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Abstract- Cardiopulmonary bypass (CPB) with total
circulatory arrest (TCA) adversely affects the neurologic
outcome of pediatric patients after cardiac surgery.  This study
is designed to determine the effects of pulsatile versus
nonpulsatile perfusion on regional and global cerebral blood
flow (CBF), cerebral metabolic rate of oxygen (CMRO2),
cerebral oxygen delivery (CDO2), and cerebral vascular
resistance (CVR) before and after TCA in a neonatal piglet
model.  Twelve piglets were used in pulsatile (n = 6) and
nonpulsatile (n = 6) groups.  All piglets underwent 60 minutes of
TCA and 45 minutes of rewarming.  CBF, CMRO2, CDO2, and
CVR were determined before TCA at a cerebral perfusion
pressure (CPP) of 55 mmHg, and after TCA at CPP’s of 55, 40,
and 70 mmHg.  Pulsatile flow increased regional and global
CBF, CMRO2, and CDO2, and decreased CVR compared to
nonpulsatile perfusion at all experimental stages.  However,
CBF, CMRO2, CDO2, and CVR diminished after TCA in both
groups.  These results suggest that the use of pulsatile flow
improves cerebral recovery after TCA, and thus it may
minimize brain injury compared to nonpulsatile flow in
neonates and infants.  Our results also confirm that TCA is the
major cause for cerebral dysfunction during CPB.

Index Terms–Pulsatile flow, cerebral hemodynamics,
cardiopulmonary bypass, deep hypothermic circulatory arrest,
neonates and infants

I. INTRODUCTION

Complex congenital heart defects can be routinely repaired
using extreme techniques such as deep hypothermic
cardiopulmonary bypass (DHCPB) with total circulatory
arrest (TCA).  During TCA, there is no blood flow to any
organs, and hypothermia is the only protection for organ
recovery. During the past two decades, the mortality rate after
DHCPB was significantly reduced but morbidity, especially
brain injury, is still a challenging clinical problem [1-4].
Several investigators have shown that cerebral blood flow and
cerebral metabolism diminishes after TCA in neonates and
infants [4-9].  Although the mechanisms of brain injury have
not yet been fully understood, techniques, which enhance
cerebral blood flow and metabolism, may minimize the brain
injury [9].

Controversy over the benefits of pulsatile perfusion during
pediatric CPB continues, and only 6 percent of all pediatric
centers in the United States use pulsatile flow [10].  However,
we have demonstrated that pulsatile flow after TCA may
minimize injury on vital organs in a neonatal piglet model
[11].

The objective of this study was to investigate the effects of
pulsatile versus conventional nonpulsatile perfusion on
cerebral blood flow (CBF), cerebral metabolic rate of oxygen
(CMRO2), cerebral oxygen delivery (CDO2), and cerebral
vascular resistance (CVR) at different cerebral perfusion
pressures (CPP) before and after TCA in a neonatal piglet
model.  The authors hypothesize that the use of pulsatile flow
may improve cerebral recovery before and after TCA.

II. METHODOLOGY

Twelve piglets, with a mean weight 3 kg, were used in
pulsatile (n=6) and nonpulsatile (n=6) groups.  All animals
received humane care as described in the “Guide for the Care
and Use of Laboratory Animals” of the National Academy of
Sciences, published by the National Institute of Health (NIH
Publication No. 85-23, 1985).

A. Anesthesia / Surgery

Animals were premedicated with intramuscular ketamine
hydrochloride (20 mg/kg), acepromazine maleate (1 mg/kg),
and intravenous methylprednisolone (40 mg/kg).  After
endotracheal intubation and establisment of an intravenous
line, intravenous boluses of fentanyl (100 µg/kg) and
pancuronium bromide (0.3 mg/kg) were given, and
mechanical ventilation was begun with an infant pressure-
cycled ventilator (Sechrist Industries, Anaheim, CA).
Anesthesia was maintained with a fentanyl infusion (100
µg/kg/hr). A nasopharyngeal temperature probe was inserted
(Model 431D, Yellow Prings, Inc., OH). Two separate burr
holes were made over the superior sagittal sinus.  The holes
were 1cm. apart.  A 3 French Millar micromanometer (Millar
Instruments, Inc., Houston, TX) was inserted into the superior
sagittal sinus for monitoring the sagittal sinus venous
pressure.  The other burr hole was used for sagittal sinus
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venous blood sampling.  After a median sternotomy was
performed, the ascending aorta and the right atrium were
cannulated with a 10 French aortic cannula and a 18-21
French venous cannula, respectively.  The CPB circuit
included a membrane oxygenator with heat exchanger (Cobe
VPCML Plus, Cobe Cardiovascular, Inc., Arvada, CO), and
either a conventional nonpulsatile roller pump (Stöckert-
Shiley, Irvine, CA) for the nonpulsatile experiments or the
neonate/infant pulsatile pump for the pulsatile studies [12].
The CPB circuit was primed with heparinized fresh blood and
Lactated Ringer’s solution.  Hematocrit was maintained at
22% to 24% during CPB.  The gas mixture was adjusted and
sodium bicarbonate was added to obtain a normal blood gas.

