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ABSTRACT

Waggoner, Brent Alan.  M.S., Rose-Hulman Institute of Technology, February
2003.  Comparison of Gyroscope Digital Models for an Electro-Optical/Infrared
Guided Missile Simulation.  Major Professor: Dr. David J. Purdy.

Increasingly, modeling and simulation are being used in the analysis and

development of modern weapon systems, in particular electro-optical and

infrared (EO/IR) guided missiles.  Most EO/IR missiles use Cassegrain optical

systems mounted on a gyroscope which provides a stable platform for the EO/IR

sensor.  Current missile simulations use digital gyroscope models of varying

degrees of complexity.  This thesis compares the performance of three digital

gyroscope models of varying complexity.  The fidelity of each model is evaluated

based on comparison to actual gyroscope test data.

The three gyroscope models being compared are: (1) Ideal gyro, 

(2) Brown/Dougherty/Williams/Lamm (BDWL), and (3) Gallaspy.  The Ideal gyro

model precesses perfectly as commanded with no nonlinearities, no nutation

effects, no spin torque / precession torque cross-coupling, and perfect

instantaneous spin-up and spin-down.  

The BDWL model uses gyro equations of motion derived from classic

Newtonian dynamics, with gyro nutation and nutation damping, precession

torque, spin torque, precession / spin cross coupling, as well as degradation of

precession and spin efficiencies with off-boresight angle.  The Gallaspy model



uses gyro equations of motion derived with the Lagrange method.  It does not

include nutation effects, off-boresight torque degradation, or precession / spin

coupling, but it does have a rudimentary spin torque model.

Comparisons were made to actual gyro data in four areas: twice spin

frequency nutation oscillations, open-loop nutation damping precession

misalignment, rate table spin-up and spin-down, and signal phase comparison.

The BDWL model showed excellent agreement with the actual gyro data

for the twice spin frequency nutation oscillations and the open-loop nutation

damping.  The Ideal and Gallaspy models did not match the actual gyro data in

these cases (neither of these models includes any nutation effects).

The BDWL model had excellent correlation with the rate table spin-up and

spin-down tests.  The Gallaspy model showed good correlation in some cases

and fair correlation in other cases.  The Ideal model did not show good

correlation to the rate table tests.

All three models gave similar results, and showed good correlation to the

actual gyro data in the signal phase angle tests.

Thus, the BDWL model showed the best correlation to real gyro data but

was the most computationally intensive.  The Ideal gyro model had the worst

correlation to actual gyro data, but was the least computationally intensive.  The

Gallaspy model gave performance somewhere between the BDWL and Ideal

gyro models in both fidelity and computational requirements.

The performance of the Gallaspy model was controlled by the

assumptions made during its development.  The use of the Lagrange method to 



derive the equations of motion showed no benefits or disadvantages in

comparison to the Newtonian equation of motion derivation.

The results of this thesis give the EO/IR missile simulation developer a

good set of criteria for choosing features of a gyro model and balancing gyro

model fidelity with model execution speed.
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DISCLAIMER

This thesis is being submitted as partial fulfillment of the requirements of

Rose-Hulman Institute of Technology needed to obtain a Master of Science in

Electrical Engineering degree.

The conclusions and opinions expressed in this thesis are those of the

author and do not necessarily represent the position of Rose-Hulman Institute of

Technology or the United States Government, or any of its directors, officers,

agents, or employees about the matters discussed.



iii

DEDICATION

This thesis is dedicated to my wife Susan and my children David, Kayla,

Kara, and Noah for their support and sacrifice during this endeavor.



iv

ACKNOWLEDGMENTS

I would like to thank Dr. David Purdy, chairman of my thesis committee for

all his time and support on this project.  I also thank Dr. Frank Acker and Dr.

Edward Doering for serving on my thesis committee.

Several individuals provided me with invaluable information and previous

research, without which, this thesis would not have been possible.  These

individuals include Mr. David Williams (Dynetics, Huntsville AL), Dr. Darrell

Lamm (Georgia Tech Research Institute, Atlanta GA), Mr. James Brown (Naval

Surface Warfare Center, Crane IN), Mr. Terry Dougherty (Naval Air Warfare

Center, China Lake CA), Mr. Jason Gallaspy (Dynetics, Huntsville AL), and Mr.

Bill Hecker (Redstone Arsenal, AL).

Many thanks are also owed to my co-workers at the Naval Surface

Warfare Center, in Crane IN for review of my thesis, assistance in research, and

help in taking actual gyro data.  These include Mr. John Bennett, Mr. Tim

Bradley, Mr. Ed Franklin, Mr. James Sweeten, Mr. Scot Brown, Mr. Michael

Walls, Mr. Brad Strobel, Dr. Eric Hillenbrand, and Dr. Bernard Douda.

Finally, I would like to thank the management of the Naval Surface

Warfare Center, Crane IN for providing me the opportunity to pursue this

research and Master’s degree.  As well as the upper-management of NSWC 



v

Crane, these individuals include Mr. Ted Smock, Mr. Steve Norris, Mr. Carl

Lohkamp, and Mr. David Schulte.



vi

TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1.0 Background on Electro-Optical/Infrared Guided Missiles . . . . . . . . . . . . . . . 1

2.0 Coordinate System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Direction Cosine Coordinate Transformation Matrix Definition . . . . 12

3.0 Derivation of Brown/Dougherty/Williams/Lamm Gyro Model . . . . . . . . . . . 18

3.1 Equations of Motion / Gyro Dynamics Derivation . . . . . . . . . . . . . . . 19

3.2 Gyro Euler Angle Missile Dynamics Compensation . . . . . . . . . . . . . 27

3.3 Cage Coil Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Complete Cage Coil Model . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Cage Coil Small Angle Approximation . . . . . . . . . . . . . . . . 46

3.4 Precession Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Spin Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 BDWL Gyro Model Assumptions and Limitations . . . . . . . . . . . . . . 57



vii

4.0 Derivation of Ideal Gyro Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Precession Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Equations of Motion / Gyro Dynamics . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Ideal Gyro Model Assumptions and Limitations . . . . . . . . . . . . . . . . 63

5.0 Derivation of Gallaspy Gyro Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Equation of Motion / Gyro Dynamics Derivation . . . . . . . . . . . . . . . 66

5.2 Rotation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Rotation Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Sensor Coils (General) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Lambda (Cage) Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Reference Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.7 Spin Coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Caging Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 Precession Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Gallaspy Model Limitations and Assumptions . . . . . . . . . . . . . . . . 96

6.0 Model Comparisons to Gyro Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Twice Spin Frequency Nutation Oscillations . . . . . . . . . . . . . . . . . . 97

6.2 Nutation Damping Misalignment . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Gyro Rate Table Spin-Up and Spin-Down Tests . . . . . . . . . . . . . . 107

6.3.1 BDWL Track Loop Model and Implementation . . . . . . . . 110

6.3.2 Ideal Track Loop Model and Implementation . . . . . . . . . . 117

6.3.3 Gallaspy Track Loop Model and Implementation . . . . . . . 123



viii

6.3.4 Rate Table Test Comparison . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Gyro Signal Phase Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.0 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.0 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9.0 Recommendations for Further Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



ix

LIST OF FIGURES

Figure 1 - Surface-to-air missile launch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 2 - Typical EO/IR missile system components . . . . . . . . . . . . . . . . . . . . 1

Figure 3 - Air-to-ground EO/IR missile launch . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 4 - Missile and target geometry for guidance law
      derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 5 - Cassegrain telescope layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 6 - More detailed Cassegrain telescope configuration for typical EO/IR
      missile system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 7 - Reticle tracking system theory of operation . . . . . . . . . . . . . . . . . . . . 4

Figure 8 - Gyro magnetic field configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 9 - Gyro coil diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 10 - Missile body-fixed coordinate system . . . . . . . . . . . . . . . . . . . . . . 10

Figure 11 - Gyro body-fixed coordinate system . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 12 - Yaw rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 13 - Pitch rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 14 - Roll rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 15 - Yaw rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 16 - Pitch rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 17 - Gyro spin rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 18 - Top level of BDWL gyro model . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



x

Figure 19 - BDWL model gyro angular velocity block . . . . . . . . . . . . . . . . . . . 23

Figure 20 - BDWL model gyro dynamics block . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 21 - BDWL model gyro angular position block . . . . . . . . . . . . . . . . . . . 27

Figure 22 - BDWL gyro Euler angle missile dynamics compensation block . . 28

Figure 23 - Rate table missile position/orientation block . . . . . . . . . . . . . . . . . 29

Figure 24 - BDWL gyro Euler angles with respect to missile body (GM)
         block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 27 - BDWL calculate gyro Euler rates with respect to missile block . . . 42

Figure 28 - BDWL body angular rates from Euler angles and Euler rates 
         block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 29 - BDWL cage coil (full angle equations) block . . . . . . . . . . . . . . . . . 46

Figure 30 - BDWL cage coil (small angle approximation) block . . . . . . . . . . . 47

Figure 32 - Spin coil angle definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 33 - BDWL gyro spin coil model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 34 - BDWL spin coil commanded spin rate . . . . . . . . . . . . . . . . . . . . . 56

Figure 35 - Top level of Ideal gyro model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 36 - Ideal gyro model precession coil block . . . . . . . . . . . . . . . . . . . . . 62

Figure 37 - Ideal gyro model gyro dynamics block . . . . . . . . . . . . . . . . . . . . . . 63

Figure 38 - Spin control block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 39 - Top level of open-loop Gallaspy gyro model . . . . . . . . . . . . . . . . . 65

Figure 40 - Missile and gyro geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 41 - Gallaspy rotation dynamics block . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 42 - Gallaspy gyro dynamics block . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 43 - Gallaspy calculate gyro rate matrix inverse block . . . . . . . . . . . . . 76



xi

Figure 44 - Gallaspy rotation kinematics block . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 45 - Gallaspy X rotation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 46 - Gallaspy Y rotation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 47 - Gallaspy Z rotation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 48 - Gallaspy calculate gyro-to-missile Euler angles block . . . . . . . . . . 81

Figure 49 - Gallaspy calculate nonrolling missile-to-earth transformation 
         block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 50 - Gallaspy calculate gyro-to-nonrolling missile Euler angles 
         block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 51 - Gallaspy form angular velocity matrix block . . . . . . . . . . . . . . . . . 86

Figure 52 - Gallaspy lambda coil (cage coil) block . . . . . . . . . . . . . . . . . . . . . . 87

Figure 53 - Gallaspy reference coil block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 54 - Gallaspy sensor coils block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 55 - Gallaspy calculate gyro-to-missile roll rate block . . . . . . . . . . . . . . 91

Figure 56 - Gallaspy Spin Coils block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 57 - Gallaspy caging coil block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 58 - Gallaspy precession coil block . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 59 - Gyro nutation illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 60 - FFT frequency components of actual gyro cage coil signal . . . . . 102

Figure 61 - Zoom of gyro cage coil frequency components . . . . . . . . . . . . . . 102

Figure 62 - Gyro damping comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 63 - Close-up of gyro damping comparison . . . . . . . . . . . . . . . . . . . . 103

Figure 64 - Gyro 200 Hz wobble from Dave Williams paper . . . . . . . . . . . . . 104



xii

Figure 65 - Close-up of BDWL gyro model precession . . . . . . . . . . . . . . . . . 104

Figure 66 - Close-up of Ideal1 gyro model precession . . . . . . . . . . . . . . . . . 104

Figure 67 - Close-up of Gallaspy3 gyro model precession . . . . . . . . . . . . . . 104

Figure 68 - Gyro nutation damping misalignment comparison . . . . . . . . . . . . 105

Figure 69 - Rate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 70 - Rate table diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 71 - Rate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 72 - BDWL gyro model with track loop implementation . . . . . . . . . . . 110

Figure 73 - Missile, gyro, and target geometry and vectors . . . . . . . . . . . . . . 112

Figure 74 - BDWL track loop model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Figure 75 - Rate table target position geometry . . . . . . . . . . . . . . . . . . . . . . . 114

Figure 76 - BDWL track loop target motion block . . . . . . . . . . . . . . . . . . . . . 115

Figure 77 - BDWL space-to-body coordinate transform block . . . . . . . . . . . . 116

Figure 78 - BDWL track loop normalize vector block . . . . . . . . . . . . . . . . . . . 116

Figure 79 - Ideal gyro model with track loop implementation . . . . . . . . . . . . . 117

Figure 80 - Ideal gyro track direction and magnitude . . . . . . . . . . . . . . . . . . . 118

Figure 81 - Ideal gyro model track loop block . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 82 - Ideal track loop space-to-nonrolling body coordinate transform 
         block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Figure 83 - Ideal space-to-body Euler angles X block . . . . . . . . . . . . . . . . . . 121

Figure 84 - Ideal space-to-body Euler angles Y block . . . . . . . . . . . . . . . . . . 121

Figure 85 - Ideal space-to-body Euler angles Z block . . . . . . . . . . . . . . . . . . 121

Figure 86 - Ideal gyro tracker precession coil block . . . . . . . . . . . . . . . . . . . . 122



xiii

Figure 87 - Gallaspy gyro model with track loop implementation . . . . . . . . . . 123

Figure 88 - Gallaspy track loop missile dynamics block . . . . . . . . . . . . . . . . . 124

Figure 89 - Gallaspy track loop block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Figure 90 - Gallaspy track loop body-to-non-rolling body coordinate 
         transform block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 91 - Gallaspy gyro tracking error in the NRGI coordinate system . . . . 127

Figure 92 - Gallaspy track loop precession coil block . . . . . . . . . . . . . . . . . . 127

Figure 93 - Williams gyro data and model data for rate table test 1 . . . . . . . 130

Figure 94 - BDWL response from rate table test 1 . . . . . . . . . . . . . . . . . . . . 130

Figure 95 - Ideal response for rate table test 1 . . . . . . . . . . . . . . . . . . . . . . . 131

Figure 96 - Gallaspy response for rate table test 1 . . . . . . . . . . . . . . . . . . . . 131

Figure 97 - Williams gyro data and model data for rate table test 2 . . . . . . . 132

Figure 98 - BDWL response for rate table test 2 . . . . . . . . . . . . . . . . . . . . . . 132

Figure 99 - Ideal response for rate table test 2 . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 100 - Gallaspy response for rate table test 2 . . . . . . . . . . . . . . . . . . . 133

Figure 101 - Williams gyro data and model data for rate table test 3 . . . . . . 134

Figure 102 - BDWL response for rate table test 3 . . . . . . . . . . . . . . . . . . . . . 134

Figure 103 - Ideal response for rate table test 3 . . . . . . . . . . . . . . . . . . . . . . 135

Figure 104 - Gallaspy response for rate table test 3 . . . . . . . . . . . . . . . . . . . 135

Figure 105 - Williams gyro data and model data for rate table test 4 . . . . . . 136

Figure 106 - BDWL response for rate table test 4 . . . . . . . . . . . . . . . . . . . . . 136

Figure 107 - Ideal response for rate table test 4 . . . . . . . . . . . . . . . . . . . . . . 137

Figure 108 - Gallaspy response for rate table test 4 . . . . . . . . . . . . . . . . . . . 137



xiv

Figure 109 - Williams gyro data and model data for rate table test 5 . . . . . . 138

Figure 110 - BDWL response for rate table test 5 . . . . . . . . . . . . . . . . . . . . . 138

Figure 111 - Ideal response for rate table test 5 . . . . . . . . . . . . . . . . . . . . . . 139

Figure 112 - Gallaspy response for rate table test 5 . . . . . . . . . . . . . . . . . . . 139

Figure 113 - Williams gyro data and model data for rate table test 6 . . . . . . 140

Figure 114 - BDWL response for rate table test 6 . . . . . . . . . . . . . . . . . . . . . 140

Figure 115 - Ideal response for rate table test 6 . . . . . . . . . . . . . . . . . . . . . . 142

Figure 116 - Gallaspy response for rate table test 6 . . . . . . . . . . . . . . . . . . . 142

Figure 117 - Williams gyro data and model data for rate table test 7 . . . . . . 143

Figure 118 - BDWL response for rate table test 7 . . . . . . . . . . . . . . . . . . . . . 143

Figure 119 - Ideal response for rate table test 7 . . . . . . . . . . . . . . . . . . . . . . 144

Figure 120 - Gallaspy response for rate table test 7 . . . . . . . . . . . . . . . . . . . 144

Figure 121 - Overall lab test gyro signals for horizontal right target motion . . 152

Figure 122 - BDWL overall signals for horizontal right target motion . . . . . . . 153

Figure 123 - Ideal overall signals for horizontal right target motion . . . . . . . . 154

Figure 124 - Gallaspy overall signals for horizontal right target motion . . . . . 155

Figure 125 - BDWL comparison to lab test data for horizontal right target 
           motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 126 - Ideal gyro model comparison to lab test data for horizontal 
           right target motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Figure 127 - Gallaspy comparison to lab test data for horizontal right target
           motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Figure 128 - Overall lab test signals for horizontal left target motion . . . . . . . 159

Figure 129 - BDWL overall signals for horizontal left target motion . . . . . . . . 160



xv

Figure 130 - Ideal overall signals for horizontal left target motion . . . . . . . . . 161

Figure 131 - Gallaspy overall signals for horizontal left target motion . . . . . . 162

Figure 132 - BDWL comparison to lab test data for horizontal left target 
          motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Figure 133 - Ideal gyro model comparison to lab test data for horizontal left
                     target motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Figure 134 - Gallaspy comparison to lab test data for horizontal left target 
          motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Figure 135 - Overall lab test signals for vertical up target motion . . . . . . . . . 166

Figure 136 - BDWL overall signals for vertical up target motion . . . . . . . . . . 167

Figure 137 - Ideal overall signals for vertical up target motion . . . . . . . . . . . . 168

Figure 138 - Gallaspy overall signals for vertical up target motion . . . . . . . . 169

Figure 139 - BDWL comparison to lab test data for vertical up target 
          motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Figure 140 - Ideal gyro model comparison to lab test data for vertical up 
           target motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 141 - Gallaspy comparison to lab test data for vertical up target 
          motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 142 - Overall signals for lab test vertical down target motion . . . . . . . 173

Figure 143 - BDWL overall signals for vertical down target motion . . . . . . . . 174

Figure 144 - Ideal overall signals for vertical down target motion . . . . . . . . . 175

Figure 145 - Gallaspy overall signals for vertical down target motion . . . . . . 176

Figure 146 - BDWL comparison to lab test data for vertical down target 
          motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



xvi

Figure 147 - Ideal gyro model comparison to lab test data for vertical down
                     target motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Figure 148 - Gallaspy comparison to lab test data for vertical down target 
           motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



xvii

LIST OF TABLES

Table 1 - Gyro lab test signals relative phase angle data . . . . . . . . . . . . . . . . 147

Table 2 - Gyro model signals relative phase angle data . . . . . . . . . . . . . . . . 148

Table 3 - Signal comparison figure numbers . . . . . . . . . . . . . . . . . . . . . . . . . 148

Table 4 - Model feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



xviii

LIST OF ABBREVIATIONS

cg Center of gravity

Conscan Conical Scan

EO Electro-Optical

Gyro Gyroscope

Hz Hertz (cycles per second)

IR Infrared

kg Kilogram

LOS Line-of-sight

m Meter

MANPADS Man-portable air defense missile system

N Newton



xix

LIST OF SYMBOLS

 - Vector quantities are denoted by arrows, or
v

V

 - Vector quantities can also be denoted by brackets and a subscript for the{ }V
s

reference frame, which is “s” in this case

{G} - Coordinate systems are denoted by a letter in brackets, which is the gyro
coordinate system in this case

 - Unit vectors are vectors one unit in length$, $, $i j k

 - Direction cosine coordinate transformation matrix from the 0 coordinatesD0

system to the s coordinate system

 - Element from the first row, second column of the direction cosinesD1 2
0
,

transformation matrix from the 0 coordinate system to the s coordinate system

 - sθ ( )sin θ

 - cθ ( )cos θ

 - tθ ( )tan θ

 - Time derivative taken with respect to the I reference frame
Id
dt

 - Vector cross product⊗

 - Vector dot product⋅



xx

 - Magnitude of vector R
r
R

 - A term not quantified, with magnitude on the order of x to the n power( )[ ]O x n



1

Figure 1 - Surface-to-air missile launch (19).

