<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th></th>
<th>Form Approved OMB No. 0704-0188</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Service, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. REPORT DATE (DD-MM-YYYY)</td>
<td>2. REPORT TYPE Technical Papers</td>
<td>3. DATES COVERED (From - To)</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Please see attached</td>
<td></td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER F04611-98-C-0010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER 62203F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER 1011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER 00NM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR'S ACRONYM(S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-TP-2000-205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited.</td>
<td></td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td>17. LIMITATION OF ABSTRACT</td>
<td>A</td>
</tr>
<tr>
<td>a. REPORT Unclassified</td>
<td>b. ABSTRACT Unclassified</td>
<td>18. NUMBER OF PAGES</td>
</tr>
<tr>
<td>c. THIS PAGE Unclassified</td>
<td>19a. NAME OF RESPONSIBLE PERSON Leilani Richardson</td>
<td></td>
</tr>
<tr>
<td>19b. TELEPHONE NUMBER (include area code) (661) 275-5015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

20030312 061

Standard Form 298 (Rev. 8-96) Prescribed by ANSI Std. 235.19
MEMORANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

24 Oct 2000

Suri, Suresh; Tinnierlo, M. & Marcischak, J. (ERC), “Synthesis and Screening of Advanced Hydrocarbon Fuels”

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.

Comments: __

__ Date __________

Signature ____________________________ Date ______________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review

Comments: __

__ Date __________

Signature ____________________________ Date ______________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of distribution statement, c.) military/national critical technology, d.) economic sensitivity, e.) parallel review completed if required, and f.) format and completion of meeting clearance form if required

Comments: __

__ Date __________

Signature ____________________________ Date ______________

4. This request has been reviewed by PRS for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability

Comments: __

__ Date __________

Signature ____________________________ Date ______________

APPROVED/APPROVED AS AMENDED/DISAPPROVED

__ Date

PHILIP A. KESSEL
Technical Advisor

Cleared (PA)__
Logged (PA)__
Notified (PA)__
Copied & Distributed (STINFO)_________________________
This original is for PA files
Synthesis & Screening of Advanced Hydrocarbon Fuels

Suresh C. Suri*, Michael Tinnirello¹ & Jacob Marcischak¹

*Air Force Research Laboratory/PRSP; ¹ERC Inc.
10 East Saturn Blvd., Edwards Air Force Base, CA 93536
Presentation Outline

- Goal
 - HEDM program
 - NASA program
 - IHPRPT program (propellant perspective)

- Criteria for fuel selection
- Approach
- Results
- Accomplishments (FY-2000)
- