study. Error bar stands for one standard deviation. 
 

The mapping function based on Eq. (3) where k, a , 
and b coefficients were determined by non-linear regression 
for the dose-response data.: 
 

)]}34.017.0(5.0exp[1{8.1070 −−−=∆ sDS     (4) 
 
    Effect of ferric ion diffusion for a designated elapsed 
time can be illustrated in Fig. 3. The difference of image 
intensity ( S∆ ) was derived by subtracting the reference 
image (image acquired before irradiation) from the image 
acquired after an elapsed diffusion time of 13 min, 32 min, 
59 min, and 118 min. For better visual representation, the 
differences of the intensity values were scaled by five. 
Since difference of image intensity ( S∆ ) in the Eq. (4) is 
fitted by using the differences between the reference image 
and the image acquired immediately after the irradiation; i.e. 
no diffusion effect is considered, so that if we substitute the 
difference of image intensity in Fig. 3 into the inverse 
function of Eq. (4), the predicted dose value distribution 
will be affected by the ferric ion diffusion effect. 
 
     Fig. 4 (a) illustrated the initial dose distribution 
denoted by )0,,,( zyxρ  which was generated by the 
point dose calculation algorithm. Although the maximum 
dose value located in focal point is 40 Gy, the image 
intensity had been scaled to the 8-bit gray level image (with 
maximum intensity of 255). Fig. 4 (b) is the corresponding 
difference of image intensity ( S∆ )  

Before 
irradiation

After 
irradiation

Intensity Change

Subtraction 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. The diffusion effect in a time elapse MR images obtained with a 
delay diffusion time of 13 min, 32 min, 59 min, and 118 min. 
 
 
 
 
 
 
 
 
 
 
Fig 4 Initial dose distribution and its corresponding image intensity change 
generated by our simulation model. 
 
     Fig. 5 (a) (b) represented the new dose distribution 
and its corresponding image intensity change when 
diffusion effect is considered for a delayed time of 13 min, 
32 min, 59 min, 118 min. They are generated by 
multiplying the diffusion factor exp(-D|k|2t) with diffusion 
coefficient D equals to 1.31×10-2cm2h-1 to the 3D FFT of 
the original dose distribution according to Eq. (2) and then 
take the inverse 3D FFT for the corresponding time t. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 5. (a) (b) The simulated dose distribution diagrams and their 
corresponding image intensity changes. 
 
    Table 1 and Fig 6 display the normalized standard 
error for different diffusion coefficients between 
1.20×10-2cm2h-1 ~ 1.49×10-2cm2h-1 we applied in our 
simulation process. Obviously we can find that the local 
minimum emerged at D = 1.31×10-2cm2h-1. 
 

TABLE I 
NORMALIZED STANDARD ERROR BETWEEN SIMULATION MATRIX AND 

EXPERIMENTAL RESULTS FOR DIFFERENT DIFFUSION COEFFICIENTS 

Diffusion coefficient D (cm2h-1) Normalized Standard Error
1.21×10-2 18152.5453 
1.23×10-2 18147.7398 
1.25×10-2 18144.0284 
1.27×10-2 18141.3925 
1.29×10-2 18139.8138 
1.31×10-2 18139.2743 
1.33×10-2 18139.7566 
1.35×10-2 18141.2435 
1.37×10-2 18143.7180 
1.39×10-2 18147.1636 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Standard errors vs. diffusion coefficients. 

t= 13 min t= 32 min

t= 59 min t=118 min 

a) Initial dose distribution b) Corresponding image 
intensity change 

t= 13 min t= 32 min

t= 59 min t=118 min 
a) Simulated Dose Distribution

t= 13 min t= 32 min
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b) Simulated Intensity Change
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IV. DISCUSSION 
 

The obtained diffusion coefficient coincides within the 
1 ~ 2×10-2cm2h-1 range reported by previous studies under 
varying concentrations of gel ingredients. 

The entire simulation process can be illustrated in the 
flowchart in Fig. 7. 

Fig 4 (b) shows more bright regions than Fig. 4 (a) 
since Eq. 4 enhanced greater contrast in low dose region. 
    The displays of simulation results in Fig. 5 (a) and (b) 
were both expanded to a 16-bit gray level image (with 
maximum intensity of 255) which might not be similar to 
the experimental result in Fig. 3. 
     

V. CONCLUSION 
 
A simple approach involving fast image-based 

dosimetry technique to estimate the diffusion coefficient of 
ferric ions is proposed. With this information at hand, it is 
possible to consider calibrating the dose distribution 
deteriorations as a function of time and to deduced ways to 
alleviate this undesired ferric ion diffusion effects. 
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Fig. 7  The entire simulation flowchart. 
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