Figure 2 - Typical EO/IR missile system
components (19).

Figure 3 - Air-to-ground EO/IR missile launch (20).

1.0 Background on Electro-Optical/Infrared Guided Missiles

In recent years, there

has been a great proliferation in

small electro-optical/infrared

(EO/IR) guided missile systems. 

These include air and ground

launched anti-tank missiles, as

well as anti-aircraft missiles. 

This proliferation is attributed to

the low cost, ease of use, and

excellent combat record of

these systems.  Figures 1

through 3 depict examples of

EO/IR missile systems. 

Most EO/IR missile

systems use some form of

proportional navigation for
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Figure 4 - Missile and target geometry for guidance law
derivation (17).

guidance (17).  The proportional navigation guidance law is related to the

constant bearing guidance law.  This law states that two objects are on a

collision course if the line-of-sight (LOS) angle between them (measured with

respect to an inertial reference frame) remains constant.  

Figure 4 shows missile and target geometry.  For the constant bearing

guidance law, the missile strives to keep  constant. Proportional navigationγ m

guidance law is a modification of the constant bearing guidance law, stating that

the missile inertial heading angular rate be proportional to the LOS inertial

angular rate (17).  Equation 1-1 illustrates the proportional navigation guidance

law:

(1-1)& &γ ψm N= ⋅

where Inertial angular rate of the missile velocity vector&γ m =

Proportional navigation constant, usually an integerN =

Inertial angular rate of the missile-to-target line-of-sight vector.&ψ =
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Figure 5 - Cassegrain telescope layout (15).

Figure 6 - More detailed Cassegrain telescope configuration
for typical EO/IR missile system (15).

In order to make an inertial LOS angle measurement, most EO/IR missiles

incorporate a gyroscope (gyro) with their sensor and optics systems.  The

gyroscope provides this inertial reference.  Also, the gyroscope is stabilized with

respect to the missile body and is, thus, not affected by missile body motions,

such as those from

aerodynamic buffeting. 

Without an inertial

stabilization, the

gimbaled EO/IR sensor

would easily be pulled

off of the target as a

result of missile body

motions.

These EO/IR

missile seekers

typically use a

Cassegrain optical

telescope (see Figures

5 and 6).  For conical

scan (conscan)

seekers, one of the

Cassegrain mirrors is

canted with respect to
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Figure 7 - Reticle tracking system theory of operation (15).

the other.  This works with the seeker detector reticle mask to modulate the

incoming EO/IR energy (see Figure 7).  

If a conscan seeker gyro is aimed directly at a point-sized EO/IR radiation

source, the combination of gyro spin and the cant of one of the Cassegrain

mirrors will cause the point source to trace a circle on the seeker reticle.  The

radius of the circle is proportional to the amount of angular misalignment of the

Cassegrain mirrors.  If there is a small error such that the gyro is not pointed

directly at the point source, the circle will not be centered on the reticle.  The

magnitude of the difference between the reticle center and the point source

center of rotation is proportional to the amount of angular error between the gyro

look angle and the true LOS to the point source target.

In these systems, the gyro body itself is a permanent magnet.  This is

done so that wire coils embedded in the missile body can be used to control the
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View from rear

y
G

y
M

z
G

(Coils are fixed to

missile airframe)

Gyro

Figure 8 - Gyro magnetic field configuration.

gyro and sense its angular position.  The magnetic field of the spinning gyro cuts

the sensor coils, inducing an electric current which is read to determine gyro

position.  A current is applied to the gyro precession (torque) coils which induces

a magnetic field.  This magnetic field interacts with the magnetic field of the gyro

body to induce control torques on the gyro.  Figure 8 shows the orientation of the

gyro magnetic field; the gyro north pole is aligned with the gyro body-fixed ZG

axis.

Figure 9 depicts a gyro with Cassegrain optics attached and shows the

configuration of the sensor and precession (control) coils.  The reference coils

are two “pancake” type coils placed on opposite sides of the missile body.  As

the gyro spins, the magnetic field of the gyro cuts these coils regardless of gyro
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Figure 9 - Gyro coil diagram (14).

orientation.  The resulting signal induced on the reference coils is a sinusoid at

the relative gyro-to-missile body spin frequency.

The cage coil sensor coils are wound circumferentially around the missile

body, like the precession coils shown in Figure 9.  If the gyro is angularly aligned

with the missile body (boresighted), then no current is induced in the cage coil. 

As the gyro precesses off of missile boresight, the gyro magnetic field cuts the

cage coils and induces a sinusoidal signal in the cage coils.  The magnitude of

this sinusoid is proportional to the gyro off-boresight angle (usually called

lambda).  The direction of gyro precession can be determined by comparing the

relative phase difference between the reference coil signal and cage coil signal. 

Thus the missile seeker can determine the gyro angular position using the

reference and cage coil signals.
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The precession coils are used to control the gyro by magnetically

inducing torques on the gyro.  A current placed on the precession coils creates a

magnetic field which is aligned with the missile body longitudinal axis (out the

nose of the missile, also known as the missile body XM axis).  This magnetic field

has either its north or its south pole pointing out the missile nose, depending on

the direction of current flow in the precession coils.  This induced magnetic field

will induce a torque on the gyro by its interaction with the magnetic flux field of

the spinning gyro.

Assuming that the gyro north pole is aligned with the gyro body-fixed +ZG

axis (as shown in Figure 8), then the precession coil magnetic field will induce a

torque on the gyro about the gyro body-fixed YG axis.  The efficiency of the

precession coils drops off as the gyro off-boresight angle increases.  As the gyro

precesses off of missile boresight, the induced precession torque has a

component about the gyro body YG axis and a component about the gyro body

XG (spin) axis.  The XG component of this torque can affect the gyro spin rate,

particularly at large off-boresight angles.

Some missiles spin up the gyroscope prior to missile launch, then let the

gyro freely spin down during missile flight.  This is acceptable, since the typical

flight time for small EO/IR missiles is very short and the gyro will not spin down

significantly in this short time.  However, some missiles employ an on-board gyro

spin drive.  These spin drives use pancake type coils similar to the reference

coils.  A sinusoidal current is placed on the spin coils, which induces a magnetic

field perpendicular to the missile body XM axis.  If this current is injected at the
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gyro spin frequency, and is phased properly, it will create a torque about the

gyro body XG axis, which will control spin.  As with the precession coils, the spin

coils will also induce a precession torque on the gyro as the gyro moves off of

missile boresight.

The gyro is an inertial device, due to its two-axis gimbal and the spinning

mass of its rotor.  The gyro rotor remains pointing in the same inertial direction,

even if its outer gimbals are in motion.  External torques applied to the gyro

cause gyro angular motion (precession).  The direction of this motion can be

found by taking the cross product of the gyro spin vector and the torque vector

(7, 25), using the right-hand rule.  This motion can be thought of as the gyro

trying to align its spin vector with the torque vector.
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2.0 Coordinate System Definition

Before deriving gyro equations of motion, coordinate systems must be

specified.  The {I} coordinate system (xI, yI, zI) is a right-handed coordinate

system fixed in inertial space, with zI positive down.  It does not rotate with the

gyro.  The {M} coordinate system (xM, yM, zM) is a right-handed coordinate

system fixed in the missile body.  The {G} coordinate system (xG, yG, zG) is right-

handed and fixed in the gyro.

There exists a set of Euler angles which describe the orientation of the

gyro {G} coordinate system with respect to the inertial {I} coordinate system,

.  If these gyro Euler angles are all zero, the {G} coordinate system( , , )ψ θ φG G G

is aligned with the {I} coordinate system.

Similarly, there exists a set of Euler angles which describe the orientation

of the missile body {M} coordinate system with respect to the inertial coordinate

system, .  If these missile Euler angles are all zero, the {M}( , , )ψ θ φM M M

coordinate system will be aligned with the {I} coordinate system.  Similarly, there

also exists a set of Euler angles which describe the orientation of the gyro {G}

with respect to the missile {M}.  These are the “gyro-with-respect-to-the-missile”

Euler angles, .  ( , , )ψ θ φGM GM GM

The xM axis points out the nose of the missile; the yM axis points out the

right side of the missile (see Figure 10).  The {G} coordinate system is fixed in

the gyro and spins with it.  The xG axis is aligned with the gyro pointing direction,

the zG axis is fixed in the direction of the gyro north pole (see Figure 11).
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Figure 10 - Missile body-fixed coordinate
system (16).

Figure 11 - Gyro body-fixed coordinate
system.

All Euler angles are defined as “3-2-1" body-based coordinate system

rotations to get from a “space” coordinate system (like the missile body-fixed {M}

coordinate system or the inertial {I} coordinate system) to a “body” coordinate

system (like the gyro body fixed {G} coordinate system).

A body 3-2-1 coordinate transformation defines the series of angular

rotations that transform one coordinate system to another.  The first angular

rotation is done about the third space based axis (Z).  Next the second rotation

is done about the second axis (Y) of the coordinate system resulting from the

first rotation.  The final angular rotation is done about the first axis (X) of the

coordinate system resulting from the first two rotations.  This is the standard

definition of Euler angles.

Figures 12 through 14 depict the body 3-2-1 Euler angle rotations.  In

these figures, the initial coordinate system is labeled as {0}.  This could
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Figure 12 - Yaw rotation.
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Figure 13 - Pitch rotation.

represent either the inertial {I} or missile {M} coordinate system.  The {1}

coordinate system results after the yaw rotation about the z0 axis.  The gyro yaw

angle is , which represents a positive rotation about the z0 axis.  The z1 axisψ

is, therefore, identical to the z0 axis.

Next is a pitch rotation about

the y1 axis which produces the {2}

coordinate system.  The pitch angle is

, which represents a positive rotationθ

about the y1 axis.  Thus, the y1 and y2

axes are identical.  The {G} coordinate

system results after rotation of the {2}

coordinate system through the gyro

spin angle of ;  is a positiveφ φ
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rotation about the x2 axis.  If the gyro spin rate is constant, then the angle  isφ

equal to the gyro spin rate times time .( )ωs t⋅

2.1 Direction Cosine Coordinate Transformation Matrix Definition

Next, these coordinate system rotations were used to derive the direction

cosine coordinate transformation matrices from the {0} to the {G} coordinate

system.  Recall that the {0} coordinate system represents a starting coordinate

system, and could be either the inertial {I} or the missile {M} coordinate system. 

Also note that these coordinate system transformations can also be used with

the inertial {I} to the missile body {M} Euler angles.

By definition, the determinate of a direction cosine matrix is equal to one. 

Thus, the inverse of a direction cosine matrix is merely its transposition (18). 

This makes it very easy to find direction cosine matrices both to and from two

coordinate systems.  For example, if one knows the {I} to {G} direction cosine,

the {G} to {I} direction cosine is merely its inverse, which is its transpose.

Figures 15 through 17 and Equations 2-1 through 2-21 show the

derivation of the individual yaw, pitch, and roll direction cosine coordinate

transformation matrices.
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Figure 15 - Yaw rotation.

(2-1)x x y0 1 1= ⋅ − ⋅cos( ) sin( )ψ ψ

(2-2)y x y0 1 1= ⋅ + ⋅sin( ) cos( )ψ ψ

(2-3)z z0 1=

(2-4)

x
y
z

x
y
z

0

0

0

1

1

1

0
0

0 0 1

















=
−































cos( ) sin( )
sin( ) cos( )

ψ ψ
ψ ψ

(2-5){ } { }p D p
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Taking the inverse of this direction cosine (merely its transpose) yields:

(2-6)
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Figure 16 - Pitch rotation.

(2-8)x x z1 2 2= ⋅ + ⋅cos( ) sin( )θ θ

(2-9)y y1 2=

(2-10)z x z1 2 2= − ⋅ + ⋅sin( ) cos( )θ θ

(2-11)
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As before, taking the inverse of this direction cosine yields:

(2-13)
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Figure 17 - Gyro spin rotation.

(2-15)x xG2 =

(2-16)y y zG G2 = ⋅ − ⋅cos( ) sin( )φ φ

(2-17)z y zG G2 = ⋅ + ⋅sin( ) cos( )φ φ

(2-18)
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Again, the corresponding direction cosine can be found by taking the inverse:

(2-20)

x
y
z

x
y
z

G

G

G

















=
−

































1 0 0
0
0

2

2

2

cos( ) sin( )
sin( ) cos( )

φ φ
φ φ

(2-21){ } { } [ ] { }p D p D p
G

G G= ⋅ = ⋅
−2

2
2 1

2



16

Direction cosine matrices can be multiplied together to get conglomerate

direction cosine matrices.  For example, the non-rolling gyro to missile direction

cosine would be:

(2-22)M MD D D2 1 1 2= ⋅

Note that when multiplying direction cosine matrices, the inner superscripts must

match, then they cancel.  Multiplying these matrices,

(2-23)M
GM GM

GM GM

GM GM

GM GM

D2

0
0

0 0 1

0
0 1 0

0
=

−





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
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



⋅
−
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
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







cos( ) sin( )
sin( ) cos( )

cos( ) sin( )

sin( ) cos( )

ψ ψ
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θ θ

θ θ

(2-24)
M

GM GM GM GM GM

GM GM GM GM GM

GM GM

D2

0
=

−

−

















cos( )cos( ) sin( ) cos( )sin( )
sin( )cos( ) cos( ) sin( )sin( )

sin( ) cos( )

ψ θ ψ ψ θ
ψ θ ψ ψ θ

θ θ

In order to calculate the direction cosine matrix from the gyro-fixed {G}

coordinate system to the missile {M} coordinate system, one must multiply three

individual direction cosines.  These type of matrices can get very large, so a

short-hand was used to denote the trigonometric functions.  Sin, cos, and tan will

be denoted by their first letter (s, c, t) with a subscript to represent the angle

variable.  The full gyro-to-missile direction cosine is calculated as follows:

(2-25)
M G M GD D D D= ⋅ ⋅1 1 2 2
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      (2-26)M GD
c s
s c

c s

s c
c s
s c

GM GM

GM GM

GM GM

GM GM

GM GM

GM GM

=
















⋅
−

















⋅ −

















ψ ψ

ψ ψ

θ θ

θ θ

φ φ

φ φ

0
0

0 0 1

0
0 1 0

0

1 0 0
0
0

     (2-27)M GD
c c s c c s s s s c s c
s c c c s s s c s s s c

s c s c c

GM GM GM GM GM GM GM GM GM GM GM GM

GM GM GM GM GM GM GM GM GM GM GM GM

GM GM GM GM GM

=
− + +

+ − +
−

















ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

θ θ φ θ φ

Note that the determinate of a direction cosine is equal to one by definition. 

Therefore, the inverse of a direction cosine is merely its transpose.  This makes

it very easy to find the direction cosine from the missile {M} coordinate system to

the gyro {G} coordinate system, which is merely the transpose of gyro-to-missile

direction cosine matrix.  The gyro-to-missile direction cosine matrix was verified

with Kane, Likins, and Levinson (5).
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Figure 18 - Top level of BDWL gyro model.

3.0 Derivation of Brown/Dougherty/Williams/Lamm Gyro Model

The gyro model presented in this section is based on previous work by

four individuals: James Brown (3), Terry Dougherty (1), David Williams (9, 10,

and 11), and Darrell Lamm (13 and 19).  This gyro model will be referred to as

the “BDWL” gyro model, since it is based on work by Brown, Dougherty,
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Williams, and Lamm.  The work of Wu (4) and White (8) form the historical basis

for this model.  Figure 18 shows the top level of the BDWL gyro model.  The

derivation of each block in Figure 18 will be discussed in the following sections.

3.1 Equations of Motion / Gyro Dynamics Derivation

The rotational kinematic equations of motion for this gyroscope model

start with the rotational version of Newton’s 2nd Law, which states that the

summation of the torques on a rigid body is equal to the time derivative of the

angular momentum in the inertial frame:

(3-1)
r

r
τ =∑

IdH
dt

(3-2)
r r
H I= ω

where, 

Torques (3-3)
r
τ =

Angular momentum about gyro center of gravity, (3-4)
r
H =

Moment of inertia matrix, (3-5)I
I I I
I I I
I I I

xx xy xz

yx yy yz

zx zy zz

=

















=

and Gyro angular velocity (3-6)
r

ω =

It is convenient to write the moment of inertia matrix with respect to a gyro

body-fixed coordinate system.  If this is not done, the moments of inertia can

change with time and make the calculation of the angular momentum derivative
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much more complex.  Further, if one picks a gyro body-fixed coordinate system

that is aligned with the body symmetry of the gyro, the products of inertia (Ixy,

Ixy, ...) equal zero.  This is the rationale for choosing the gyro body fixed {G}

coordinate system previously described, with the xG axis out the face of the gyro. 

The zG axis is aligned with the gyro magnetic north pole, and yG is perpendicular

to xG and zG such that xG yG = zG (see Figure 11).  Finally, the gyro body-fixed⊗

coordinate system should be centered at the gyro center of gravity, which is its

center of rotation and the center of its gimbal axes.  Thus,

(3-7)I
I

I
I

xx

yy

zz

=
















0 0
0 0
0 0

Gyro Spin Axis Inertia (3-8)I Ixx s= =

Gyro Transverse Axis Inertia (3-9)I I Iyy zz t= = =

(3-10)
r

ω ω ω ω= + +x G y G Z Gi j k$ $ $

(3-11)
r
H

I
I

I

s

t

t

x

y

z G

=
































0 0
0 0
0 0

ω
ω
ω

(3-12)
r
H I i I j I is x G t y G t z G= + +ω ω ω$ $ $

Note that here  represents the gyro angular rate measured with respect to the
r

ω

inertial coordinate system, but expressed in the gyro body-fixed {G} coordinate

system.  This is quite different than the gyro angular rate measured in the gyro
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body-fixed coordinate system.  If one measures the gyro angular rates in the {G}

coordinate system, it would be zero since the gyro body-fixed coordinate system

always moves with the gyro.  The {G} coordinate system is moving and, thus, is

non-inertial.  Also, note that since the {G} coordinate system is fixed in the gyro,

 is also the angular rate of the {G} coordinate system with respect to the
r

ω

inertial system.  Thus, from Greenwood (2):

(3-13)
I GdH
dt

dH
dt

H
r r

r r
= + ⊗ω

(3-14)
G

s x G t y G t z G
dH
dt

I i I j I k
r

= + +& $ & $ & $ω ω ω

(3-15)
r r

ω ω ω ω
ω ω ω

⊗ =H
i j k

I I I

G G G

x y z

s x t y t z

$ $ $

(3-16)( ) ( )r r
ω ω ω ω ω⊗ = − − −H I I j I I ks t x z G s t x y G

$ $

Combining Equations 3-1, 3-13, 3-14, and 3-16:

(3-17)( )
( )

τ
τ
τ

ω
ω ω ω
ω ω ω

x

y

z G

s x

t y s t x z

t z s t x y G

I
I I I
I I I

















= + −
− −

















&
&
&

Note that the gyro torques are expressed with respect to the gyro body-fixed

coordinate system.  Thus,  points in the xG direction;  points in the directionτ x τ z

of the gyro magnetic north pole.  Magnetic precession torques can only be
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induced about the yG axis.  Thus,  is zero by definition.  Magnetic spin torquesτ z

are induced about the xG axis.

Most EO/IR missile seeker gyroscopes incorporate some type of nutation

damping.  Nutation consists of undesirable gyro motions perpendicular to

desired direction of motion (precession).  Nutation is explained in more detail in

Section 6.  In some systems, the nutation damper is a sealed radial groove

inside the gyro, which is filled with liquid mercury.  The liquid mercury provides

the damping.  Other systems use electronic nutation damping.  The damping

torque opposes the precession torque and is approximately proportional to the

angular velocity in the yG and zG axes as follows:

(3-18)τ ωyD D yK= −

(3-19)τ ωzD D zK= −

where KD is a constant damping coefficient.  Incorporating these terms into

equation 3-17 yields:

(3-20)( )
( )

τ
τ ω
τ ω

ω
ω ω ω
ω ω ω

x

y D y

z D z G

s x

t y s t x z

t z s t x y G

K
K

I
I I I
I I I

−
−

















= + −
− −

















&
&
&

Solving each term for the derivative of angular velocity yields:

(3-21)( )[ ]
( )[ ]

&
&
&

ω
ω
ω

τ
τ ω ω ω

τ ω ω ω

x

y

z G

x s

y D y t s x z t

z D z t s x y t G

I
K I I I

K I I I

















= − + −

− − −
















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Figure 19 - BDWL model gyro angular velocity block.

These equations are implemented in the BDWL model in the “gyro angular

velocities” block shown in Figure 19.

Note from Figure 19 that the gyro spin can be switched between a perfect

spin frequency and an actual spin torque controller.  The gyro angular velocity

block is contained in the gyro dynamics block, which is shown in Figure 20.
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Figure 20 - BDWL model gyro dynamics block.

The gyro angular position block takes the gyro angular velocities and

calculates the gyro position, expressed in Euler angles.  Note that the gyro Euler

angles and their sines and cosines are put on the “gyro Euler with-respect-to 

inertial” bus.  The sines and cosines are included as a means of making the

model execute faster.  Previously, only the gyro Euler angles were passed

between Simulink subsystems.  It was discovered that the sines and cosines of

these angles were being calculated at multiple locations in the model. 

Calculating them once and sending them on the Euler angle bus increases

execution speed.

The gyro Euler angles are calculated from the angular velocities based on

equations from Lamm (13).  The relationship between the Euler angle rates and

gyro angular velocity can be derived as follows: First, define the gyro angular

velocity vector as:

(3-22)
r

ω
ω
ω
ω

=
















x

y

z G
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Note that this vector is expressed in the gyro body-fixed coordinate system.  This

is where the gyro angular velocities are calculated.  Next, it is assumed that the

gyro angular velocity can totally be described by the Euler angular rates:

(3-23)[ ] [ ] [ ]r
ω ψ θ φ= + +& & &

From the definition of Euler angles (body 3-2-1 rotation), it is found that:

(3-24)& & $
&

r
ψ ψ

ψ
= ⋅ =

















z1

1

0
0

(3-25)& & $ &
r
θ θ θ= ⋅ =

















y2

2

0

0

(3-26)& & $

&
r
φ φ

φ
= ⋅ =

















xG

G

0
0

Each of these Euler angular rates must be transformed into the gyro

body-fixed {G} coordinate system.  The direction cosine matrices derived earlier

in section 2 will be used here:

(3-27){ } { }& &
&

&
&
&

r r
ψ ψ

ψ

ψ
ψ
ψ

φ φ

φ φ

θ θ

θ θ

θ

θ φ

θ φ

G

G

G

D D c s
s c

c s

s c

s
c s
c c

= ⋅ ⋅ =
−

















⋅
−















⋅
















=
−















2 2 1

1

1

1 0 0
0
0

0
0 1 0

0

0
0

(3-28){ } { }& & & &
&

r r
θ θ θ θ

θ
φ φ

φ φ

φ

φ
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G

G

D c s
s c

c
s
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
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

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
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










2

2
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0
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0
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(3-29){ }&
&

r
φ

φ

G

G

=

















0
0

Summing,

(3-30){ } { } { } { }r r r r
ω ψ θ φ

φ ψ
ψ θ
ψ θ

ω
ω
ω

θ

θ φ φ

θ φ φ

G G G G

G

x

y

z G

s
c s c
c c s

= + + =
−

+
−

















=
















& & &
& &
& &

& &

Solving for the Euler angular rates,

(3-31)( )& sin( ) cos( ) cos( )ψ ω φ ω φ θ= +y G z G G

(3-32)& cos( ) sin( )θ ω φ ω φ= −y G z G

(3-33)( )& sin( ) cos( ) tan( )ϕ ω ω φ ω φ θ= + +x y G z G

Figure 21 shows the Simulink implementation of these Euler angle equations. 

Note that these angular velocities and Euler angles are with respect to the

inertial coordinate system.
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Figure 21 - BDWL model gyro angular position block.

3.2 Gyro Euler Angle Missile Dynamics Compensation

The “gyro dynamics” block outputs gyro Euler angles and Euler angle

rates with respect to the inertial coordinate system.  If the gyro is used as part of

an EO/IR missile simulation, the gyro Euler angles (and their rates) with respect

to the missile body-fixed coordinates are needed.  The cage coil, precession

coil, spin coil, and track loop models depend on the gyro Euler angles with
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Figure 22 - BDWL gyro Euler angle missile dynamics compensation block.

respect to the missile body.  For example, the cage coil voltage is proportional to

the gyro off-boresight angle with respect to the missile body, not with respect to

the inertial reference frame.

Figure 22 shows the top level of the BDWL “gyro Euler angle missile

dynamics compensation” block.  Note that the calculation of the missile-to-gyro

Euler angles and Euler angle rates are relatively simple if the missile is

stationary, but if the missile is moving, this calculation can be challenging.

From Figure 22, note that the calculation of the gyro Euler angles and

rates with respect to the missile body is divided into three functional blocks.  The

rate table block calculates the missile’s position, velocity, inertial Euler angles,

and inertial Euler angle rates.  This is used for modeling rate table missile

seeker testing.  A missile airframe model would be used in place of the rate table
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Figure 23 - Rate table missile position/orientation block.

block if a missile fly-out simulation was being used.  Separate blocks are used to

calculate the gyro Euler angles and the gyro Euler angle rates with respect to

the missile body.  

Note that the inputs to the gyro Euler angle missile dynamics

compensation block are the gyro inertial Euler angles and inertial Euler angle

rates.  The missile position and angular information could also be considered to

be inputs to this block, but for this model the rate table block is included inside

the gyro Euler angle missile dynamics compensation block.

Figure 23 shows the rate table block.  This block supplies missile dynamic

and angular information.  Missile inertial Euler angles are found by integrating

the inertial missile Euler angle rates (these are constant for a rate table test, and

are set in the MATLAB script which runs this Simulink simulation).  The missile
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inertial Euler angles are placed on a signal bus along with their sines and

cosines, as is done for other Euler angles.  For a rate table test, the missile

inertial position vector is constant (also set in the MATLAB run script), and the

missile inertial velocity is zero.

The gyro Euler angles with respect to the missile can be calculated from

the gyro-to-missile direction cosine matrix, given the definition of a direction

cosine matrix.  The gyro-to-missile direction cosine matrix can be calculated

from the gyro-to-inertial direction cosine matrix and the inertial to missile

direction cosine matrix.  This technique comes from Lamm (13).

Equation 3-34 is the gyro-to-missile (body-to-space) Euler angle direction

cosine matrix, developed in section 2.1, equation 2-27:

(3-34)M GD
c c s c c s s s s c s c
s c c c s s s c s s s c

s c s c c

GM GM GM GM GM GM GM GM GM GM GM GM

GM GM GM GM GM GM GM GM GM GM GM GM

GM GM GM GM GM

=
− + +

+ − +
−

















ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

ψ θ ψ φ ψ θ φ ψ φ ψ θ φ

θ θ φ θ φ

If the notation  is used to refer to the element in the third row, secondM GD3 2,

column of the gyro-to-missile direction cosine matrix, then it can be seen from

equation 3-34 that

(3-35)M G
GMD3 1, sin( )= − θ

This can be used to calculate , the gyro pitch Euler angle with respect to theθGM

missile body,
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(3-36)( )θGM
M GD= − −sin ,

1
3 1

which is valid for .  − ≤ ≤π θ π2 2GM

Similarly, it can be seen that

(3-37)tan( )
sin( )
cos( )

,

,

ψ
ψ
ψGM

GM

GM

M G

M G

D
D

= = 2 1

1 1

Thus, 

(3-38)ψ GM

M G

M G

D
D

=








−tan ,

,

1 2 1

1 1

which is valid for .0 2≤ ≤ψ πGM

Finally, the gyro roll angle with respect to the missile body can be found

by using the appropriate gyro-to-missile direction cosine components in the

same manner,

(3-39)φGM

M G

M G

D
D

=








−tan ,

,

1 3 2

3 3

which is valid for .0 2≤ ≤φ πGM

Next, note that the gyro-to-missile direction cosine matrix can be

calculated by multiplying the gyro-to-inertial and the inertial-to-missile direction

cosine matrices, as shown in section 2.1,

(3-40)M G M I I GD D D= ⋅

Since the gyro inertial Euler angles and the missile inertial Euler angles are both
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Method for calculating these
gyro-to-missile Euler angles is

from Lamm, p.7, eqn 3.
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Figure 24 - BDWL gyro Euler angles with respect to missile body (GM) block.

known, the gyro-to-inertial and the inertial-to-missile direction cosine matrices

can easily be calculated from the definition of a direction cosine matrix (see

section 2.1).  Figure 24 shows the block used to calculate the gyro Euler angles

with respect to the missile body.  This is based on equations 3-36, 3-38, 3-39,

and 3-40.  Figure 25 shows the “space-to-body direction cosine” block, used to

calculate the inertial-to-missile direction cosine from the missile inertial Euler

angles.  Figure 26 shows the “body-to-space direction cosine” block, used to

calculate the gyro-to-inertial direction cosine matrix from the gyro inertial Euler

angles.
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The determinant of a
direction cosine matrix

is always one.

Thus, the inverse of a
direction cosine matrix
is merely its transpose

1

Dir Cos
Matrix

Reshape

-1

1

Euler
Angles

<sin(psiM)>

<cos(psiM)>

<sin(thetaM)>

<cos(thetaM)>

<sin(phiM)>

<cos(phiM)>

cos(psi)*cos(theta)

cos(psi)*sin(theta)*sin(phi)

sin(psi)*cos(phi)

cos(psi)*sin(theta)*cos(phi)

sin(psi)*sin(phi)

sin(psi)*cos(theta)

sin(psi)*sin(theta)*sin(phi)

cos(psi)*cos(phi)

sin(psi)*sin(theta)*cos(phi)

cos(psi)*sin(phi)

-sin(theta)

cos(theta)*sin(phi)

cos(theta)*cos(phi)

Figure 25 - BDWL space-to-body direction cosine block.
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The determinant of a
direction cosine matrix

is always one.

Thus, the inverse of a
direction cosine matrix
is merely its transpose

1

Dir Cos
Matrix

Reshape

-1

1

Euler
Angles

<sin(psiG)>

<cos(psiG)>

<sin(thetaG)>

<cos(thetaG)>

<sin(phiG)>

<cos(phiG)>

cos(psi)*cos(theta)

cos(psi)*sin(theta)*sin(phi)

sin(psi)*cos(phi)

cos(psi)*sin(theta)*cos(phi)

sin(psi)*sin(phi)

sin(psi)*sin(theta)*sin(phi)

cos(psi)*cos(phi)

sin(psi)*sin(theta)*cos(phi)

cos(psi)*sin(phi)

cos(theta)*cos(phi)

sin(psi)*cos(theta)

-sin(theta)

cos(theta)*sin(phi)

Figure 26 - BDWL body-to-space direction cosine block.

It is sometimes thought that the gyro with respect to missile Euler angular

rates can be calculated by merely subtracting the gyro and missile inertial Euler

angular rates.  This is not correct, as pointed out by Lamm (13).  Lamm provides

the correct solution, which uses the time derivatives of the missile-to-gyro Euler

angles.  The expression for the gyro roll rate with respect to the missile body is

given in equation 3-39.  Taking the time derivative of this, the inverse tangent of

a ratio, found in Larson and Hostettler (25),
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(3-41)
( ) ( )

&
& &

, , , ,

, ,

φGM

M G M G M G M G

M G M G

D D D D

D D
=

⋅ − ⋅

+
3 3 3 2 3 2 3 3

3 3

2

3 2

2

Next, Lamm (13) uses quaternions to derive an expression for the time

derivative of a direction cosine matrix.  Quaternions are an alternate way (as

opposed to Euler angles) to describe the orientation of one coordinate system

with respect to another coordinate system.  Quaternions are based on the

premise that when one coordinate system is rotated with respect to another,

there exists a vector, , which has the same coordinates in both systems.  Here,
r
n

 is a unit vector, whose components are the eigenvalues of the direction
r
n

cosine matrices describing the rotation transformation between the two

coordinate systems.  Further, there exists an angle, , which describes theΦ

rotation around  that transforms from one coordinate system to the next.  The
r
n

vector  and the rotation angle  form the basis for quaternions:
r
n Φ

(3-42)( )q0 2= cos /Φ

(3-43)( )r r
q

q
q
q

n=
















=
1

2

3

2sin /Φ

This defines the quaternion , consisting of components .q q q q q0 1 2 3, , ,

From Lamm (13), a direction cosine vector between two coordinate

systems can be described in terms of quaternions,
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(3-44)

( ) ( )
( ) ( )
( ) ( )

B AD
q q q q q q q q q q q q

q q q q q q q q q q q q
q q q q q q q q q q q q

=
+ − − − +

+ − + − −
− + − − +

















0
2

1
2

2
2

3
2

1 2 0 3 1 3 0 2

1 2 0 3 0
2

1
2

2
2

3
2

2 3 0 1

1 3 0 2 2 3 0 1 0
2

1
2

2
2

3
2

2 2
2 2
2 2

where A and B are two arbitrary coordinate systems, differing in orientation.

For a rotating coordinate system, consider its orientation from one time, t,

to a short time later, .  The rotation of the coordinate system from time t tot t+ ∆

time  can be described in terms of quaternions.  If the coordinate systemt t+ ∆

is rotating at an inertial rate , then a unit vector aligned with the  vector is
r

ω
r

ω

actually the  vector used in the quaternion definition.  Further, if  is
r
n

r
ω

changing slowly in comparison to the time interval , then the quaternion∆t

rotation angle  can be approximated byΦ

(3-45)( )[ ]Φ ∆ ∆≅ +
r

ω t O t 2

Thus, using these expressions with the definitions of quaternions in equations 

3-42 and 3-43, and applying a small angle approximation gives:

(3-46)( ) ( )( )q t t t t0 2+ = +∆ Φ ∆cos /

(3-47)( ) ( )[ ]q t t
t

O t0
2

2
1+ = +









 ≅∆

∆
∆cos

r
ω

and,

(3-48)( ) ( ) ( )( )q t t t t x t ti i+ = + ⋅ +∆ ∆ Φ ∆$ $ sin /ω 2
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where,

A unit vector in the direction of $ω =
r

ω

A unit vector in the direction of one of the three coordinate axes$xi =

Thus, 

(3-48)( ) ( )[ ]q t t
t

O ti

x

y

z

+ =
















+








∆

∆
∆

$
$
$

sin
ω
ω
ω

ω
r

2
2

Again using a small-angle approximation,

(3-49)( ) ( )[ ] ( )[ ]q t t
t

O t
t

O ti

x

y

z

x

y

z

+ ≅
















+ =
















+∆
∆

∆
∆

∆

$
$
$

ω
ω
ω

ω
ω
ω
ω

r

2 2
2 2

Substituting equations 3-49 and 3-47 into 3-44 gives,

(3-50)( )[ ]A t t A t
z y

z x

y x

D
t t

t t
t t

O t( ) ( )+ =
−

−
−

















+∆

∆ ∆
∆ ∆
∆ ∆

∆
1

1
1

2

ω ω
ω ω
ω ω

If the  matrix and the identity matrix  are defined as,[ ]Ω [ ]I

(3-51)[ ]Ω =
−

−
−

















0
0

0

ω ω
ω ω
ω ω

z y

z x

y x

(3-52)[ ]I =
















1 0 0
0 1 0
0 0 1

then,
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(3-53)[ ]( ) ( )[ ]A t t A tD I t O t( ) ( )+ = + +∆ Ω ∆ ∆ 2

Conversely, a rotation in the opposite direction can be represented as

(3-54)[ ]( ) ( )[ ]A t A t tD I t O t( ) ( )+ = − +∆ Ω ∆ ∆ 2

From the definition of direction cosine matrices,

(3-55)B t t A t t B t t B t B t A t A t A t tD D D D( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ + + += ⋅ ⋅∆ ∆ ∆ ∆

Substituting equations 3-53 and 3-54 into 3-55,

(3-56)[ ]( ) [ ]( ) ( )[ ]B t t A t t
B

B t A t
AD I t D I t O t( ) ( ) ( ) ( )+ + = + − +∆ ∆ Ω ∆ Ω ∆ ∆ 2

   (3-57)[ ] [ ]( ) ( )[ ]B t t A t t B t A t B t A t
B A

B t A tD D D D t O t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ + = + − +∆ ∆ Ω Ω ∆ ∆ 2

Define

(3-58)f t DB t A t( ) ( ) ( )=

(3-59)f t t DB t t A t t( ) ( ) ( )+ = + +∆ ∆ ∆

The definition of a derivative is:

(3-60)
d
dt

f t
f t t f t

tt

( )
( ) ( )

lim=
+ −

→∆

∆
∆0

Thus, combining equations 3-60, 3-59, 3-58, and 3-57 and ignoring higher order

functions of  yields,∆t
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(3-61)[ ] [ ]B t A t B t A t
B A

B t A tD D D( ) ( ) ( ) ( ) ( ) ( )& = −Ω Ω

Using this expression to find time derivative of the direction cosine matrix

from the gyro body-fixed coordinate system to the missile body-fixed coordinate

system,

(3-62)M G M G
GI MI

M GD D D& = ⋅ − ⋅Ω Ω

where,

(3-63)ΩGI

G G

G G

G G

z y

z x

y x

=
−

−
−

















0
0

0

ω ω
ω ω
ω ω

and

(3-64)Ω MI

M M

M M

M M

z y

z x

y x

=
−

−
−

















0
0

0

ω ω
ω ω
ω ω

Note that these gyro and missile angular velocities are the respective angular

velocities with respect to inertial, expressed in gyro and missile body-fixed

coordinates.  Substituting equation 3-62 into equation 3-41 gives,

(3-65)

( )[
( ) ]

( ) ( )[ ]

&
, ,

, ,

, ,

φGM
M G M G

GI MI
M G

M G M G
GI MI

M G

M G M G

D D D

D D D

D D

= ⋅ ⋅ − ⋅ −

⋅ ⋅ − ⋅

+

3 3 3 2

3 2 3 3

3 3

2

3 2

2

Ω Ω

Ω Ω

Multiplying this out and combining terms yields,
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(3-66)
( ) ( )

&φ ω ω ω

ω ω

φ θ φ θ

ψ θ ψ θ

GM G G G

M M

x z GM GM y GM GM

x GM GM y GM GM

c t s t

c c s c

= + +

− −

Similarly, the equation for the time rate of change of the gyro pitch

angular rate with respect to the missile can be found by starting with equation 

3-36 and using the formula of the time derivative of an inverse sine angle from

Larson and Hostettler (25):

(3-67)&
&

,

,

θGM

M G

M G

D

D
=

−

−
3 1

3 11

From equation 3-34,

(3-68)M G
GMD3 1, sin( )= − θ

Substituting equations 3-68 and 3-62 into equation 3-67,

(3-69)
( )& ,θ

θ

GM

M G
G M

M GD D

s
GM

=
− −

−

Ω Ω
3 1

21

After substitution and simplification,

(3-70)&θ ω ω ω ωφ φ ψ ψGM G G M My GM z GM y GM x GM
c s c s= − − +

Finally, the gyro yaw angular rate with respect to the missile is found in

similar manner by using equation 3-38 along with the formula for the time

derivative of an inverse tangent and the derivative “quotient rule”:
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(3-71)
( ) ( ) ( )

&
& &

,

, ,

, , , ,

,

ψ GM

M G

M G M G

M G M G M G M G

M G

D

D D

D D D D

D
=

+

−













1 1

1 1

2

2 1

2
1 1 2 1 2 1 1 1

1 1

2

From equation 3-34,

(3-72)M G
GM GMD1 1, cos( )cos( )= ψ θ

(3-73)M G
GM GMD2 1, sin( )cos( )= ψ θ

Substituting equations 3-72, 3-73, and 3-62 into 3-71 yields,

(3-74)

( )[
( ) ]

( )

&
,

,

ψ ψ θ

ψ θ

ψ θ ψ θ

GM
M G

G M
M G

M G
G M

M G

c c D D

s c D D

c c s c

GM GM

GM GM

GM GM GM GM

= −

− −

+

Ω Ω

Ω Ω

2 1

1 1

2 2 2 2

After substitution and simplification,

(3-75)&ψ ω ω ω ω ωφ

θ

φ

θ
ψ θ ψ θGM G G M M My

GM

GM

z

GM

GM

x GM GM y GM GM z

s

c

c

c
c t s t= + − − −

Equations 3-66, 3-70, and 3-75 are implemented in the “calculate gyro Euler

rates with respect to missile” block, shown in Figure 27.
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Based on Lamm, p.30.

