
Abstract - It is generally known that the pupil is under the 
control of the autonomic nervous system. Recently, those 
rhythms characterizing the autonomic fluctuations of 
heart period and arterial blood pressure have been 
detected in spontaneous Pupil Diameter (PD) fluctuations. 
The physiological mechanisms underlying such variability 
have not been widely investigated. Aim of this study was 
to investigate the origin of the pupil fluctuations in 
humans, using a non-invasive modulation of carotid 
baroreceptors by Neck Suction (NS). To this purpose, we 
simultaneously recorded ECG, respiration activity, NS 
pressure and PD fluctuations from 10 normal subjects. 
The equipment for the PD measurement and the NS 
stimulation was developed in our laboratory. The 
response of the pupil to the NS was studied at stimulation 
frequencies of 0.10 and 0.20 Hz, by using parametric 
spectral and cross-spectral estimation. In all subjects, the 
NS rhythms were clearly detectable in heart rate 
variability series in both stimulation frequencies and also 
in the PD spectra with significant coherences (>0.5). 
These findings suggest that blood pressure fluctuations 
propagate to the pupil via carotid baroreceptor afferent 
pathways. However a central contribution can not be 
excluded.  
Keywords – pupil diameter fluctuations, heart rate 
variability, baroreceptors, spectral analysis 

 
I. INTRODUCTION 

 
The pupil of the human eye continuously fluctuates even in 

absence of visual accommodation and/or light stimulation. 
The sympathetic and parasympathetic innervations of the iris 
muscle are supposed to be responsible for these physiologic 
fluctuations of the human pupil (hippus). It has been 
demonstrated, first in animals [1] and then in humans [2][3], 
that the respiratory rhythm is one of the source of these 
fluctuations. In general the inspiration is accompanied by 
pupil dilatation, the expiration by pupil constriction.  
The respiratory rhythm, detectable in several sympathetic 

and parasympathetic nervous fibers and in the Heart Rate 
Variability (HRV) signal [4], is referred to as the High 
Frequency (HF) component (0.15-0.4 Hz), and is considered 
a marker of the parasympathetic control to the sinus node. It 
is well assessed that in HRV signal a relatively slower 
component is also detectable, in the so-called Low Frequency 
(LF) band (0.04-0.15 Hz). This component characterizes the 
peripheral sympathetic nerves too, and is considered 
expression of both sympathetic and parasympathetic control. 
Recently, the identification of a spectral component in the LF 
band in spontaneous Pupil Diameter (PD) fluctuations has 
been reported by our group [5] and by others [6]. Animal 
studies suggested that two sources for pupil oscillations could 
be involved: central respiratory activity and respiratory blood 

pressure fluctuations that modulate pupil width via sinoaortic 
baroreceptors [1]. It might be hypothesized that in humans 
carotid and sinoaortic baroreceptors may contribute to, if not 
cause, the genesis of pupillary LF and HF rhythms. A non-
invasive investigation of the human baroreceptor function can 
be performed by the Neck Suction (NS) technique [7][8]. 
This technique allows a periodic modulation of the carotid 
sinus baroreceptors, and stimulates the brainstem nuclei 
through the afferent parasympathetic pathways.  
Aim of this study is to investigate the origin of spontaneous 

pupil fluctuations in humans, using a non-invasive 
modulation of carotid baroreceptors by NS. In addition, to 
distinguish between the sympathetic and parasympathetic 
efferent activity we studied the response of the pupil to the 
NS at different frequencies of stimulation. The equipment for 
the PD measurement and for the NS stimulation were fully 
developed in our laboratory. 
 

II. METHODOLOGY 
 
A. Experimental protocol and data acquisition 
 

5 healthy young subjects (24-28 years) were studied. 
During the experiments, the lighting condition and the 
temperature of the laboratory were held constant. NS was 
carried out and monitored in the supine position during 
controlled breathing at 15 breaths/min.  

The neck suction was applied to two cuffs posed on both 
sides of the neck (at the positions corresponding to the carotid 
baroreceptors). The cuffs have been connected to a vacuum 
source, whose power was modulated by a software-controlled 
feed-back sinusoidal control (figure 1). The use of the cuffs 
instead of a molded collar (previously employed [9]) is more 
comfortable for the patient, although providing the same 
stimulation.  