B. Experimental Design

After initiation of CPB with a pump flow rate of
150ml/kg/min, all piglets underwent normothermic CPB for
15 minutes, then hypothermia was induced by core cooling
with a heat exchanger to 18oC for 20 minutes, followed by
DHCA for 60 minutes, and rewarming with a pump flow rate
of 150ml/kg/min for 45 minutes.

CBF was determined using a radiolabelled microsphere
technique, and CMRO2, CDO2, and CVR were calculated
during CPB prior to DHCA (37oC) at a cerebral perfusion
pressure of 55mmHg (pre-55), and after TCA at CPP’s of 40
(post-40), 55 (post-55), and 70 mmHg (post-70).  Cerebral
perfusion pressure was controlled by adjusting the pump flow
rate.  During cooling and rewarming, alpha-stat acid-base
technique was used.  This technique maintains pH at 7.4 and
PaCO2 at 35 to 40 mmHg.

The following formulas are used to calculate CBF, CMRO2,
CDO2, CVR, and CPP.

CBF = Qrb x (Ct/Crb) x (100/Wt)  (1)

CBF = Cerebral blood flow (ml/100gm/min)
Qrb = Rate of reference sample withdrawal (ml/min)
Ct = Total number of microspheres in the organ per minute
Wt = Total weight of the tissue (gm)

CMRO2 = CBF x (CAO2 – CSSO2) (2)

CMRO2 = Cerebral metabolic rate of oxygen (ml/100gm/min)
CAO2 = Arterial Oxygen Content
CSSO2 = Sagittal sinus oxygen content

CDO2 = CBF x CAO2         (3)

CDO2 = Cerebral oxygen delivery (ml/100gm/min)

CVR = (MAP – SSVP) / CBF      (4)

CVR = Cerebral vascular resistance  (mmHg.100gm.min/ml)
MAP = Mean arterial pressure (mmHg)

SSVP = Sagittal sinus venous pressure (mmHg)

CPP = MAP – SSVP           (5)
CPP = Cerebral perfusion pressure (mmHg)

C. Microsphere Injection

All injection of microspheres (Tin-113, Ruthenium-103,
Niobium-95, Scandium-46) were made into a side port of
arterial tubing 30 cm proximal to the aortic cannula while the
animal was maintained at normothermia.  Before the injection
of microspheres, a SWP Vortex Mixer (baxter Healthcare
Corp., McGaw Park, IL) was used to agitate the microsphere
vial vigorously for 2 minutes.  Then in order  to break up the
aggregations, the vial was sonicated in warm water for 10
minutes (Sonicator, Model 8850, Cole-Parmer instrument
Co., Chicago, IL).  After this process, the vial was agitated
for another minute.  Then, 1 ml of microsphere suspension
(approximately 1 million microspheres) was withdrawn into a
syringe for injection.  A reference blood sample was obtained
by means of the femoral arterial catheter.  The reference
blood sample was withdrawn into a 10 ml syringe with a
constant rate of 3 ml/min using a Harvard syringe pump
(Harvard Apparatus, South Natick, MA) in a period of 2
minutes.

D. Statistical Analysis

The two-sided ANOVA with repeated measures was used
for statistical analysis between pulsatile and nonpulsatile
groups at four different stages.  A p value less than 0.05 was
considered statistically significant.  All results were expressed
as mean ± standard error of mean (SEM).

III. RESULTS

There were no significant differences between the pulsatile
and nonpulsatile groups in arterial pressure, temperature,
arterial oxygen tension, arterial carbon dioxide tension, and
hematocrit at any of the experimental stages.