1

EulerGM
rates

tan

phiGM_dot

psiGM_dot

thetaGM_dot

1

u

Euler Ang

Euler Rates

Body Rates

Body Ang Rates from
Euler Ang and Euler Rates1

Euler Ang

Euler Rates

Body Rates

Body Ang Rates from
Euler Ang and Euler Rates

5

Gyro Euler
Angle Rates

4

Gyro Euler
Ang wrt Inertial

3

Gyro Euler
Ang wrt Msl

2

Msl Euler
Angle Rates

1

Msl Euler
Ang wrt Inertial

<wXM>

<wYM>

<wZM>

<wXG>

phiGM_dot

<sin(phiGM)>

<cos(phiGM)>

<sin(psiGM)>

<cos(psiGM)>

tan(thetaGM)

<cos(thetaGM)> sec(thetaGM)

wZG*cos(phiGM)*
tan(thetaGM)

<wZG>

wYG*sin(phiGM)*
tan(thetaGM)

<wYG>

wXM*cos(psiGM)*
sec(thetaGM)

wYM*sec(thetaGM)*
sin(psiGM)

psiGM_dot

wXM*cos(psiGMj)*
tan(thetaGM)

wYM*sin(psiGM)*
tan(thetaGM)

wZG*cos(phiGM)*
sec(thetaGM)

wYG*sec(thetaGM)*
sin(phiGM)

thetaGM_dot

wYG*cos(phiGM)

wZG*sin(phiGM)

wYM*cos(psiGM)

wXM*sin(psiGM)

<thetaGM>

Figure 27 - BDWL calculate gyro Euler rates with respect to missile block.

Note that the calculation of the gyro Euler rates with respect to the missile

are dependent upon knowing both the gyro and missile inertial angular velocities

expressed respectively in the gyro and missile body-fixed coordinate systems. 

These angular velocities can be determined from the respective Euler angles

and Euler angle rates.  Equation 3-30 provides this relationship, which is

implemented in the “body angular rates from Euler angles and Euler rates” block

shown in Figure 28.
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Based on Lamm, p.18,
eqns 8, 9, and 10.

1

Body Rates

2

Euler Rates

1

Euler Ang

<psiM_dot>

<thetaM_dot>

<phiM_dot>

<sin(thetaM)>

psi_dot * sin(theta)

wXM

theta_dot * cos(phi)

psi_dot * cos(theta) * sin(phi)

<cos(phiM)>

<cos(thetaM)>

<sin(phiM)>

theta_dot * sin(phi)

psi_dot * cos(theta) * cos(phi)

wYM

wZM

Figure 28 - BDWL body angular rates from Euler angles and Euler rates block.
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3.3 Cage Coil Sensor Models

The cage coil sensor (described in Section 1.0) consists of a coil wound

circumferentially around the missile body in the vicinity of the gyro, similar in

configuration to the precession coil.  If the gyro is not boresighted to the missile

body, the gyro rotor magnetic field cuts the cage coil and induces a current in it

proportional to the rate of change of the gyro flux cutting the cage coil.  This

current produces a voltage at the cage coil output, which is a sinusoid at the

gyro spin frequency.  The magnitude of this sinusoidal cage coil voltage is

proportional to the gyro off-boresight angle (with respect to the missile body).  

For the BDWL gyro model, two cage coil models were developed.  The

first represents the full cage coil equations.  The second is an approximation of

the cage coil signal based on the full cage coil equations, but simplified with a

small-angle approximation.  The full cage coil model is more accurate, but

depending on the magnitude of the gyro off-boresight excursions, the small

angle approximation cage coil model may provide adequate fidelity with

enhanced execution speed.

3.3.1 Complete Cage Coil Model

The cage coil signal is defined as a voltage based on the rate of change

of the gyro magnetic flux coupled onto the cage coil.  The gyro magnetic north

pole is aligned with the gyro body-fixed  axis.  Using the right-hand rule, thezG

cage coil vector is aligned with the missile body-fixed  axis.  Thus, the cagexM
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coil voltage is proportional to the time rate of change of the dot product of a unit

vector aligned with the gyro  axis and a unit vector aligned with the missilezG

 axis,xM

(3-76)( )V K
d
dt

z xC C G M= ⋅ ⋅$ $

where  is a cage coil gain term incorporating the gyro magnetic flux densityKC

and cage coil gain, and  is the cage coil voltage signal.  In order to take theVC

unit vector dot product, the  unit vector was transformed into the missile$zG

body-fixed coordinate system {M}:

(3-77)$zG

G

=
















0
0
1

(3-78)$z D
c s c s s
s s c c s

c c
G

M G

G M

GM GM GM GM GM

GM GM GM GM GM

GM GM

=
















=
+
−

















0
0
1

ψ θ φ ψ φ

ψ θ φ ψ φ

θ φ

Therefore,

(3-79)$ $z x c s c s sG M GM GM GM GM GM
⋅ = +ψ θ φ ψ φ

Taking the time derivative and scaling by  gives,KC

(3-80)
(

)
V K s s c c c c

c s s c s s c

C C GM GM

GM GM GM

GM GM GM GM GM GM

GM GM GM GM GM GM GM

= − +

− + +

& &

& & &

ψ θ

φ ψ φ

ψ θ φ ψ θ φ

ψ θ φ ψ φ ψ φ
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Note:  This subsystem uses a Body 3-2-1 coordinate
transformation matrix.

Note:  phiDot = Ws = gyro spin rate
wrt missile body

1

Cage
Coil

Voltage

Kc

Cage Coil
Gain

2

Gyro
Euler Rates

1

Gyro
Euler Angles

phiDot*cos(psi)*sin(theta)*sin(phi)

thetaDot*cos(psi)*cos(theta)*cos(phi)

psiDot*sin(psi)*sin(theta)*cos(phi)

psiDot*cos(psi)*sin(phi)

phiDot*sin(psi)*cos(phi)

<psiGM_dot>

<phiGM_dot>

<thetaGM_dot>

<sin(psiGM)>

<sin(thetaGM)>

<cos(phiGM)>

<cos(thetaGM)>

<cos(psiGM)>

<sin(phiGM)>

Figure 29 - BDWL cage coil (full angle equations) block.

Equation 3-80 represents the “full” cage coil equation.  It is implemented in the

BDWL model in the “cage coil (full angle equations)” block, shown in Figure 29.

3.3.2 Cage Coil Small Angle Approximation

The small angle approximation of the cage coil signal is based on the full

cage coil voltage expression given in equation 3-80.  For the small angle

approximation, it is assumed that the gyro yaw and pitch angles (with respect to

the missile body) are small.  Since the gyro spins, its roll angle cannot be

assumed to be small.  For the small angle approximation, it is assumed that:

(3-81)( )sin ψ ψGM GM≅

(3-82)( )cos ψ GM ≅ 1

(3-83)( )sin θ θGM GM≅
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Note:  This subsystem uses a Body 3-2-1 coordinate
transformation matrix.

Note:  phiDot = Ws = gyro spin rate
with respect to the missile

1

Cage
Coil

Voltage

Kc

Cage Coil
Gain2

Gyro
Euler Rates

1

Gyro
Euler

Angles

<phiGM_dot>

<psiGM_dot>

<thetaGM_dot>

<cos(phiGM)>

psiDot*psi*theta*cos(phi)

thetaDot*cos(phi)

<sin(phiGM)>

phiDot*theta*sin(phi)

psiDot*sin(phi)

phiDot*psi*cos(phi)

<psiGM>

<thetaGM>

Figure 30 - BDWL cage coil (small angle approximation) block.

(3-84)( )cos θGM ≅ 1

Substituting equations 3-81 through 3-84 into 3-80 yields the cage coil voltage

small angle approximation,

(3-85)
(

)
V K c c

s s c

C C GM GM GM GM

GM GM GM GM GM

GM GM

GM GM GM

≅ − +

− + +

& &

& & &

ψ ψ θ θ

φ θ ψ φ ψ

φ φ

φ φ φ

This expression is implemented in the BDWL gyro model in the “cage coil (small

angle approximation)” block, shown in Figure 30.
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3.4 Precession Coil

The precession coil generates the precession torque values used by the

gyro dynamics block to calculate gyro position.  As discussed earlier, some of

the precession torque can couple to the gyro spin axis if the gyro is off of missile

boresight.

For convenience, the reference coil signal is generated in the precession

coil block.  As discussed earlier, the reference signal is generated from the

current induced by the gyro magnetic field in flat, side mounted reference coils

located adjacent to the gyro in the missile body.  The reference signal is defined

as,

(3-86)( )ref Kp GM= ⋅sin φ

where  is determined experimentally from actual gyro signals.  In this caseKp

 has been set to 4.465.  Also, when tuning a gyro model to a specific gyro, itKp

may be necessary to add a constant phase shift to the reference signal to

compensate for the exact placement of the reference coils.

For the open-loop gyro model presented here, the precession command

is generated by phase shifting the sine of the gyro roll angle with respect to the

missile, and scaling it with a gain,

(3-87)( )
r
P T xcmd y GM M= +sin $φ γ

where the phase shift angle, gamma, represents the direction of precession, and

the gain,  represents the precession rate.  Ty
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This precession command represents the signal that is placed through the

precession coils.  It generates a magnetic field aligned with the missile xM axis. 

The torque on the gyro results from the force produced by the attraction of this

precession magnetic field and the magnetic field of the gyro.  A positive

precession command generates a precession magnetic field with its north pole

aligned with the positive xM axis, which attracts the gyro south pole.  The

resulting gyro torque can be found by taking the cross product of the gyro -zG

axis (it is aligned with the south pole of the gyro magnetic field) and the

precession command which is aligned with the missile xM axis.  In order to

perform this cross product, the precession command magnetic force must be

transformed from the missile body-fixed coordinate system to the gyro body-fixed

coordinate system,

(3-88){ }
( )r

P D
T

cmd G

G M
y GM

M

=
+















sin φ γ
0
0

(3-89){ } ( )
r
P T

c c
c s s s c
c s c s s

cmd G y GM

G

GM GM

GM GM GM GM GM

GM GM GM GM GM

= + −
+

















sin φ γ
ψ θ

ψ θ φ ψ φ

ψ θ φ ψ φ

Gyro precession torque  is obtained by taking the cross product of the gyro ( )
r
τ p

-zG axis and  the precession command,

(3-90)( )r r
τ p G cmdz P= − ⊗$
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Note that:  cos(psi)*cos(theta)=cos(lambda)

Note These torques are with respect to the rolling gyro body-fixed coords.

TxG - Gyro spin axis
TyG - Gyro pitch axis
TzG - Gyro yaw axis

Gyro North pole is aligned
with the positive TzG axis.

1

Gyro Torques

sin

sin ref

PrecCmd

Ty

Precession
Rate

0

gamma

Precession
Direction

-1

4.465

1

Gyro Euler
wrt Msl

<cos(psiGM)>

<cos(thetaGM)>

<sin(phiGM)>

 

<cos(phiGM)>

<sin(psiGM)>

<sin(thetaGM)>
TzG

<phiGM>

TxG

Ty G

Figure 31 - BDWL precession coil block.

This results in

(3-91)( )r
τ φ γ

ψ θ φ ψ φ

ψ θp y GM

G

T
c s s s c

c c
GM GM GM GM GM

GM GM
= +

−















sin
0

The gyro torque is expressed in the gyro body-fixed coordinate system, which is

where it is needed for use as input to the gyro dynamics block.

Figure 31 shows the BDWL model precession coil block.  It is based on

equations 3-86 and 3-91.  Note that this precession coil block is for the BDWL

open-loop gyro model.  A slightly different version is used when a track loop

block is included for missile gyro rate table test comparisons in section 6.3.   For

the tracker version, a precession command is generated in an additional track

loop block and injected into the precession coil block where the PrecCmd output

block is located in Figure 31.
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$S

$M

Figure 32 - Spin coil angle definitions.

3.5 Spin Coil

The spin coils generate a magnetic field which is used to keep the gyro

spinning at the desired rate.  The BDWL model is set up so that the user can

choose either the spin coil model, or an idealized spin rate model where the gyro

is kept at the desired spin rate perfectly.  This section details the derivation of

the non-ideal spin coil model, which was based on Williams (9).  Figure 32

shows the spin coil geometry and angle definitions.  

This model assumes that a torque is applied to the gyro to control its spin

rate via spin coils.  These coils are “pancake” type coils much like the reference

coils.  Further, it is assumed that a modulator coil is used to sense the position

of the gyro, which provides a reference sinusoid for input to the spin coils.  A 

current in the spin coils produces a magnetic field aligned with the  vector. $S

The modulator sensor coil is aligned with the  vector.$M
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The spin coils are fixed in the missile body, thus, their magnetic field can

induce precession torques if the gyro is not aligned (boresighted) with the

missile body.  It is assumed that a positive current in the spin coils will induce a

magnetic field which will attract the gyro south pole toward the  axis, thus, the$S

spin torque can be expressed as

(3-92)( )r
τ s s s GK J z S= − ⊗$ $

where  Torque/current conversion factorKs =

Spin coil currentJ s =

First, the magnitude of the spin torque (the  term) will be derived,K Js s

then the spin torque direction will be calculated.  From Williams (9) the

magnitude of the spin torque is defined as

(3-93)( )K J
I

M zs s
s

Lead
G X NomG

= ⋅
2

sin( )
$ $ &

φ
ω

where  Nominal spin acceleration&ω X NomG
=

Williams also approximates the nominal spin acceleration as

(3-94)
( )&ω
ω ω

X Nom

X Desired X

S
G

G G

T
=

−

where  Commanded spin rateω X DesiredG
=
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Actual spin rateω XG
=

 Time constantTS =

The directional component of  is computed in the non-rolling gyroK JS S

with respect to missile (NRGM) reference frame.  First, the  and the  unit$zG
$M

vectors are written in the NRGM coordinate system.  For  this can be done$zG

by inspection of Figure 32,

(3-95)$z s
c

G

NRGM

GM

GM

= −

















0

φ

φ

For the  vector, start in the missile body-fixed coordinate system {M},$M

(3-96)$
( )

( )

M s
c

s Lead

s Lead M

= −

















+

+

0

φ φ

φ φ

This can be transformed into the NRGM coordinate system using the missile-to-

non-rolling gyro with respect to the missile direction cosine matrix,

(3-97){ }$ $M D MNRGM M

M
=

(3-98)
$M

c c s c s
s c

c s s s c
s

c

GM GM GM GM GM

GM GM

GM GM GM GM GM

S L

S L

=
−

−

















−

















+

+

ψ θ ψ θ θ

ψ ψ

ψ θ ψ θ θ

φ

φ

0
0
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For convenience, let

 (3-99)φ φ φS L S Lead+ = +

Thus,

(3-100)$M
s s c c s

s c
s s s c c

S L GM GM S L GM

S L GM

S L GM GM S L GM NRGM

=
− −

−
− +

















+ +

+

+ +

φ ψ θ φ θ

φ ψ

φ ψ θ φ θ

and

(3-101)( )$ $M z s c s c s s s c cG S L GM GM GM S L GM GM S L GM
⋅ = − −

+ + +φ ψ φ φ φ ψ θ φ θ

Next, the spin torque direction will be calculated by evaluating the cross

product term from equation 3-92.  It is necessary to calculate spin torque in the

gyro body-fixed coordinate system, as this is where the precession torque is

calculated, and that is where the gyro dynamics equations of motion are solved. 

From the definition of a vector cross product, and the fact that the  vector− $zG

does not have components in the gyro body  or  axes,$xG $yG

(3-102)( ) ( ) ( )− ⊗ = ⋅ − ⋅$ $ $ $ $ $ $ $z S S y x S x yG G G G G

The  vector must be transformed from the missile body-fixed coordinate$S

system to the gyro body-fixed coordinate system

(3-103)$S s
c

S

S M

= −

















0

φ

φ
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(3-104){ }$ $S D SG M

M
=

(3-105)$S
s c s

c c s s s c s
c s s s c c c

s
c

GM GM GM

GM GM GM GM GM GM GM

GM GM GM GM GM GM GM

S

S M

=
−

+
− +

















−

















K
L
K

ψ θ θ

ψ φ ψ θ φ θ φ

ψ φ ψ θ φ θ φ

φ

φ

0

(Note that values from the first column of the direction cosine matrix are omitted

since they are not needed for this calculation.)

(3-106)( )
( )

$S

s c s s c

s c c s s s c s c

s c s s s c c c c

GM GM S GM S

S GM GM GM GM GM GM GM S

S GM GM GM GM GM GM GM S G

=
− −

− + +

− − + +

















ψ θ φ θ φ

φ ψ φ ψ θ φ θ φ φ

φ ψ φ ψ θ φ θ φ φ

Substituting this into equation 3-102 yields

(3-107)( )
( )

− ⊗ =
− + +

+

















$ $z S
s c c s s s c s c

s c s s cG

G

S GM GM GM GM GM GM GM S

GM GM S GM S

φ ψ φ ψ θ φ θ φ φ

ψ θ φ θ φ

0

Equations 3-92, 3-93, 3-94, 3-101, and 3-107 constitute the basis of the

BDWL gyro spin coil model.  These equations are shown as implemented in

Simulink in Figures 33 and 34.
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These torques are about the rolling
Gyro-fixed coord sys

TxG - Gyro spin axis
TyG - Gyro pitch axis
TzG - Gyro yaw axis

Gyro North pole is aligned
with the positive TzG axis.

phiGM_dot = wXGM

1

Gyro Torques

Commanded Spin Rate

Spin Control
Tau_s

0

0

cos_phiS

sin_phiS

KTs

cos_phiSL

sin_phiSL

perfectSpin

2

Gyro Euler
Rates wrt Msl

1

Gyro Euler
Ang wrt Msl

<phiGM_dot>

wxG_Dot Nominal

sin(phiSL)*cos(psiGM)
*sin(phiGM)

<sin(phiGM)>

<cos(psiGM)> sin(phiSL)*sin(psiGM)
*sin(thetaGM)

cos(phiSL)*cos(thetaGM)

<cos(phiGM)>

<sin(psiGM)>

<sin(thetaGM)>

<cos(thetaGM)>

M dot zG KsIs

TxG

sin(psiGM)*cos(thetaGM)
*sin(phiS)

sin(thetaGM)*cos(phiS)

Ty G

TzG

cos(psiGM)*cos(phiGM)

sin(psiGM)*sin(thetaGM)
*sin(phiGM)

cos(thetaGM)*sin(phiGM)*cos(phiS)

Figure 33 - BDWL gyro spin coil model.

1

Commanded
Spin Rate

spin_up_on

Spin-Up Time

spin_up_off

Spin-Down Time

<

<
AND

wxG_goal2

wxG_goal1Clock

 

 

wxG_goal

Figure 34 - BDWL spin coil commanded spin rate.
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3.6 BDWL Gyro Model Assumptions and Limitations

The BDWL gyro model is the most detailed model of the three presented

in this paper.  It incorporates complex models of the gyro spin coil, precession

coil and cage coil, as well as the effects of nutation damping.  The BDWL model

assumes that the gyro center of mass is perfectly aligned with its center of

rotation.  If this is not the case, then additional torques will be induced on the

gyro from gravity effects and missile body motion.  The BDWL model assumes

that the gyro gimbal inertia is zero, or insignificant in comparison to the gyro

inertia.  Gyro spin friction drag is also not included in this model.
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4.0 Derivation of Ideal Gyro Model

The ideal gyro model assumes that the gyro precesses in a perfectly

linear fashion in the exact direction of commanded precession, at the exact

commanded angular rate.  The gyro spin control is also assumed to maintain the

gyro spin rate at the exact commanded rate, with instantaneous spin-up and

spin-down.

Many EO/IR missile models use ideal gyro models.  Sometimes this is

done to decrease computational complexity of the model, thus increasing

execution speed.  Proponents of this approach argue that an ideal gyro model is

acceptable because the overall gyro performance is approximately ideal for a

large portion of its region of operation.

Figure 35 shows the top level of the Ideal gyro model.  It was based on

the BDWL gyro model discussed in the previous section.  The “gyro Euler angle

missile dynamics compensation” block and the two cage coil blocks are identical

to those used in the BDWL model and were explained in Chapter 3.  The

precession coil and gyro dynamics block are different than the BDWL model. 

Note that the Ideal model does not use a spin coil block.
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Vc1

Vc2

Gy ro Euler wrt MslGy ro Ang Vel

Precession Coil

Gy ro Euler wrt Inertial

Gy ro Euler Rates wrt Inertial

Gy ro Euler  wrt Msl Body

Msl Position

Missile Euler Angles

Gy ro Euler Rates wrt Msl

Gyro Euler Angle 
Missile Dynamics

Compensation

Gyro Dynamics

Gy ro Euler Angles

Gy ro Euler Rates

Cage Coil Voltage

Cage Coil
(Small Angle Approximation)

Gy ro Euler Angles

Gy ro Euler Rates

Cage Coil Voltage

Cage Coil
(Full Angle Equations)

Gy ro Euler Angles
wrt Inertial

Gy ro Euler Rates
wrt Inertial

Gy ro Angular Velocities
wrt Gy ro Body -Fixed Axes

Figure 35 - Top level of Ideal gyro model.

4.1 Precession Coil

The Ideal gyro model executes the commanded precession in the precise

direction and at the exact commanded angular rate.  For this reason, it does not

need inertia information for the gyro; thus, gyro torques are also not needed. 
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The only information necessary to compute gyro position is the commanded

precession direction and rate.  It was decided to use the commanded gyro

precession direction and magnitude to find the gyro angular velocity in the

precession coil block.  The gyro dynamics block would then use this angular

velocity to find the gyro inertial Euler angles.

For ease of use, it was decided to keep the control of the Ideal gyro

model as close to the BDWL model as possible.  Since the BDWL open loop

model uses the angle  to specify gyro precession direction and a variableγ

called  to specify precession angular rate, it was decided to keep theseTy

variables the same.  In the BDWL model, a  of 0E produced a gyro pitch downγ

precession.  This equates to an angular rate in the -yNRGM (non-rolling gyro with

respect to the missile) direction.  Also, a  of +90E produces a gyro yaw motionγ

to the right (looking forward from the rear of the missile).  This equates to an

angular rate in the +zNRGM direction.  

Thus, the gyro angular rate is measured by  with  being aγ γ = 0o

rotation in the direction of the -yNRGM axis and  increasing toward the +zNRGMγ

axis.  Also, noting that the angular rate is merely the value , the expressionTy

for the gyro inertial angular rate in the non-rolling gyro with respect to missile

coordinate system is,

(4-1)( ) ( )[ ]r
ω γ γGI y NRGM NRGMT y z= − +cos $ sin $
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The gyro angular velocity must then be converted from the non-rolling gyro with

respect to the missile coordinate system to the gyro body-fixed coordinate

system,

(4-2){ }r r
ω ωGI

G NRGM
GI NRGM

D=

(4-3)( ) ( )
( ) ( )

( )
( )

r
ω φ φ

φ φ
γ

γ
GI GM GM

GM GM

y

y NRGM

T
T

=
−

















−

















1 0 0
0
0

0
cos sin
sin cos

cos
sin

(4-4)
r

ω γ φ γ φ

γ φ γ φ

GI y

G

T c c s s
c s s c

GM GM

GM GM

= − +
+

















0

Equation 4-4 represents the generation of the gyro body-fixed angular

velocity from the commanded precession rate and direction.  This is shown in

the Ideal gyro precession coil block in Figure 36.  Note also that the reference

coil signal is generated in the precession coil block in the same manner as the

BDWL model.
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Note These angular velocities are with respect to 
the rolling gyro body-fixed coords.

1

Gyro
Ang Vel

sin

sin

cos

sin

PrecCmd

ref

Ty

Precession
Rate

gamma

Precession
Direction
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4.465

1

Gyro Euler
wrt Msl

<phiGM>

<sin(phiGM)>

wz GM-nr

wy  GM-nr

<cos(phiGM)>

wy G

wzG

Figure 36 - Ideal gyro model precession coil block.

4.2 Equations of Motion / Gyro Dynamics

Figure 37 shows the Ideal gyro model “gyro dynamics” block.  The gyro

Euler angles are calculated from the gyro inertial angular rates (calculated in the

precession coil block), which are expressed in the gyro body-fixed coordinate

system.  This is done with the “gyro angular position” block, which is identical to

the “gyro angular position” block in the BDWL model.  The y and z angular rates

are input from the precession coil block, the x (spin) angular rate comes from a

spin control block, shown in Figure 38.  This block contains logic that causes the

gyro spin rate to be the exact commanded rate.
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Figure 37 - Ideal gyro model gyro dynamics block.
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wxG_goal2

wxG_goal1Clock

 

 

wxG_goal

Figure 38 - Spin control block.

4.3 Ideal Gyro Model Assumptions and Limitations

The ideal gyro model assumes that the gyro executes the current

precession command perfectly (both direction and angular rate), with no

degradation regardless of the magnitude of the off boresight angle.  Gyro torque

is assumed to overcome gyro inertia perfectly.  There is no nutation or nutation 
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damping, and spin control is perfect.  The gyro executes the exact commanded

spin rate with instantaneous spin-up and spin-down.

In addition to these assumptions, all the assumptions of the BDWL apply,

such as gravity effects being ignored with the assumption that the gyro center of

mass is perfectly aligned with its center of rotation.
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Figure 39 - Top level of open-loop Gallaspy gyro model.

5.0 Derivation of Gallaspy Gyro Model

This section details the derivation of the gyro model based on the work of

Mr. Jason Gallaspy (12).  In addition to being an independent gyro model

derivation, Gallaspy derives his gyro equations of motion using the Lagrange

method instead of classical Newtonian mechanics, which was used for the

derivation of the Brown/Dougherty/Williams/Lamm gyro model.  Figure 39 shows

the top-level of the open loop Gallaspy gyro model containing the main gyro

model function blocks, gyro dynamics and the torque and sensor coils

(precession, cage, and spin coils).

As with the other models, Gallaspy assumes that the gyro center of

rotation is at the gyro center of mass; this decouples the translational dynamics

from the rotational dynamics.  Also, it is assumed that the gyro rotational motion

in inertial space is independent of missile motion and that the gyro motion is

limited to spin and precession, with no nutation.  
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x
M

^

Figure 40 - Missile and gyro geometry.

Gyro precession is defined as the motion of the gyro in the desired or

commanded direction; gyro nutation is the unwanted motion of the gyro

perpendicular to the desired

direction of motion.  (Nutation is

seen as small “loops” on a plot

of gyro motion.)  Section 6.1

presents a more detailed

discussion on the causes of

gyro nutation.  Gallaspy deems

the omission of nutation effects

in his gyro model acceptable,

since most gyros use some

form of nutation damping to

minimize nutation effects.

5.1 Equation of Motion / Gyro Dynamics Derivation

The gyro position in inertial space is (see Figure 40):

(5-1)( )r r
r r r r xG M MN GN M= + − ⋅ $

where,

Gyro inertial position
r
rG =

Missile inertial position
r
rM =
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Distance of missile nose from missile cgrMN =

Distance of gyro cg from missile noserGN =

Unit vector along missile longitudinal axis$xM =

The Lagrange method of deriving equations of motion comes from the

idea that an external force acting on a system of rigid bodies will perform “work”

on the system.  Due to the conservation of energy, this work changes either the

potential or the kinetic energy of the system.  Lagrange’s method is expressed in

the following equation (see Greenwood [2] for more detail on Lagrange’s

method):

(5-2)
d
dt

T
q

T
q

V
q

Q
i i i

i
∂
∂

∂
∂

∂
∂&







 − + =

where,

i = number of degrees of freedom

qi = ith degree of freedom

Qi = ith generalized force

T = system kinetic energy

V = system potential energy

For the Gallaspy gyro model, 

(5-3)i = 1 2 3, ,

(5-4){ }qi GI GI GI= ψ θ φ

(5-5){ }Q Q Q Qi GI GI GI
= ψ θ φ
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Here, , , and  are the gyro Euler angles with respect to the inertialψ GI θGI φGI

reference frame, as previously defined.

Since the gyro center of rotation is at the gyro cg, gravity does not affect

the rotation of the gyro.  Also, Gallaspy assumes that the gyro has no means of

storing energy (in gimbal structures, etc.), thus, the gyro potential energy is zero,

(5-6)V = 0

The gyro rotational kinetic energy is the vectorized rotational equivalent of the

linear kinetic energy (½ mv2),

(5-7){ } [ ]T IG G G G

G

G

G

X Y Z

X

Y

Z

= ⋅ ⋅ ⋅

















1
2

ω ω ω
ω
ω
ω

where Gyro angular velocity about gyro body X axis ωGX
=

Gyro angular velocity about gyro body Y axisωGY
=

Gyro angular velocity about gyro body Z axisωGZ
=

Gyro rotational inertia matrix[ ]IG =

From the definition of Euler angles (body 3-2-1 rotation as defined in section

2.0), and using the inertial coordinate system, an expression for the gyro angular

velocity vector can be found,

(5-8)
( )
( )[ ]

r
ω ψ θ ψ ψ

φ θ ψ ψ θ
G GI I GI GI I GI I

GI GI GI I GI I GI I

z x y

x y z

= + − +

+ + −

& $ & sin( ) $ cos( ) $

& cos( ) cos( ) $ sin( ) $ sin( ) $
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Rearranging this and collecting terms yields:

(5-9)
( ) ( )
( )

r
ω θ φ θ φ

ψ φ

ψ ψ θ ψ ψ θ

θ

G GI GI I GI GI I

GI GI I

s c c x c s c y

s z

GI GI GI GI GI GI

GI

= − + + +

+ −

& & $ & & $

& & $

Finally, the inertial-to-gyro direction cosine coordinate transformation matrix is

used to convert this to the gyro body-fixed coordinate system:

(5-10)
( ) ( )
( )

r
ω ψ φ ψ θ

ψ θ

θ θ φ φ

θ φ φ

G GI GI G GI G G

GI G G

s x c s c y

c c s z

GI GI GI GI

GI GI GI

= − + + +

+ −

& & $ & & $

& & $

Thus,

(5-11)
r

ω
ψ φ

ψ θ
ψ θ

θ

θ φ φ

θ φ φ

G

GI GI

GI GI

GI GI G

s
c s c
c c s

GI

GI GI GI

GI GI GI

=
− +

+
−

















& &

& &

& &

and,

(5-12)ω ψ φθG GI GIX GI
s= − +& &

(5-13)ω ψ θθ φ φG GI GIY GI GI GI
c s c= +& &

(5-14)ω ψ θθ φ φG GI GIZ GI GI GI
c c s= −& &

The inertia matrix is the same as was shown in equations 3-7, 3-8, and 3-9:

(5-15)I
I

I
I

G

s

t

t

=
















0 0
0 0
0 0
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The gyro rotational kinetic energy, T, can now be calculated by

substituting equations 5-12 through 5-15 into equation 5-7:

(5-16)
( ) ( )
( ) ( )

T I s s

I c

s GI GI GI GI

t GI GI

GI GI

GI

= ⋅ − +

+ ⋅ +

2 2

2

2 2 2

2 2 2

& & & &

& &

ψ ψ φ φ

ψ θ

θ θ

θ

Next, the partial derivatives and time derivatives of T must be calculated

for inclusion into the Lagrange equation (5-2), start with the  related terms:ψ

(5-17)
∂
∂ψ

ψ φ ψθ θ θ
T

I s I s I cs GI s GI t GIGI GI GI&
& & &= − +2 2

(5-18)

d
dt

T
I s I s c I s I c

I c I s c

s GI s GI GI s GI s GI GI

t GI t GI GI

GI GI GI GI GI

GI GI GI

∂
∂ψ

ψ ψ θ φ θ φ

ψ ψ θ

θ θ θ θ θ

θ θ θ

&
&& & & && & &

&& & &







 = + − −

+ −

2

2

2

2

(5-19)− =
∂
∂ψ

T
0

Substituting equations 5-18 and 5-19 into equation 5-2 produces the first term of

the Lagrange equations:

(5-20)
( )

( )
− − + +

+ − =

I s I c I s I c

I I s c Q

s GI s GI GI s t GI

s t GI GI

GI GI GI GI

GI GI GI

&& & & &&

& &

φ φ θ ψ

ψ θ

θ θ θ θ

θ θ ψ

2 2

2

Next, evaluate the  terms:θ

(5-21)
∂
∂θ

θ
T

It GI&
&=

(5-22)
d
dt

T
It GI

∂
∂θ

θ&
&&





=
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(5-23)− = − + +
∂
∂θ

ψ ψ φ ψθ θ θ θ θ
T

I s c I c I s cs GI s GI GI t GIGI GI GI GI GI
& & & &2 2

The  related term of the Lagrange equation is found by substituting equationsθ

5-22 and 5-23 into equation 5-2:

(5-24)( )I I c I I s c Qt GI s GI GI s t GIGI GI GI GI

&& & & &θ φ ψ ψθ θ θ θ+ − − =2

Finally, the  terms are calculated:φ

(5-25)
∂
∂φ

ψ φθ
T

I s Is GI s GIGI& & &= − +

(5-26)
d
dt

T
I s I c Is GI s GI GI s GIGI GI

∂
∂φ

ψ ψ θ φθ θ& && & & &&





 = − − +

(5-27)− =
∂
∂φ
T

0

The final Lagrange equation is found by substituting equations 5-26 and 5-27

into equation 5-2:

(5-28)I I s I c Qs GI s GI s GI GIGI GI GI

&& && & &φ ψ ψ θθ θ φ− − =

The complete system of Lagrange equations are made up of equations 

5-20, 5-24, and 5-28.  These equations are for the general case.  Recall

Gallaspy assumes that the gyro has an effective nutation damper which limits its

motion to spin and precession.  Thus, terms involving roll rate and roll

acceleration are kept, while terms which are solely functions of pitch or yaw

rates or accelerations are dropped, which leaves:
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(5-29)Q I s I c
GI GI GIs GI s GI GIψ θ θφ φ θ= − −&& & &

(5-30)Q I c
GI GIs GI GIθ θφ ψ= & &

(5-31)Q I
GI s GIφ φ= &&

In the case of applying the Lagrange method to the rotational dynamics of

a gyro, the generalized forces (Qi) are the torques acting on gyro.  These

torques cause incremental changes in the gyro degrees of freedom (qi), which

are the Euler angles.  In order to calculate the gyro torques, Gallaspy starts with

the total incremental work done on the system, which is also called virtual work:

(5-32)δ δW Q qi i
i

= ∑

For an arbitrary torque , and an arbitrary Euler angle incremental change
r
τ

represented by  (also called virtual displacement), the virtual work isδγ

(5-33)δ τδγW =
r

The virtual displacement can be found by

(5-34)δγ ω δ= =

r
G q qi i&

Note that  and  could be written in any coordinate system.  Gallaspy
r
τ

r
ωG

chooses the non-rolling gyro (with respect to inertial) coordinate system, which

simplifies the terms.  The non-rolling gyro with respect to inertial coordinate

system will be designated with the subscript “NRGI”.  The NRGI-to-inertial
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direction cosine matrix can be calculated from the gyro-to-inertial direction

cosine as follows:

(5-35)[ ] [ ]I NRGI I GD D
GI

= =φ 0

Transforming the gyro angular velocity to the NRGI coordinate system yields:

(5-36)( ) ( ) ( )r
ω ψ φ θ ψθ θG GI GI NRGI GI NRGI GI NRGIs x y c z

GI GI
= − + + +& & $ & $ & $

Using this expression for gyro angular velocity with the definition of virtual

displacement, equation 5-34, gives:

(5-37)( ) ( ) ( )
 →

= − + + +δγ δψ δφ δθ δψθ θGI GI NRGI GI NRGI GI NRGIs x y c z
GI GI

$ $ $

Substituting equation 5-37 into equation 5-33 gives the virtual work done by ,
r
τ

(5-38)( ) ( ) ( )δ δψ δφ τ δθ τ δψ τθ θW s cGI GI x GI y GI zGI NRGI NRGI GI NRGI
= − + + +

By definition, this virtual work is equal to 

(5-39)δ δψ δθ δφψ θ φW Q Q Q
GI GI GIGI GI GI= + +

Combining equations 5-38 and 5-39 and putting in vector form yields

(5-40)

Q
Q
Q s c

GI

GI

GI GI GI

NRGI

NRGI

NRGI

x

y

z

φ

θ

ψ θ θ

τ
τ
τ

















=
−

































1 0 0
0 1 0

0

Solving this expression for the torques,
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(5-41)

τ
τ
τ θ θ

ϕ

θ

ψ

x

y

z

NRGI

NRGI

NRGI GI GI

GI

GI

GI
t c

Q
Q
Q

















=

































1 0 0
0 1 0

0 1

Using equation 5-41 with equations 5-29, 5-30, and 5-31 gives the gyro

rotational equations of motion:

(5-42)τ φx s GINRGI
I= &&

(5-43)τ φ ψ θy s GI GINRGI GI
I c= & &

(5-44)τ φ θz s GI GINRGI
I= − & &

In order to implement these equations of motion into a simulation,

Gallaspy solves for the Euler angular rates:

(5-45)( )& &φ τ φGI
s

x

t

I
dt

NRGI
= +∫

1
0

0

(5-46)&
&θ
φ

τGI
s GI

zI NRGI
= −

1

(5-47)&
&ψ
φ

τ
θ

GI
s GI

yI c
GI

NRGI
=

1
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Figure 42 - Gallaspy gyro dynamics block.

3

Gyro Euler
Angles [rad]

2

Gyro Euler
Angle Rates

[rad/sec]

1

Gyro
Ang Vel
[rad/sec]

~=0  

~=0

cos

Selector

U( : )

Reshape
[3,1] 

Reshape

Reshape
[3,1]

Product3

Product2

Matrix
Multiply

1
s

1
s

gyro.It
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phi_G_dot

Figure 41 - Gallaspy rotation dynamics block.

The differential equations shown above in equations 5-45, 5-46, and 5-47

can be used to calculate the gyro Euler angles, given the input torques.  Recall

Figure 39 which shows the top-level of the Gallaspy gyro model.  Figure 41

shows the gyro dynamics block.  Inside the gyro dynamics block is the rotation

dynamics block, shown in Figure 42.  This block is where the gyro equations of

motion, equations 5-45, 5-46, and 5-47 are implemented.
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1

Inversecos

cos

sin

sin

Reshape

Reshape
[3,3]

U( : )

Reshape
1D Array

0

0

1

0

-1

-1

Demux1

Gyro Euler
Ang

sin(theta)

cos(theta)

sin(phi)

cos(phi)

Figure 43 - Gallaspy calculate gyro rate matrix inverse block.