A pressure transducer was used to measure the air 
pressure inside the cuffs. The pressure signal was used as the 
feed-back signal for the control loop. The input signal of the 
control circuit was provided by the same PC used for the 
acquisition.  

The protocol consisted in two stages lasting 5 minutes 
each. The NS stimulation frequency was set to 0.2 Hz in the 
first stage and to 0.1 Hz in the second one. Control breathing 
condition at rates of 15 breaths/minute (0.25 Hz) was used to 
have a clear discrimination between LF, HF and NS rhythms. 
The subjects were instructed initiate a breath with each tone 
of a series of auditory cues and to look at a target panel 1 
meter in front of them. Light intensity of the panel ... 

ECG, Respiration Activity (RA), Neck Suction Pressure 
(NSP) and Pupil Diameter (PD) were simultaneously 
recorded (figure 1). RA was monitored by a pletismographic 
thoracic belt. ECG, RA and NSP were continuously recorded 
and real-time sampled (sampling frequency: 500 Hz, 
resolution: 12 bit) via an A/D converter board (DAQCard 
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1200, National Instruments), plugged into a laptop. We 
continuously measured the PD fluctuations by a portable, 
infrared TV-pupillometer. The images of pupil have been 
captured by a micro infrared CCD camera mounted on a light 
helmet and connected to a video capture board (PCI 1408, 
National Instruments) for the real-time digitising of the image 
sequences. The camera was equipped with an infrared filter to 
eliminate reflexes from the natural light source in the room. 

 
Fig. 1. Experimental setup for data acquisition and neck suction procedure. 
 

The proper illumination was provided by a near infrared 
diode (780nm). A frame rate of 12.5 frames/s and a resolution 
of 768x576, 256 grey levels were chosen as a trade off among 
data storage, computing time, spatial resolution and pupillary 
dynamic bandwidth constrains. The synchronisation of the 2 
acquisition systems was obtained by a triggering signal, the 
frame synchronisation signal, which provides a maximum 
delay of 40 ms. Figure 2 shows two images of the equipment 
for the PD measurements and the cuffs used for the NS 
stimulation.  

 

Fig. 2. Equipment for the PD measurements and cuffs used for the NS 
stimulation. 

 
B. Estimation of pupil diameter 

Measurements of the pupil diameter have been performed 
by a two steps procedure: first, the points laying on the pupil 
boundary have been detected by using a curvature algorithm 
[10]; these points have been then interpolated according to 
the method of Chauduri and Kundu [11], based on an 
optimum weighted least square circular fitting.  

For each acquisition, calibration has been performed by 
acquiring images of known diameter circumferences located 
on the subject eyelid (figure 3). The calibration procedure has 
been performed at the end of each acquisition.  

 

Fig. 3. Calibration procedure: known diameter circumference located on the 
subject eyelid (left) and relative subject pupil image (right). 

 
C. Correction of blinking artifacts 

The algorithm used for the estimation of pupil diameter 
(curvature algorithm and circular fitting) also detects when 
the pupil is partially or totally covered by the eyelid (blinking 
artifacts). In these cases, the pupil diameter is set to 0 mm. 
Correction of blinking artifacts has been performed by 
reconstructing these missing data through a cubic spline 
interpolation.  
 
D. Construction of variability series 

Two approaches are generally used to obtain proper 
representation for cardiovascular variability data: the beat-to-
beat approach [12] and the low pass filtering approach [13]. 
In this study we extract the variability series according to the 
latter approach, in order to avoid any distortions in PD 
fluctuations from NS modulation of the heart period.  

The low-pass filtered event series (ES) was used to 
extract the heart rate variability (HRV) signal since it is a 
reliable time domain representation with high temporal 
resolution. In ES each beat is replaced by a δ function; the 
signal can be described as: 
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where δ is the Dirac delta function, tk is the occurrence time 
of the kth beat and N is the total number of beats. To obtain 
the heart rate variability series, the ES was low-pass filtered 
at 0.5 Hz and re-sampled at 1.25 Hz [13]. Correspondingly,  
RA, NSP and PD variability series were obtained by a similar 
low-pass filtering procedure (FIR, 10 order, cut-off frequency 
0.5 Hz) and a re-sampling at 1.25 Hz of the RA, NSP and PD 
series, respectively. According to this procedure, HRV and 
RA series were expressed in arbitrary units (a.u.), NSP in 
mmHg and PD in mm. This approach particularly guarantees 
the time synchronization between HRV, RA, NSP and PD. 