A. Global and Regional Cerebral Blood Flow

Global CBF was significantly higher in the pulsatile group
compared to the nonpulsatile group before TCA at 55 mmHg
(pre-55), and after TCA at 55 mmHg (post-55)  and 70
mmHg (post-70).  A detailed analysis of global CBF is shown
in the Figure 1.  Blood flow in the cerebellum, basal ganglia,
brain stem, and right and left hemispheres resembled global
cerebral blood flow (see Table I).
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Fig. 1. Global cerebral blood flow
TABLE I

REGIONAL CEREBRAL BLOOD FLOW RESULTS

Pre-55 Post-55 Post-40 Post-70
Cerebellum P *100.6±13.9 *111.2±26.5 †59.6±6.2 *104±18.8

NP 62.3±9.3 60.8±13.7 ‡33.2±4 56.3±9.8

Basal Ganglia P *92.8±14.8 *72.2±18 *†51.8±6.5 *†60.5±12

NP 54.8±7.2 34.9±8.7 ‡25±4 ‡31.1±5.7

Brain Stem P *77.7±15.3 *†55.3±12 *†45.2±6 *†46.7±8.8

NP 42.1±5.6 29.8±7.4 23.6±3.6 26.4±5.3

Right Hemisphere P *91.1±12.6 *†50.4±11.2 †30±4.4 *†48.7±7.9

NP 59.1±7.6 ‡28.9±7.1 ‡17.5±2.5 ‡27.8±5.7

Left Hemisphere P *89.2±11.8 *†49.4±10.9 †30.4±4.4 *†49.2±8

NP 55.7±7.8 ‡30.3±8 ‡17.8±2.4 ‡26.9±5.6

*p < 0.05 P vs. NP; † p < 0.05 vs. Pre-55 within P;
‡ p < 0.05 vs. Pre-55 within NP; P = Pulsatile; NP = Nonpulsatile

B. Cerebral Metabolic Rate of Oxygen

Pulsatile flow improved the CMRO2 before TCA at CPP of
55mmHg (pre-55), and after TCA at CPP of 55 mmHg (post-
55) and 70 mmHg (post-70) (Fig. 2).

C. Cerebral Oxygen Delivery

The degree of CDO2 was significantly higher in the
pulsatile group than in the nonpulsatile group at all four
experimental stages (Fig. 3).

Fig. 2. Cerebral metabolic rate of oxygen

D. Cerebral Vascular Resistance

Pulsatile flow significantly decreased the CVR compared
to the nonpulsatile flow at all experimental stages (Fig. 4).

IV. DISCUSSION

These results clearly suggest that pulsatile flow
significantly increased CBF, CMRO2, CDO2, and decreased
CVR before and after TCA compared to the conventional
nonpulsatile flow at all experimental stages.  After TCA,
global CBF diminished compared to the pre-TCA in both
pulsatile and nonpulsatile groups.  These results confirmed
that TCA is the major cause for cerebral injury after cardiac
surgery.  However, there were no differences in global CBF
results between the pulsatile group after TCA at CPP of 55
mmHg and the nonpulsatile group pre-TCA at CPP of 55
mmHg  (Baseline).  In other words, pulsatile perfusion after
60 minutes of total circulatory arrest maintained the same
level of global cerebral blood flow as nonpulsatile perfusion
at pre-TCA.  Blood flow in the cerebellum, basal ganglia,
brain stem, and right and left hemispheres resembled global
cerebral blood flow.  There were no differences in CMRO2
levels between the pulsatile group at post-55 and the
nonpulsatile group at pre-55.  The levels of CDO2 had a
similar pattern as CBF and CMRO2 results at the same
experimental stages.  These results clearly suggest that 60
minutes of total circulatory arrest had minimal adverse effect
on the cerebral hemodynamics in the pulsatile group
compared to the nonpulsatile group.
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Fig. 3. Cerebral oxygen delivery

Previously, we have shown that flat-sheet membrane
oxygenators used in this study dampen the pulsatile flow
more than hollow-fiber membrane oxygenators [9,13,14].
Despite this limitation, we have documented that the
morphology (shape and size) of pulsatile flow generated by
this particular pump is more physiologic than conventional
nonpulsatile flow [9,13,14].

V. CONCLUSION

In summary, pulsatile perfusion improves regional and
global CBF, CMRO2, and CDO2, and decreases CVR
compared to conventional non-pulsatile perfusion at all
experimental stages in this model.  However, total circulatory
arrest diminishes CBF, CMRO2, and CDO2 regardless of the
perfusion mode.  There were no differences in the levels of
CBF, CMRO2, and CDO2 between the pulsatile group at post-
55, and the nonpulsatile group at pre-55.  Therefore, the use
of pulsatile flow may minimize brain injury after deep
hypothermic CPB with TCA in pediatric cardiac surgery
patients.
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