5.2 Rotation Dynamics

Note from Figure 41 that the gyro angular velocity vector is also an output

of the rotation dynamics block.  The gyro angular velocity can be calculated from

the gyro Euler angles and the Euler angle rates.  This is derived from equation 

5-11, which can be rewritten in matrix form

(5-48)

ω
ω
ω

ψ
θ
φ

θ

θ φ φ

θ φ φ

G

G

G

GI

GI

GI

xGI

yGI

zGI

GI

GI GI GI

GI GI GI

s
c s c
c c s

















=
−

−

































0 1
0
0

&
&
&

Equation 5-48 is implemented in the rotation dynamics block, in a block called

“calculate gyro rate matrix inverse”.  This block is shown in Figure 43.

5.3 Rotation Kinematics

The next block in the Gallaspy Gyro Dynamics block is the rotation

kinematics block.  This block takes the gyro inertial Euler angles and the missile

inertial Euler angles and combines them using linear algebra to obtain the gyro
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3

Gyro-to-Nonrolling
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[rad]

2
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1
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Matrix
Multiply

Matrix
Multiply

Matrix
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Matrix
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2
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1
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Ang

Gy ro
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Figure 44 - Gallaspy rotation kinematics block.

Euler angles with respect to the missile.  Figure 44 shows the rotation kinematics

block.

Starting from the left, with input 1, the gyro-to-inertial direction

transformation matrix is formed (labeled TGTOE in the rotation kinematics

block).  This is done by forming the individual Euler angle direction cosine

matrices, then multiplying them together.  The X rotation, Y rotation, and Z

rotation blocks form each individual Euler angle direction cosine matrix (see

Section 2.1 for a discussion on Euler angle rotations).  Figures 45 - 47 show the

X rotation, Y rotation, and Z rotation blocks.
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The way the Reshape block works is:
1, 2, and 3 are the first column, 4, 5, and 6 are

the second column, and finally, 7, 8, and 9
are the third column.

This block outputs a direction cosine matrix
 for a roll rotation (about the body X axis).

3

Z

2

Y

1

X
cos

sin Reshape

Reshape
[3,3]

U( : )

Reshape
1D Array-1

0

0

0

0

0

0

1

1

Roll
sin(phiG)

cos(phiG)

Figure 45 - Gallaspy X rotation block.

The way the Reshape block works is:
1, 2, and 3 are the first column, 4, 5, and 6 are

the second column, and finally, 7, 8, and 9
are the third column.

This block outputs a direction cosine matrix
 for a pitch rotation (about the Euler Y axis).

3

Z

2

Y

1

X

cos

sin

Reshape

Reshape
[3,3]

U( : )

Reshape
1D Array

-1

0

0

0
0

0

0

1

1

Pitch

cos(thetaG)

sin(thetaG)

Figure 46 - Gallaspy Y rotation block.
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The way the Reshape block works is:
1, 2, and 3 are the first column, 4, 5, and 6 are

the second column, and finally, 7, 8, and 9
are the third column.

This block outputs a direction cosine matrix
 for a yaw rotation (about the Euler Z axis).

3

Z

2

Y

1

X

cos

sin

Reshape

Reshape
[3,3]

U( : )

Reshape
1D Array

-1

0

0

0

1

0

0

0

1

Yaw

cos(psiG)

sin(psiG)

Figure 47 - Gallaspy Z rotation block.

Input 2 to the rotation kinematics block is the missile-to-inertial (TMTOE)

coordinate transformation matrix.  This is transposed to form the inertial-to-

missile (TETOM) direction cosine matrix.  The inertial-to-missile direction cosine

matrix is multiplied with the gyro-to-inertial direction cosine matrix to form the

gyro-to-missile transformation matrix.  In equation form this can be expressed as

(5-49)M G M I I GD D D= ⋅

The gyro-to-missile Euler angles can be calculated by taking the inverse

trigonometric functions of certain direction cosine elements.  This follows from

the definition of a direction cosine matrix in Gallaspy (12) and Lamm (13). 

These relationships are detailed in equations 5-50, 5-51, and 5-52.  In these

equations, the individual direction cosine elements are referred to by using

subscripts.  For example, the element in the second row, first column of the 
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gyro-to-missile direction cosine matrix is denoted by .M GD2 1,

(5-50)( )ψ GM
M G M GD D= −tan , ,

1
2 1 1 1

for ,0 2≤ ≤ψ πGM

(5-51)( )θGM
M GD= − −sin ,

1
3 1

for ,− ≤ ≤π θ π2 2GM

(5-52)( )φGM
M G M GD D= −tan , ,

1
3 2 3 3

for .0 2≤ ≤φ πGM

These equations are implemented in the “calculate gyro-to-missile Euler angle”

block, shown in Figure 48.  The gyro-to-missile direction cosine and the gyro-to-

missile Euler angles are outputs 1 and 2 for the rotation kinematics block.  Input

2, the missile-to-inertial direction cosine matrix, goes through the “calculate

nonrolling missile-to-earth transformation” block, shown in Figure 49.  Here,

Earth is used synonymously with “inertial”.  This block calculates the missile roll

angle with respect to inertial, then forms the roll direction cosine matrix and uses

it with the missile-to-inertial direction cosine to remove the roll component

rotation.
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1

 

atan2
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Reshape

[3,3]

1

   

TGTOM
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Figure 48 - Gallaspy calculate gyro-to-missile Euler angles block.
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Reshape
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Matrix
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1

   
TMTOE
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Figure 49 - Gallaspy calculate nonrolling missile-to-earth transformation block.

The rotation kinematics block transposes the nonrolling missile-to-inertial

direction matrix to form the inertial-to-nonrolling missile direction cosine matrix. 

This is then multiplied with the gyro-to-inertial direction cosine matrix to form the

gyro-to-nonrolling missile matrix.  This operation can be expressed by

(5-53)NRMI G NRMI I I GD D D= ⋅

Finally, the gyro-to-nonrolling missile Euler angles are calculated by the

“calculate gyro-to-nonrolling missile Euler angles” block, shown in Figure 50. 

This block is similar to the “calculate gyro-to-missile Euler angles” block in

Figure 48.
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This should work, since this is just the same
as the "Calculate Gyro-to-Missile Euler Angles" block,

but phi_Gm will always be zero (non-rolling)

phi_Gm should always
be zero!!!!!

1

 

atan2

asin

atan2

U( : )

Reshape

-11

   
TGTOm theta_Gm

psi_Gm

phi_Gm

Figure 50 - Gallaspy calculate gyro-to-nonrolling missile Euler angles block.

5.4 Sensor Coils (General)

As discussed earlier, all EO/IR missile seekers use sensor coils to

determine the position and state of the gyro.  The gyro rotor is a permanent

magnet and its motion induces currents/voltages in the sensor coils.  There are

typically two types of sensor coils, the lambda coil (also known as the cage coil),

which is wound circumferentially around the missile body, and the reference

coils which are “pancake” type coils (see Figure 9).  Gallaspy gives the general
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equation for calculating sensor coil voltage as:

(5-54)v
d
dt

B dS
S

= − ⋅∫
→r

where gyro magnetic flux density vector
r
B =

differential surface element vectordS
→

=

Riemann integral of coil surface areaS =

voltage induced in the coilv =

Gallaspy assumes that the gyro magnetic flux density does not vary

significantly over the coil area during any given instant of time, thus

(5-55)v
d
dt

B dS
dB
dt

dS B
d
dt

dS
S S S

= − ⋅





= − ⋅ − ⋅
→ → →

∫ ∫ ∫
r

r
r

If the vectors are all written in the missile body-fixed reference frame, then the

sensor coil surface area vectors are constant in time.  This causes their time

derivative to be zero, yielding

 (5-56)v
dB
dt

dS
dB
dt

S
S

= − ⋅ = − ⋅
→

∫
r r r

Here,  is a vector that points in a direction normal to the surface area of the
r
S

sensor coil.  The magnitude of  is equal to the sensor coil area and the
r
S

number of turns of the coil.  Since  is a function solely of the gyro magnetic
r
B
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field strength and not of sensor coil characteristics, each sensor coil can be

represented by its surface vector, .  Thus, the voltage on any coil can be
r
S

found by evaluating

(5-57)v
dB
dt

Scoil coil= − ⋅
r r

The time derivative of the gyro magnetic flux density is found next.  It is

assumed that the gyro north pole is aligned with the  vector, and the gyro+ $zG

magnetic field has a flux density of B, thus

(5-58)
r
B

B
B
B

B
x

y

z

G

G

G

=

















=














0
0
1

Transforming this to the missile coordinate system,

(5-59)
r
B

B
B
B

B D
x

y

z

M G
M

M

M

=

















= ⋅
















0
0
1

The gyro-to-missile direction cosine matrix is the only time-varying component of

this equation, thus, the time derivative of the gyro flux density can be evaluated

by evaluating the time derivative of the gyro-to-missile direction cosine matrix. 

From Lamm (18), the time derivative of the gyro flux density is

(5-60)[ ] [ ]( )dB
dt

B
B
B

B D D
x

y

z

M G
G M

M G
M

M

M

r
=

















= −
















&
&
&

Ω Ω
0
0
1
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This block forms an angular velocity matrix
from an input angular velocity vector.  The

input angular velocity vector must be expressed
in a coordinate system fixed inthe body of

interest (i.e. the gyro or missile body).

1
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Selector

Reshape

Reshape
[3,3]

0
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-1

-1
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Figure 51 - Gallaspy form angular velocity matrix block.

where, (5-61)[ ]ΩG

G G

G G

G G

z y

z x

y x

=
−

−
−

















0
0

0

ω ω
ω ω
ω ω

and  is defined similarly.  A matrix in the form of equation 5-61 is referred[ ]Ω M

to as the “angular velocity matrix”.  A Simulink block was developed for use in

forming this angular velocity matrix.  The “form angular velocity matrix” block is

shown in Figure 51, and is used later in the sensor coils Simulink blocks.
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Figure 52 - Gallaspy lambda coil (cage coil) block.

5.5 Lambda (Cage) Coil

The cage coil (also known as the lambda coil), is wound longitudinally

around the missile body.  Thus, its surface area vector can be written as:

(5-62)
r
S A xMλ λ= $

Substituting this into Equation 5-57 gives:

(5-63)v
dB
dt

S A
dB
dt

x

λ λ= − ⋅ = −










r r r

This equation is implemented in the “lambda coil” block, shown in Figure 52. 

Note that the cage coil signal is by definition always at the gyro spin frequency. 

Gallaspy outputs the cage coil (lambda) signal in his standard signal format. 

Here, only frequency and signal are used.   The amplitude and phase

components of this signal are not used in this model.  Also, note that all cage

coil constants have been combined in the gyro.Kl term.
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Figure 53 - Gallaspy reference coil block.

5.6 Reference Coils

The reference coils are the “pancake” type coils discussed earlier. 

Gallaspy’s model features two sets of reference coils, physically separated by

90E on the missile body.  One is aligned with the missile y axis, the other is

aligned with the missile z axis.  Their coil surface areas can be expressed as

(5-64)
r
S A yr r M1 1

= $

(5-65)
r
S A zr r M2 2

= $

The reference coil signals can be calculated by using Equations 5-64 and 5-65

with Equation 5-57, as was done with the lambda coil.  
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Figure 54 - Gallaspy sensor coils block.

Also, note that the reference coil constants are combined into one term

for each reference coil, as was done for the lambda coil.  Also, it is assumed that

the reference coil frequency is the relative gyro-to-missile roll rate.  The

reference coil block is shown in Figure 53.

The reference coil, lambda coil, and “form angular velocity matrix” blocks

are implemented in the sensor coils block, which is inside the gyro dynamics

block.  The sensor coils block is shown in Figure 54.

The relative gyro-to-missile roll rate is needed for the reference coil

calculations.  The formula for calculating the relative gyro-to-missile roll rate is

given by Lamm (13).  Start with the expression for the relative gyro-to-missile roll

angle, equation 5-52 (repeated here)

(5-66)( )φGM
M G M GD D= −tan , ,

1
3 2 3 3
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From Larson and Hostettler (25) the derivative of an arctangent function is

(5-67)( )[ ]d
dt

Arc u
u

du
dt

tan =
+
1

1 2

Substituting Equation 5-66 into equation 5-67 and rearranging yields

(5-68)
( ) ( )

&
& &

, , , ,

, ,

φGM

M G M G M G M G

M G M G

D D D D

D D
=

−

+
3 3 3 2 3 2 3 3

3 3

2

3 2

2

Using the formula of the derivative of a direction cosine matrix from equations 

5-60 and 5-61,

    (5-69)
( ) ( )

( ) ( )
& , , , ,

, ,

φGM

M G M G
G M

M G M G M G
G M

M G

M G M G

D D D D D D

D D
=

− − −

+

3 3 3 2 3 2 3 3

3 3

2

3 2

2

Ω Ω Ω Ω

Expanding this gives the final equation for the gyro roll rate with respect to the

missile body:

(5-70)
( ) ( )
&φ ω ω ω

ω ω

φ θ φ θ

ψ θ ψ θ

GM G G G

M M

x z GM GM y GM GM

x GM GM y GM GM

c t s t

c c s c

= + +

− −

This is the equation that is implemented in the “calculate gyro-to-missile roll rate”

block shown in Figure 55.  This completes the description of the Gallaspy gyro

dynamics block.
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5.7 Spin Coils

From Figure 39, it is seen that the lambda and reference coil outputs of

the gyro dynamics block are the inputs to the spin coils block.  The spin coils

block calculates the spin torque that is needed to maintain the desired gyro spin

speed.  Gallaspy uses a simple spin coil torque model.  The spin torque (torque

about the  axis) is proportional to the measured spin speed minus the desired$xG

spin speed.  The spin speed can be measured from either the lambda coils or

the reference coils.  Gallaspy uses the lambda coils.  This is of some concern,

since the lambda signal goes to zero when the gyro is aligned with the missile

body.  The following equation represents Gallaspy’s spin torque model:

(5-71)( )r
τ ω ωSpin S desired measured GK x= − $

Figure 56 shows the Simulink implementation of the gyro spin coils.
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5.8 Caging Coil

There exists a slight terminology problem between the Gallaspy model

and the gyro models discussed earlier.  Previously in this paper, the radially

wound sensing coils in the other gyro models were referred to as the “cage coil”. 

Gallaspy calls these sensing coils “lambda coils”.  Gallaspy’s caging coil is

wound the same as the lambda coils, but it is a torquing coil which exerts a

torque on the gyro to cause it to align with the missile body (also known as

“caging” the gyro).

Gallaspy’s caging coil model operates in the non-rolling gyro with respect

to missile (NRGM) reference frame.  Because of gyroscopic motion, a yaw error

is corrected by a torque about the  axis; similarly, a pitch error is− $yNRGM

corrected by a torque about the  axis.  The same gain, Kc, is used for+ $zNRGM

both axes.  Also, the caging coil is setup with a switch to cage and uncage the

gyro at specified simulation times.  The governing equations are

(5-72)
( )r

τ
ψ θ

cage
C GM NRGM GM NRGM C C

C C

K y z t t t
t t t t

on off

on off

=
− + ≤ <

< ≥








$ $ ,
, ,0

Figure 57 shows the Simulink caging coil model.
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Figure 57 - Gallaspy caging coil block.

5.9 Precession Coil

The gyro precession coil creates a magnetic field along the missile

longitudinal axis, causing a torque on the gyro.  This precession torque is used

to steer the gyro in the desired direction to track a target.  The gyro tracking

signal is referred to as sigma dot ( ).  The phase of sigma dot (in comparison&σ

to the reference signal) indicates the desired direction of precession.  The

magnitude of sigma dot indicates the desired tracking rate, which is proportional

to the magnitude of the tracking error.  Sigma dot can be represented as

(5-73)& cos( )& &σ φ φσ σ= −A GM

where  is the amplitude, and  is the phase angle.  Note that in the open A&σ φσ&
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Figure 58 - Gallaspy precession coil block.

loop version of this model, sigma dot is not modeled, it is merely represented by

an input variable.

As with the caging torque, the precession torque is applied in the

nonrolling gyro with respect to missile coordinate system.  This torque actually

acts on the gyro magnetic field, which spins with the gyro.  This is compensated

for by using the sine and cosine of the gyro with respect to missile roll angle.  

The precession gain is represented by Kp.  There is also a switch incorporated

which activates gyro precession at a predetermined time.  The precession torque

is represented by

(5-74)
[ ]r

τ
σ φ φ

Pr

& cos( ) $ sin( ) $ ,
,ec

P GM NRGM GM NRGM P

P

K y z t t
t t

on

on

=
+ ≥

<






0

The Gallaspy Precession Coil Simulink model is shown in Figure 58.
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5.10 Gallaspy Model Limitations and Assumptions

This model was designed to capture the predominant gyro motion

characteristics, namely spin and precession.  Other effects (assumed to be less

significant) which are not included in the model are gyro nutation and nutation

damping, gimbal friction, aerodynamic friction, and gimbal inertia.  Also, the gyro

is modeled as a free body, which would not be true if the gyro encountered its

physical gimbal limits, or if there is missile motion and the gyro center of mass is

not located exactly at its center of rotation.  Gravity would also induce additional

drift torques on the gyro if its center of mass were not exactly co-located with its

center of rotation.

Gallaspy notes that the gyro torquing coils are modeled as the ideal

interactions necessary to produce a desired motion, not using the complex

interaction of magnetic fields.  This neglects effects such as precession coil loss

of efficiency at large gyro off-boresight angles, precession torque coupling on

the spin axis, and spin torque coupling to precession.
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6.0 Model Comparisons to Gyro Test Data

In order to evaluate the fidelity differences between the three gyro models

presented in this paper, comparisons to actual gyro test data were conducted. 

Gyro test data was difficult to find; however, data comparisons were done in four

areas:  twice spin frequency nutation oscillations, nutation damping

misalignment, rate table spin-up and spin-down tests, and gyro signal phasing.

6.1 Twice Spin Frequency Nutation Oscillations

Due to the nature of sinusoidal magnetic precession torques on gyros,

they exhibit motion oscillations at twice their spin frequency.  These oscillations

are also called gyro nutation effects.  The nutation effects are seen as small

“loops” on a plot of gyro position (seen while the gyro is precessing).  These

nutation “loops” oscillate at twice the gyro spin frequency.

Figure 59 will help to explain the cause of this twice spin frequency

nutation oscillation.  Note that

Figure 59 is a view of the gyro from

the front (nose) of the missile.  In

this respect, both the positive xM

and positive xG axes point out of the

page.  Also, note that a new angle

has been defined, ZG.  The ZGφ φ

angle differs from the standard GMφ

Euler roll angle in that ZG is theφ
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angle between the missile body yM axis and the gyro zG axis.  The traditional

GM Euler roll angle is between the missile yM axis and the gyro yG axis (in thisφ

case, the gyro xG axis is aligned, or boresighted with, the missile xM axis).

In order to understand the cause of the nutation effects, consider an

example, say that the missile is executing a gyro precession command which will

cause the gyro to pitch up.  Referring to Figure 59, this will cause the gyro as it

is presently shown to move its north pole into the page and its south pole out of

the page.  This precession command is caused by passing a sinusoidal current

(phased properly at the gyro spin frequency) through the precession coils

(wound radially around the missile body). 

This sinusoidal precession current induces a corresponding sinusoidal

magnetic field which is aligned with the missile xM axis.  For a gyro pitch-up

command, the precession command sinusoid must be phased such that the

positive peak of the sinusoid occurs when the north pole of the gyro magnetic

field is straight up ( ZG= 90E).   The peak positive precession magnetic fieldφ

(north pole aligned with the positive xM axis, out of the page) attracts the south

pole of the gyro magnet and repels the north pole of the gyro magnet.  This

produces a torque on the gyro which pitches it upward.

If the precession command sinusoidal signal is at the gyro spin rate, and

it is at its maximum when the gyro north pole is straight up, then the precession

command minimum happens when the gyro north pole is straight down.  Thus,

the precession command sinusoid is zero when the gyro poles are horizontal.  A
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pure gyro pitch motion would occur if it were possible to execute an

infinitesimally short precession magnetic field at the exact instant when the gyro

was vertical.  Since this is not possible a sinusoidal precession command is

used, which causes gyro nutation.