 
III. RESULTS 

To detect the effect of the sinusoidal stimulation over the 
PD and HRV series, we used a parametric spectral and cross-
spectral estimation by autoregressive (AR) modelling over 
250 consecutive samples.  

We analyzed the HRV series to assess the efficacy of the 
NS stimulation in eliciting a baroreflex response.  

With the NS series as a reference, the spectral coherences 
were used to assess whether NS induced synchronous 
fluctuations in PD.  

Figure 4 shows the results obtained for the 0.2 Hz 
stimulation, in one subject: time series and monovariate AR 
spectra are shown. HRV spectrum demonstrates that the NS 
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stimulation elicits the physiological baroreflex response (i.e. 
slowing of heart rate when carotid are stretched). Controlled 
respiration provides a respiratory component (0.25 Hz) 
clearly distinguishable from NS. The PD spectrum reveals 
three main harmonic components at 0.07 Hz, 0.20 Hz and 
0.25 Hz. The 0.20 and 0.25 Hz components correspond to the 
NS stimulation and the controlled breathing, respectively.  

Figure 5, upper panel, reports the spectral coherence 
between HRV series and PD during the 0.20 Hz NS 
stimulation, for the same subject as figure 4. Note the 
significant values reached at 0.20 and 0.25 Hz.  

Similar results were obtained for the NS stimulation at 0.1 
Hz, as shown in figure 5, lower panel. Baroreflex stimulation 
by NS was observed in PD spectra in the other 4 subjects, but 
the relative and absolute amplitude differed.  

 
 

IV. DISCUSSION 
To our knowledge the contribution of baroreflex control 

to the spontaneous PD fluctuations was only investigated by 
invasive study in animals [1].  

Borgdorff investigated the origin of the pupil fluctuations 
in cats, using an invasive approach which included artificial 
ventilation, baroreceptor denervation and direct electrical 
stimulation of pulmonary vagal afferent fibers.  

Borgdorff concluded that at least two sources contribute 
to the respiratory rhythm in cat PD: the rhythmic activity of 
the respiratory centre and the respiratory blood pressure 
fluctuations that modulate pupil width via sinoaortic 
baroreceptors.  

Ohtsuka et al. reported respiratory fluctuations in pupil in 
6 normal subjects at different respiration frequencies and tidal 
volumes [2]. They found that the amplitude of the respiratory 
fluctuations of the pupil area were closely proportional to the 
tidal volumes. Their experimental setup did not allow to 
investigate the mechanisms by which the respiratory rhythm 
propagates to the pupil.  

Our study performed a non-invasive investigation not 
only of the respiratory pupillary fluctuations in humans, but 
also of the LF rhythm, which was recently reported by our 
group and others [5][6].   

Our findings showed that a baroreceptor stimulation, 
miming blood pressure changes in LF and HF bands, caused 
PD fluctuations at the same frequency. Because the influence 
of blood pressure on PD can neither be mediated by an 
increased filling of the iris vessel nor by fluctuations in 
intraocular pressure [1], a neuro-mediated mechanism can be 
hypothesised [14]. We can speculate that signals from the 
carotid sinus reach not only the cardiovascular centre, but 
almost the entire reticular formation. Here, rhythmic impulses 
induce fluctuations that are conveyed to various organs, 

Fig. 4. From top to bottom: respiration activity, neck suction pressure, heart rate variability and pupil diameter series (left) together with the 
corresponding spectra (right), for one subject. 
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including the pupils. Whether and to which extent a central 
activity stemming from the respiratory centre or from the 
hypothalamus contributes to PD fluctuations, was not 
addressed by our study. 

 
V. CONCLUSION 

Our aim was to investigate whether the spontaneous LF 
and HF rhythms in pupil fluctuations may result from the LF 
and HF fluctuations of blood pressure, mediated by the 
carotid sinus baroreceptors. We found that the carotid 
baroreceptor stimulation induces pupil fluctuations locked to 
the stimulation frequency. Thus it can be speculated that 
blood pressure fluctuations in LF and HF bands contribute to 
the spontaneous fluctuations of human pupil, via afferent 

carotid baroreceptor pathways, even if a central contribution 
cannot be excluded.  
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Fig. 5. Spectral coherences between HRV series and PD  
during the 0.20 Hz (top) and 0.1 Hz (bottom) NS stimulation,  

for the same subject as figure 4. 
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