Award Number: DAMD17-01-1-0665

TITLE: Blocking Internalization of Phosphatidylethanolamine at Cleavage Furrow of Mitosis as a Novel Mechanism of Anti-Breast Cancer Strategy

PRINCIPAL INVESTIGATOR: Zheng Cui, M.D., Ph.D.

CONTRACTING ORGANIZATION: Wake Forest University School of Medicine
Winston-Salem, North Carolina 27157

REPORT DATE: June 2002

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Blocking Internalization of Phosphatidylethanolamine at Cleavage Furrow of Mitosis as a Novel Mechanism of Anti-Breast Cancer Strategy

Zheng Cui, M.D., Ph.D.

Wake Forest University School of Medicine
Winston-Salem, North Carolina 27157
e-mail - zhengcui@wfubmc.edu

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

During the formation of cleavage furrow of mitosis, phosphatidylethanolamine (PE) flips from inner leaflet of the plasma membrane to the outer leaflet specifically in the furrow region near the contractile ring. Immediately after the contractile ring separates the two daughter cells, PE returns from outer leaflet to inner leaflet. This transient movement of PE during cytokinesis is essential because blockage of this PE movement results in a failure of mitosis and leads to cell death. Cinnamycin produced by Streptovermicilium griseovermicilatum targets specifically to PE on cell surface at the cleavage furrow of mitotic cells but not the non-dividing cells. This proposal is to test if cinnamycin is a better anti-tumor drug for treatment of breast cancers because of several advantages: 1) Cinnamycin only targets proliferating cells but has no effect on non-proliferating cells. 2) The anti-proliferation activity doesn't require cinnamycin to enter the cells. 3) Cinnamycin doesn't have to suffer the effect of multi-drug resistance mechanism or cellular metabolism. Because cinnamycin is no longer available commercially, we had to devise production procedures and to purify this compound in our own lab. Thus, completion of this proposal would require longer time than that was originally proposed.

Subject Terms: Breast cancer; cinnamycin, anti-cancer therapy, mouse model

Security Classification: Unclassified

Number of Pages: 4

Limitation of Abstract: Unlimited
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
</tbody>
</table>
Introduction
During the formation of cleavage furrow of mitosis, phosphatidylethanolamine (PE) flips from inner leaflet of the plasma membrane to the outer leaflet specifically in the furrow region near the contractile ring. Immediately after the contractile ring separates the two daughter cells, PE returns from outer leaflet to inner leaflet. This transient movement of PE during cytokinesis is essential because blockage of this PE movement results in a failure of mitosis and leads to cell death. Cinnamycin produced by Streptoverticillium griseoverticillatum targets specifically to PE on cell surface at the cleavage furrow of mitotic cells but not the non-dividing cells. This proposal is to test if cinnamycin is a better anti-tumor drug for treatment of mammary cancer models in mice.

Progress
Because cinnamycin is no longer available commercially, we had to devise production procedures and to purify this compound in our own lab. Thus, completion of this proposal would require longer time than that was originally proposed. In the initial funding period, we have performed extensive literature search for commercial source of cinnamycin suppliers. However, none of the previous suppliers continues to sell this compound. We proceeded to contact several academic investigators who have published using this compound. All these investigators have stopped to use this compound and no longer have it in their possession. Thus we have decided to produce and purify this compound in our own lab. We are now in the process to establish culture procedure for growing bacterium Streptoverticillium griseoverticillatum and devise purification method for isolation of pure cinnamycin. We anticipate that this phase would require at least 1 year.