Imagine the same gyro scenario shown in Figure 59, starting from the zG

axis being aligned with the yM axis ( ZG= 0E).  Here, the precession command isφ

zero for a pitch-up precession, since the gyro is horizontal.  As the gyro north

pole rotates toward a vertical position, the precession command sinusoid

increases from zero, reaching its positive peak when the gyro north pole is

vertical.  As the precession coil magnetic field is increasing, it begins to attract

the gyro south pole and repel the gyro north pole, while the gyro magnet is in the

process of rotating from horizontal to vertical.  This magnetic torque causes the

gyro to pitch up, but it also causes a yaw to the left.

Similarly, as the gyro north pole rotates from its vertical position back to

horizontal ( ZG= 180E), the precession command sinusoid gradually decreasesφ

from its maximum value to zero.  This decreasing magnetic field attracts the gyro

magnetic south pole and repels the gyro magnetic north pole as it rotates from

vertical to horizontal.  This causes the gyro to pitch-up but it also causes a yaw

motion to the right.  The left and right yaw motions cancel each other on

average, but they cause the nutation, or looping oscillations.  A similar yaw

nutation happens during the second half of the gyro rotation when the north pole

is on the bottom side of the missile.
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Since one nutation cycle (yaw left, yaw right) is completed during half of

the gyro spin rotation ( ZG= 0E to ZG= 180E),  a single complete gyro rotationφ φ

generates two complete nutation cycles.  Thus, the nutation oscillation is at twice

the gyro spin frequency.

Note: in reality, the above example of a gyro pitch-up maneuver would

have a maximum precession command (positive or negative peak of the

sinusoidal precession signal) when the gyro magnetic poles are aligned

horizontally.  This is due to the gyro law, which states that the gyro precesses in

a direction that is the cross product of the gyro spin vector and the torque

applied to the gyro (as discussed in Section 1.0). 

Gyro nutation is undesirable, thus, most gyros employ nutation damping. 

In most cases, this is done either electronically, or mechanically with liquid

mercury in an enclosed circular groove in the gyro yG-zG plane.  Consequently,

the nutation effects of actual gyros are very small and not readily detectable in

testing.  Model nutation results can be seen by examining the small details of a

plot of  gyro yaw angle versus pitch angle.  A real gyro does not output pitch

angle or yaw angle, it outputs a cage coil signal and a reference coil signal. 

These signals can be demodulated to determine gyro position, but due to noise

and other phenomena, the gyro nutation effects are difficult to see from this type

of gyro position data.  It might be possible to see gyro nutation effects with a

scanning laser system reflected off of the gyro during precession, but no data of

this type is currently available.
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Another way was found to verify the actual gyro nutation effects.  The

frequency content of gyro cage coil data was analyzed with a fast-fourier

transform (FFT).  The FFT should show the cage coil primary frequency content

to be at the gyro spin frequency.  If gyro nutation effects are present, a

frequency component in the cage coil should be present at twice the gyro spin

frequency.

Data from four gyro tests were analyzed with an FFT.  For these tests, the

gyro spin frequency was 100 Hz.   All the data sets showed 200 Hz (twice spin

frequency) components.  Figure 60 shows the gyro cage coil FFT frequency

content from the data set with the most prominent 200 Hz component.  Note the

predominant 100 Hz (spin frequency) component.  No other frequency

components are visible in this view.  Figure 61 is a zoom of the same plot,

showing a much smaller y axis scale.  Here the 200 Hz frequency component

can easily be seen.  There are also smaller frequency components at 300 Hz,

400 Hz and 500 Hz.  The cause of these additional frequency components is not

known, it is possible that they may be FFT artifacts.  This data does (indirectly)

verify that nutation oscillations at twice spin frequency occur in actual gyros.
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Figure 62 - Gyro damping comparison.

The BDWL gyro model was run with nutation damping active and with

nutation damping set to zero to illustrate the effects of nutation damping. 

Figures 62 and 63 show this data.  Note from Figure 63 that the nutation

damping definitely decreases the magnitude of the nutation “looping”

oscillations.  Also, note from both figures that the nutation damping causes a

slight misalignment of precession direction.  This effect  will be discussed in the

next section.

Figure 64 shows an example of the twice spin frequency nutation effects

from the Dave Williams paper.  This is model data, not actual gyro data.  Actual

gyro data is not available for the reasons stated above.  Comparison runs were

done with the three candidate models in this paper.  These comparisons are

shown in Figures 65 - 67.  As expected, the BDWL model shows the nutation

effects, while the Ideal and Gallaspy gyro models do not.  The data in Figures 

65 - 67 are from the nutation damping misalignment tests presented in the next

section 6.2.
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Figure 64 - Gyro 200 Hz wobble
from Dave Williams paper.
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Figure 66 - Close-up of Ideal1 gyro
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Figure 65 - Close-up of BDWL gyro
model precession.
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Figure 68 - Gyro nutation damping misalignment comparison.

6.2 Nutation Damping Misalignment

The presence of nutation damping in a gyro, or gyro model, causes a

slight misalignment in the precession direction when compared to open-loop

precession responses with no damping present.  Note that this is only seen in

open-loop gyro tests, not in closed-loop tracking tests.  In an actual EO/IR

missile system, the misalignment is likely compensated for by adjusting the

phase of the precession signal.

Figure 68 shows the results of the nutation damping misalignment tests. 

The actual gyro data came from Williams (9).  Note that the BDWL model was

the only model to show a damping misalignment, which was expected, since it is



106

the only model to incorporate nutation effects.  The BDWL model data match the

Williams gyro data very well.  In Figure 68, the Ideal and Gallaspy gyro models

performed almost identically with constant precession rates along the axes.

Note that the precession command magnitude was tuned for all three

models to get 4.59E vertical displacement and 4.62E horizontal displacement (in

one second) to match the actual gyro data from the Dave Williams paper.  The

symbol markers in Figure 68 denote the gyro position at 0.2 sec intervals

It is postulated that the nutation damping misalignment occurs because of

the non-symmetric nature of the damping compensation.  For a gyro model with

nutation effects but no damping (as shown in Figures 62 and 63), the off-axis

nutation effects exactly cancel each other.  This causes the “looping” behavior,

but does not affect the overall direction of precession.  Since the damping is

proportional to angular velocity, it is not symmetric and has a slightly more

pronounced effect in one off-axis direction than the other.  It is believed that this

causes the nutation damping misalignment.



107

Figure 70 - Rate table diagram (21).

Figure 69 - Rate table (22).

6.3 Gyro Rate Table Spin-Up and Spin-Down Tests

The Williams paper (9) presents a set of rate table comparisons between

actual gyro data and model data.  This gyro data will be used here for

comparison to the three gyro models presented herein.  In these tests, the EO/IR

missile seeker is placed on a rate table (see Figures 69, 70, and 71).  A suitable

EO/IR source is placed at the edge of the rate table, which the missile seeker

tracks.  The source is placed at some off-boresight angle (look angle) with

respect to the missile body-fixed xM axis.  The missile and the target both rotate

with the rate table at a constant angular rate, thus, the look angle between the

missile body and the target stays constant.

During these

tests, the gyro spin rate

is set initially to 100 Hz. 

After two seconds, the

gyro is commanded to

spin-up to 115 Hz, and it

is finally commanded to

spin back down to the initial value of 100 Hz

at 6 seconds into the test.  The missile-to-

target look angle, the rate table angular

rate, and the missile roll position are all

varied between tests.  
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Figure 71 - Rate table (23).

The results of these rate table tests which are used for model comparison

are the missile sigma dot signal and the actual gyro spin rate versus time.  The

missile sigma dot signal is closely related to the precession command.  Since

sigma dot is not represented in the models, model precession command is

compared to the missile sigma dot signal.  (The Gallaspy model actually has a

signal it calls sigma dot, but this is similar to the precession command signal in

the BDWL and Ideal gyro models.)  For this reason, the absolute magnitudes of

the sigma dot and precession command signals cannot be directly compared,

but their overall shape and response should be similar.

As stated earlier, the missile body and target are both fixed to the rate

table and rotate with it.  Thus, the overall gyro look angle with respect to the
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missile body should remain constant.  Since the gyro is an inertial device, the

missile must precess the gyro to remain tracking the target which is moving with

respect to inertial space.  If no precession command is given to the gyro, it will

remain in the same inertial orientation as the missile body moves (thus changing

the gyro-to-missile look angle).

As explained in the gyro model derivation sections, the precession coils

lose efficiency as the gyro-to-missile look angle increases.  Also, the coupling of

the spin magnetic torque into gyro precession, and the precession torque

coupling into gyro spin both increase in magnitude as the gyro-to-missile look

angle increases.  These effects are demonstrated in the rate table tests.

The gyro model derivations in Chapters 3, 4, and 5 only dealt with open-

loop gyro models.  In order to simulate these rate table tests, a track loop model

was implemented in each gyro model.  The track loop model was based on

Williams (9), and is detailed in section 6.3.1, along with its implementation in

each of the three candidate gyro models.
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Figure 72 - BDWL gyro model with track loop implementation.

6.3.1 BDWL Track Loop Model and Implementation

Figure 72 shows the top-level of the BDWL gyro model with the track loop

block included.  The track block uses the gyro Euler angles with respect to the

missile, the missile position, and the missile Euler angles with respect to inertial 
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to compute a gyro precession command.  From Williams (9), the missile track

loop can calculate the gyro precession command by

(6-1)( )I t P y Rp CurMax G LOS( ) $ $= ⋅

and

(6-2)precCmd R
I t I t

GC
p p=

+ −







( ) ( )1
2

where Unit vector along Line-of-sight from gyro to target$RLOS =

Precession current scale factorPCurMax =

Precession currentI p =

Precession current to torque scale factorRGC =

Gyro precession commandprecCmd =

Note that due to the spin of the gyro, the term  is zero if the gyro$ $y RG LOS⋅

is pointing directly at the target.  If there is a pointing error between the gyro and

target, this term is a sinusoid at the gyro spin frequency whose amplitude is

proportional to the gyro pointing error.  Using  for this term provides the$yG

proper phase for the precession command to precess the gyro toward the target,

thus nulling out the error.  Also, note that Williams uses a two value average (at t

and t-1) of the precession current to calculate the precession command.
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R
MT

Figure 73 - Missile, gyro, and target geometry and vectors.

In order to calculate the  dot product,  was calculated and$ $y RG LOS⋅ $RLOS

transformed into the gyro body-fixed coordinate system.  Referring to Figure 73, 

Missile position vector
r
RM =

Target position vector
r
RT =

Missile to gyro position vector
r
RMG =

Missile to target position vector
r
RMT =

Gyro to target position vector
r r
R RGT LOS= =
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Figure 74 - BDWL track loop model.

From Figure 73, it can be seen that

(6-3)
r r r
R R RMT T M= −

(6-4)
r r r r
R R R RLOS GT MT MG= = −

and

(6-5)$R
R
R

LOS
LOS

LOS

=
r
r

Figure 74 shows the BDWL track loop block, which is based on Equations

6-1, 6-2, 6-3, 6-4, and 6-5.  The inertial target position vector is needed for input

to Equation 6-3.  For a rate table test scenario, it is assumed that the missile is

stationary in position (not rotation), the missile-to-target range is constant, and
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Figure 75 - Rate table target position geometry.

the target inertial azimuth and elevation rates with respect to the missile are

constant.  Figure 75 shows the target geometry.

If the target inertial azimuth and elevation rates (  and ) are&ψT
&θT

constant, then,

(6-6)ψ ψT T dt= ∫ &

(6-7)θ θT T dt= ∫ &

From Figure 75 it can be seen that
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Figure 76 - BDWL track loop target motion block.

(6-8)R RTz T T= − sin( )θ

(6-9)R RTxy T T= cos( )θ

(6-10)R R RTx Txy T T T T= =cos( ) cos( )cos( )ψ θ ψ

(6-11)R R RTy Txy T T T T= =sin( ) cos( )sin( )ψ θ ψ

Equations 6-6, 6-7, 6-8, 6-10, and 6-11 are used in the target motion block,

shown in Figure 76.

There are two identical subsystems in the BDWL track loop block called

“space-to-body coordinate transform”.  These blocks perform an Euler angle

coordinate transformation which converts a vector from a space based

coordinate system to a body-based coordinate system.  This is done by

implementing the appropriate direction cosine matrix.  Figure 77 shows the

space-to-body coordinate transform block.  It uses the space-to-body direction

cosine block previously described in Section 3.2.
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Figure 77 - BDWL space-to-body coordinate transform block.
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Figure 78 - BDWL track loop normalize vector block.

In order to calculate the unit vector  from the vector , a$RLOS

r
RLOS

normalize vector block was developed.  This block is shown in Figure 78, it

calculates the length of the  vector using the square root of the sum of the
r
RLOS

squares of its three vector components.  Each vector component is then divided

by the total vector length to produce a unit vector aligned with the original vector. 

There is also a block to prevent a “divide-by-zero” error in the case of a zero

length vector.
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Figure 79 - Ideal gyro model with track loop implementation.

6.3.2 Ideal Track Loop Model and Implementation

Figure 79 shows the tracker implementation in the Ideal gyro model.  The

Ideal gyro model does not use a precession signal or gyro torques as the BDWL

gyro model does.  The Ideal gyro model merely uses gamma, the direction of

gyro precession, and Ty, the magnitude (in radians / second) of the desired gyro 
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Figure 80 - Ideal gyro track direction and magnitude.

precession.  A modified

version of the BDWL track

loop model was

implemented in the Ideal

gyro tracking model.

Figure 80 shows the

geometry of the gyro-to-

target line-of-sight vector in

the non-rolling gyro with

respect to missile

coordinate system.  From

Figure 80, it can be seen that

(6-12)γ =






−tan 1 R

R
Ty

Tz

(6-13)R R RTyz Ty Tz= +2 2

Track Magnitude (6-14)=






−tan 1 R

R
Tyz

Tx

Figure 81 shows the Ideal gyro track loop block.  It is very similar to the BDWL

track loop block, with Equation 6-12, 6-13, and 6-14 implemented.  A gain of 40

was added to the Track Magnitude channel, which was calculated experimentally 
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Figure 81 - Ideal gyro model track loop block.

so that the second track loop test yielded a 0.25E steady state error, which is

commensurate with the BDWL model.

The Ideal gyro model track loop block contains a “space-to-non-rolling-

body coordinate transform” which is a modification of the space-to-body

coordinate transform, using only the pitch and yaw Euler angles.  This is

essentially an implementation of the space-to-non-rolling-body direction cosine

matrix

(6-15)NRGM MD
c c s c s

s c
c s s s c

GM GM GM GM GM

GM GM

GM GM GM GM GM

=
−

−

















ψ θ ψ θ θ

ψ ψ

ψ θ ψ θ θ

0
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Figure 82 - Ideal track loop space-to-nonrolling body coordinate transform block.

The space-to-non-rolling-body coordinate transform block is shown in Figures 82

through 85.

The Ideal gyro model precession coil block was also modified to accept

the track direction (gamma), and track magnitude as external inputs.  It is shown

in Figure 86.
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Figure 83 - Ideal space-to-body Euler angles X block.
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Note These angular velocities are with respect to 
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Figure 86 - Ideal gyro tracker precession coil block.
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Figure 87 - Gallaspy gyro model with track loop implementation.

6.3.3 Gallaspy Track Loop Model and Implementation

The implementation of a track loop block in the Gallaspy gyro model is

based on the track loop from the Ideal gyro model.  Figure 87 shows the top

level of the Gallaspy gyro model with track loop included.  The Gallaspy

equations of motion require gyro torque inputs based on a gyro commanded rate

of change and direction in the non-rolling gyro with respect to inertial coordinate

system.  

A missile dynamics block has been added to the Gallaspy gyro model. 

Figure 88 shows this block.  This block provides missile state data consisting of

the missile linear position, missile angular velocity, missile-to-inertial (earth)

direction cosine matrix, and the missile Euler angles with respect to the inertial

coordinate system.  This is done with a combination of the rate table block and 
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Figure 88 - Gallaspy track loop missile dynamics block.

the body-to-space direction cosine block, both previously derived in Section 3 for

the BDWL gyro model.

The Gallaspy track loop block is shown in Figure 89.  It is very similar to

the Ideal gyro model track loop.  First, the missile-to-target vector is formed in

the inertial coordinate system.  It is transformed to the missile body-fixed

coordinate system.  The relative gyro position with respect to the missile center

of gravity is used to form the gyro-to-target vector in the missile body-fixed

coordinate system.  This vector is transformed to the gyro body-fixed coordinate

system using the gyro with-respect-to-missile Euler angles.
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Figure 89 - Gallaspy track loop block.

The gyro-to-target vector is then transformed from the gyro body-fixed

coordinate system to the non-rolling gyro with respect to inertial coordinate

system.  This is done with the body-to-non-rolling body coordinate transform

block shown in Figure 90, which is based on the following direction cosine

matrix:

(6-16){ } { }r r
R D RGT NRGI

NRGI G
GT G

=
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Figure 90 - Gallaspy track loop body-to-non-rolling body coordinate transform
block.

where Vector from gyro to target
r
RGT =

and,

(6-17)NRGI G
GI GI

GI GI

D = −
















1 0 0
0
0

cos( ) sin( )
sin( ) cos( )

φ φ
φ φ

The Gallaspy gyro track loop then calculates the total gyro pointing error

and the direction of this error in the non-rolling gyro with respect to inertial

coordinate system in a similar manner to the Ideal gyro track loop model.  The

sigma dot signal is then created by resolving the precession magnitude and

direction into the non-rolling gyro with respect to inertial Y and Z axes.  Figure

91 shows the basis for this transformation, given by

(6-18){ }P
KIp

sdconsty NRGI
= ⋅ε γsin( )
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Figure 91 - Gallaspy gyro tracking error in
the NRGI coordinate system.

where Precession command in the NRGI Y direction{ }Py NRGI
=

Precession current conversion factorKIp =

Sigma dot constantsdconst =

Magnitude of total gyro pointing errorε =

and

(6-19){ }P
KIp

sdconstz NRGI
= ⋅ε γcos( )

where Precession command in NRGI Z direction{ }Pz NRGI
=

There is no precession command in the NRGI X direction because this would

cause a spin torque.  The precession coils and track loop only precess the gyro. 

The spin coil model controls gyro spin rates and torques.  Of course, in reality, a

precession torque can cause spin

torques, but this effect is not included

in the Gallaspy model.

The Gallaspy track loop gain

(gyro.KIs) was tuned so that the

gyro’s steady state tracking error for

the second Williams rate table test

(15E look angle, 10E/sec track rate)

was 0.25E, which matches the BDWL
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Figure 92 - Gallaspy track loop precession coil block.

gyro model.  Also, the Gallaspy spin coil gain was adjusted so that the gyro spin-

up profile matched the spin-up profile from the BDWL model for the first Williams

gyro rate table test (15E look angle, 0E/sec track rate).

The Gallaspy precession coil block, shown in Figure 92, was modified to

accept a sigma dot precession command from the track loop block.  This signal

was also transformed back into the gyro body-fixed coordinate system to

produce a gyro precession command comparable to the output for the Williams

rate table tests.  This was done using the standard direction cosine coordinate
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transform matrix definition,

(6-20){ } { }T D T
G

G NRGI
NRGI

=

where

(6-21)G NRGI
GI GI

GI GI

D =
−

















1 0 0
0
0

cos( ) sin( )
sin( ) cos( )

φ φ
φ φ

A few other minor adjustments were made to the baseline Gallaspy gyro model

to allow the rate table tests to work properly, such as modifications to the spin

coils block to allow timed gyro spin up and spin down.

6.3.4 Rate Table Test Comparison

As stated at the beginning of Section 6.3, the rate table gyro tests from

Williams (9) were done with the gyro look angle, missile rotation rate, and

missile roll angle being varied from test to test.  These parameters stayed

constant during any individual test.  During each of these tests, the gyro was

started spinning at 100 Hz, then commanded to spin up to 115 Hz at 2 seconds

into the run.  At 6 seconds into the simulation run, the gyro was commanded to

spin back down from 115 Hz to 100 Hz.  The relative effects of look angle,

missile body rate, and missile roll angle can be seen in the responses to these

test runs.  The output is compared using the missile sigma dot signal and gyro

spin rate.

The missile sigma dot signal is directly related to the model precession

command signals.  Their relative magnitudes will be different, but their overall
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shape and response should be similar.  The gyro spin frequency is directly

comparable between the actual gyro data and the model data.  For each rate

table test, the Williams actual gyro data is shown along with the Williams model

data, next the results from the three candidate models (BDWL, Ideal, and

Gallaspy) are shown.

Comments on the model rate table test results are provided with the data

for each test.  General comments which apply to all rate table tests include the

fact that the Ideal gyro model has instantaneous spin-up and spin-down, which

does not match the actual gyro data well.  The Gallaspy model has a spin-up

and spin-down response, but it was tuned to match the first rate table test, and it

does not change for the other rate table tests.  Also, the Ideal and Gallaspy

models show zero precession command (even during gyro spin-up and spin-

down) during the rate table tests when the rate table is stationary.
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Figure 93 - Williams gyro data and model data for rate table test 1.
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Figure 94 - BDWL response from rate table test 1.

Rate Table Test 1,15E look angle, 0E/sec rate, 0E roll position:

The BDWL model matches the real gyro data well.  The spin rate shows

excellent correlation.  The precession command matches sigma dot well,

although the real gyro data shows less sigma dot magnitude on gyro spin-down.
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Figure 95 - Ideal response for rate table test 1.
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Figure 96 - Gallaspy response for rate table test 1.

As expected, the Ideal model shows the least correlation with actual gyro

data.  The Ideal model’s precession command is zero, and its spin rate shows

instantaneous spin-up and spin-down.  The Gallaspy precession command is

also flat, but the spin profile matches the real gyro data well.
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Figure 97 - Williams gyro data and model data for rate table test 2.
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Figure 98 - BDWL response for rate table test 2.

Rate table test 2, 15E look angle, 10E/sec rate, 0E roll position:

The BDWL model matches the real gyro data well for this test.  Note that

the steady state spin rates are less than 100 Hz and less then 115 Hz.  This is

due to the inefficiencies in the spin coils at large off-boresight angles.
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Figure 99 - Ideal response for rate table test 2.
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Figure 100 - Gallaspy response for rate table test 2.

The Ideal model shows instant gyro spin response and constant

precession command and, thus, has the least fidelity.  The Gallaspy model

shows an increased precession command at the higher spin rate, but does not

show the spin coil inefficiencies for large look angles.
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Figure 101 - Williams gyro data and model data for rate table test 3.
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Figure 102 - BDWL response for rate table test 3.

Rate table test 3, 30E look angle, 0E/sec rate, 0E roll position:

The BDWL model matches the actual gyro well for this test.  As in test 1,

the actual data shows a decreased sigma dot magnitude on spin-down, which is

not shown in the BDWL model.  The spin rate profile matches well.
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Figure 103 - Ideal response for rate table test 3.
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Figure 104 - Gallaspy response for rate table test 3.

The Ideal model and the Gallaspy model show no precession command

since there is no rate table motion.  The Gallaspy model spin rate profile does

not match the actual gyro response, since it is not affected by precession

command or look angle.
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Figure 105 - Williams gyro data and model data for rate table test 4.
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Figure 106 - BDWL response for rate table test 4.

Rate table test 4, 30E look angle, 5E/sec rate, 0E roll position:

The BDWL model matches the actual gyro data well.  The spin rate

profiles show that the spin coils cannot maintain steady state rates of 100 Hz or

115 Hz due to the large look angle.
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Figure 107 - Ideal response for rate table test 4.
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Figure 108 - Gallaspy response for rate table test 4.

The Ideal model has a constant magnitude precession command, with

instantaneous spin-up and spin-down.  The Gallaspy model shows increased

precession command during the faster spin rate.  Its spin rate profile does not

match the actual gyro data well.
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Figure 109 - Williams gyro data and model data for rate table test 5.
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Figure 110 - BDWL response for rate table test 5.

Rate table test 5, 15E look angle, 10E/sec rate, 90E roll position:

The BDWL model matches the real gyro data well, showing a faster spin-

up (due to the missile roll angle) and steady state spin rates less than 100 Hz

and 115 Hz.
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Figure 111 - Ideal response for rate table test 5.
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Figure 112 - Gallaspy response for rate table test 5.

As in previous tests, the Ideal and Gallaspy precession commands do not

match the actual gyro sigma dot data well.  The Ideal model spin rate has

instantaneous response, while the Gallaspy spin rate is identical to all previous

tests, with no response differences due to track rate, look angle, or missile roll

position.
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Figure 113 - Williams gyro data and model data for rate table test 6.
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Figure 114 - BDWL response for rate table test 6.

Rate table test 6, 30E look angle, 0E/sec rate, 90E roll position:

The BDWL model again shows good correlation to the actual gyro data

both in precession command and spin rate profile.
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Figure 115 - Ideal response for rate table test 6.
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Figure 116 - Gallaspy response for rate table test 6.

The Ideal model and Gallaspy model show zero precession command for

a zero rate target.  The Ideal model spin profile is instantaneous, and the

Gallaspy spin profile is identical to all previous tests.
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Figure 117 - Williams gyro data and model data for rate table test 7.
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Figure 118 - BDWL response for rate table test 7.

Rate table test 7, 30E look angle, 5E/sec rate, 90E roll position:

The BDWL precession command matches the real gyro data well, even

showing slightly less magnitude on spin-up.  The spin profile also matches well,

although the real gyro shows some overshoot on spin-down.
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Figure 119 - Ideal response for rate table test 7.
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Figure 120 - Gallaspy response for rate table test 7.

The Ideal and Gallaspy models show no difference in gyro response for a

different missile roll position.

In summary, the BDWL model showed the highest fidelity and matched

the actual gyro rate table test data the best of the three candidate models.  The
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BDWL model showed precession and spin torque cross coupling, which

increases with off-boresight angle.  The BDWL gyro spin coils showed

decreasing efficiency with increasing look angle, note that the combinations of

gyro look angle and track rate in rate table tests 2, 4, 5, and 7 caused the actual

gyro and the BDWL model to have steady state spin rates less than the

commanded values of 100 Hz and 115 Hz.  Look angle, track rate, and missile

roll position showed the same types of affects on the BDWL model as the actual

gyro.

The Ideal gyro model showed the least fidelity with no precession torque /

spin torque coupling, no decrease in gyro control efficiency with increasing look

angle, and unrealistic instantaneous spin responses.

The Gallaspy model’s fidelity was higher than the Ideal model, but less

than the BDWL model.  The main difference between the Gallaspy model and

the Ideal model was its spin response.  The Gallaspy spin response could be

tuned to a desired profile, but was constant regardless of missile conditions.
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6.4 Gyro Signal Phase Comparison

Actual EO/IR missile gyro signals were recorded during testing in the

NSWC Crane Missile Effectiveness Modeling and Simulation Laboratory.  Four

sets of tests were run, each with the gyro starting near missile body boresight

tracking a target.  The target was moved angularly off-axis at a constant rate, to

a preset off-boresight angle.  This test was repeated four times, with the target

motion direction being rotated 90E between tests.

This results in gyro precession in four orthogonal directions (designated

right, left, up and down), which should show the relative phase differences

between the reference signal, cage coil (lambda) signal, and sigma dot signal. 

Sigma dot is related to precession command and will be used here as a

comparison to the gyro model precession command; some scaling may be

necessary.

Recall that the reference signal does not change in phase or amplitude

with gyro precession.  The cage coil / lambda signal increases in amplitude as a

function of gyro off-boresight angle.  Also, the relative phase of the lambda

signal, compared to the reference signal, gives the direction of gyro look-angle. 

The sigma dot / precession command amplitude is proportional to precession

rate, its phase (relative to the reference signal) indicates precession direction.

In order to match lab signals with model signals, the amplitudes of the

model signals were adjusted, and the proper missile roll position was found to

best match the lab data (65E).  This missile roll angle was used for all the model

runs.  The model signal time scale was also adjusted so that the model signals
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Gyro Lab
Test Data Right Down Left Up

Sigma dot 0E 0E 0E 0E

Lambda 180E 180E 180E 180E

Reference ~180E ~90E 0E ~270E

Table 1 - Gyro lab test signals relative phase angle data.

best matched the actual lab test gyro data.  Note that the relative timing/phasing

of the three model signals was not changed, the time scale was adjusted

identically for all three model signals in each case.

The Gallaspy gyro model has two reference signals, ref1 and ref2.  In

order to match lab test data, ref2 was used as the reference signal.  Also,

because of differences in the way the Gallaspy model handles gyro precession,

a precession command signal was derived by transforming the model precession

command from the non-rolling gyro with respect to inertial (NRGI) coordinate

system to the gyro body-fixed coordinate system.  It was found that the inverse

of the  component of the Gallaspy model precession command corresponded$yG

to the phase of the sigma dot signal from the lab gyro tests.

Table 1 shows the relative phase angles from the lab gyro testing for each

precession direction.  Note that the signals were all referenced to the “zero”

phase position of the sigma dot signal.  The lambda and sigma dot signals

always have a phase difference of 180E.  The actual gyro reference signals were

not “clean” sinusoids.  They had significant distortions.  Also, the actual gyro

sigma dot signals were very irregular due to the tracking algorithms used in the

particular missile

being

tested.  This 

made measuring

relative phase 

angles between
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Overall Signal Phase Comparison

Right Left Up Down Right Left Up Down

Lab 121 128 135 142 - - - -

BDWL 122 129 136 143 125 132 139 146

Ideal 123 130 137 144 126 133 140 147

Gallaspy 124 131 138 145 127 134 141 148

Table 3 - Signal comparison figure numbers.

Gyro Model
Data Right Down Left Up

Prec cmd 0E 0E 0E 0E

Lambda 180E 180E 180E 180E

Reference 180E 90E 0E 270E

Table 2 - Gyro model signals relative phase angle data.

sigma dot and reference difficult.  Hence, the “~” symbols in Table 1 denotes the

best estimate of lab test signal relative phase measurements where the actual

phase angle varied considerably.

Table 2

shows similar

relative phase

angle data for the

gyro model 

signals.  In this case, all three candidate gyro models (BDWL, Ideal, and

Gallaspy) have identical relative phase relationships between their signals. 

Note that the data in Table 2 represents signal values after the missile roll angle

has been set to 65E to match the phase of the lab test data.  As can be seen by

comparing Table 1 and Table 2, the model data relative signal phase matches

the lab data.

Table 3 shows the figure numbers for the various signal comparison

charts.  For each of the four precession directions, an “overall” signal chart is

shown for the lab test data and each of the three models.  Additionally, close-up
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signal comparison charts are shown with the lab test signals and signals from

the models (one chart for each model comparison to lab test data).  These

figures show the relative phasing of the signals and show how well the model

signals relative phase angles matched the lab test data.

The model signals in the overall and signal phase comparison plots were

scaled in amplitude for comparison to the real gyro lab test signals.  The lab test

gyro reference signal changed in amplitude in some cases (see Figures 121,

128, 135, and 142).  This was unexpected, as the reference signal was thought

to remain at a constant amplitude.  However, the reference signal did not change

in amplitude in the case of horizontal left target motion (Figure 136).  For the

vertical down target motion (Figure 142), the reference signal positive peak

changes in amplitude, while its negative peak remains constant.  In any case,

the reference signal’s phase is its critical characteristic for gyro control.

It is possible that the apparent reference signal amplitude change was

caused from measurement cross-talk from the lambda signal.  All model

reference signals remain at a constant amplitude.

The overall model lambda (cage coil) signals matched the lab test gyro

signals well.  The lab test lambda signals showed some amplitude before the

target motion started.  This is due to slight misalignment of the target/missile

such that the target was slightly off of perfect missile boresight at the beginning

of the test.  In the model results, the lambda signal always started at zero

amplitude, since the target was always started at perfect missile boresight.
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The overall precession command signal plots for the three models were

constant amplitude sinusoids whose phase (compared to reference) corresponds

to the direction of target motion.  The lab test sigma dot signal (comparable to

model precession command) showed randomly varying amplitude and phase. 

This is due to differences in the track algorithms between the models and the

actual missile/gyro used in the lab tests.  Since the goal of this research was to

develop gyro models, not tracker models, this difference is not considered

significant to the results of this paper.

The signals from each of the three models were virtually identical, so they

will be discussed here together (“model signals” in the rest of this section will

refer to all three models).  Examination of the signal phase comparison charts

(Figures 125-127, 132-134, 139-141, and 146-148) shows that the model signals

(particularly the phase angles) for the horizontal right and vertical down target

motion match the lab test data very closely.  The model signal phasing of the

horizontal left and vertical up cases match the lab data well, but not as well as

the “right” and “down” cases.  This may be caused from slight misalignments of

the missile body, or target motion direction.

The signal comparison charts also show that the reference signal is not a

pure sinusoid.  There are repeating irregularities in this signal.  The cause of this

is not known, the model reference signals were pure sinusoids.  The irregular

shape of the real gyro reference signal may be due to complex interactions

between the magnetic flux of the gyro and the reference coils.  This may be

caused by the actual finite size of the reference coils.  The reference coils are
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represented in the models as singular point sized, which may explain this

difference.

The irregular shape of the real gyro sigma dot signal matched the model

precession command signals in some places, but did not match in others.  This

is due to differences between the actual missile and model track algorithms, as

discussed above.  Overall, the model signal phasing matched the actual missile

data well.
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Figure 121 - Overall lab test gyro signals for horizontal right target motion.
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Figure 122 - BDWL overall signals for horizontal right target motion.
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Figure 123 - Ideal overall signals for horizontal right target motion.
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Figure 124 - Gallaspy overall signals for horizontal right target motion.
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Figure 125 - BDWL comparison to lab test data for horizontal right target motion.
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Figure 126 - Ideal gyro model comparison to lab test data for horizontal right target
motion.
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Figure 127 - Gallaspy comparison to lab test data for horizontal right target motion.
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Figure 128 - Overall lab test signals for horizontal left target motion.
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Figure 129 - BDWL overall signals for horizontal left target motion.
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Figure 130 - Ideal overall signals for horizontal left target motion.



162

Figure 131 - Gallaspy overall signals for horizontal left target motion.
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Figure 132 - BDWL comparison to lab test data for horizontal left target motion.



164

Figure 133 - Ideal gyro model comparison to lab test data for horizontal left target
motion.
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Figure 134 - Gallaspy comparison to lab test data for horizontal left target motion.
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Figure 135 - Overall lab test signals for vertical up target motion.
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Figure 136 - BDWL overall signals for vertical up target motion.
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Figure 137 - Ideal overall signals for vertical up target motion.
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Figure 138 - Gallaspy overall signals for vertical up target motion.
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Figure 139 - BDWL comparison to lab test data for vertical up target motion.
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Figure 140 - Ideal gyro model comparison to lab test data for vertical up target
motion.
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Figure 141 - Gallaspy comparison to lab test data for vertical up target motion.
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Figure 142 - Overall signals for lab test vertical down target motion.
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Figure 143 - BDWL overall signals for vertical down target motion.
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Figure 144 - Ideal overall signals for vertical down target motion.
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Figure 145 - Gallaspy overall signals for vertical down target motion.
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Figure 146 - BDWL comparison to lab test data for vertical down target motion.
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Figure 147 - Ideal gyro model comparison to lab test data for vertical down target
motion.
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Figure 148 - Gallaspy comparison to lab test data for vertical down target motion.
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7.0 Summary

Three gyro models were developed using the MATLAB/Simulink modeling

tools produced by the MathWorks.  The BDWL model was the most complex

model.  It featured gyro precession and spin torque models (including

degradation with gyro look angle), gyro nutation and nutation damping, as well

as the cross coupling effects of precession and spin for large off-boresight

angles.  The BDWL gyro models used equations of motion derived from

Newtonian principles.

The Ideal gyro model was the least complex model, using simplistic

idealized equations of motion.  It included perfect gyro precession rates in the

exact commanded direction, instantaneous spin-up and spin-down response, no

coupling or degradation of spin and/or precession torques with gyro off-boresight

angle, and no nutation or nutation damping.  

The Gallaspy gyro model was a medium complexity model.  It used gyro

equations of motion derived from the Lagrange equations.  The Gallaspy model

featured precession and spin torque models, no spin or precession degradation

effects from off-boresight angle, no precession / spin torque coupling, and no

nutation or nutation damping.

Table 4 shows a comparison of the features of each gyro model.  Also

included in Table 4 is a measure of the computational efficiency of the models. 

Each of the open-loop gyro models was exercised using a 1 second simulation

time.  The total model run times were averaged using four repetitions for each

model.  Next, the average run times were normalized to the fastest model (the 
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BDWL Ideal Gallaspy

Equation of motion type Newton Ideal Lagrange

Precession torque Yes No Yes

Spin torque Yes No Limited

Precession / spin coupling Yes No No

Off-boresight torque degradation Yes No No

Nutation / nutation damping Yes No No

Run-time factor 2.6 1.0 1.6

Table 4 - Model feature comparison.

Ideal model).  These results are listed in Table 4 under “run time factor”.  The

larger the run time factor, the longer a model takes to run.

All three models were compared to actual gyro data in four areas: twice

spin frequency nutation oscillations, open loop nutation damping misalignment,

rate table tests with gyro spin-up and spin-down, and gyro signal phasing.

During the development of these gyro models, several utility Simulink

blocks were developed which will be useful in many types of models.  A Simulink

block was developed which transforms a vector expressed in inertial (space)

coordinates to body-fixed coordinates using Euler angles.  A complementary

block was developed which transforms a vector from body-fixed to inertial

coordinates also using Euler angles.  A Simulink block was developed to

calculate a unit vector aligned with an input vector of any length.  Also, a block

was developed to calculate the gyro Euler angles with respect to a moving

missile which uses the gyro inertial Euler angles and missile inertial Euler angles
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as inputs.  A formula was derived based on Lamm (13) to calculate the time

derivative of a direction cosine matrix.
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8.0 Conclusions

The BDWL model showed excellent agreement with the actual gyro data

for the twice spin frequency nutation oscillations and the open-loop nutation

damping.  The Ideal and Gallaspy models did not match the actual gyro data in

these cases, neither of these models includes any nutation effects.

The BDWL model had excellent correlation with the rate table spin-up and

spin-down tests.  The Gallaspy model showed good correlation in some cases

and fair correlation in other cases.  The Ideal model did not show good

correlation to the rate table tests (see Figures 93 - 119).

All three models gave similar results, and showed good correlation to the

actual gyro data in the signal phase angle tests.

Thus, the BDWL model showed the best correlation to real gyro data, but

was the most computationally intensive.  The Ideal gyro model had the worst

correlation to actual gyro data, but was the least computationally intensive.  The

Gallaspy model gave performance somewhere between the BDWL and Ideal

gyro models in both fidelity and computational requirements.

The performance of the Gallaspy model was controlled by the

assumptions made in its development.  The use of the Lagrange method to

derive the equations of motion showed no benefits or disadvantages in

comparison to the Newtonian equation of motion derivation.

The results of this thesis give the EO/IR missile simulation developer a

good set of criteria for choosing features of a gyro model and balancing gyro

model fidelity with model execution speed.
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9.0 Recommendations for Further Study

This paper raised several issues for further study.  The actual gyro lab

data in Section 6.4 indicated that the reference signal may change in amplitude

with gyro off-boresight angle.  This should be investigated further so that this

phenomenon can be added to high fidelity gyro models.

The real gyro reference signals in Section 6.4 also showed very irregular

shapes.  They were not simple sinusoids at the gyro spin frequency.  These

irregularities in the reference signal shape may be caused by complex

interactions between the gyro magnetic flux and the reference coils.  This is

another area that should be examined further.

Various missiles use different tracking algorithms.  The gyro models

developed here used track loop algorithms derived from Williams (9).  Thus, the

results matched the Williams results well, but they did not match the NSWC

Crane lab test data in Section 6.4.  Much future work could be done

characterizing different tracking algorithms and developing new track routines.
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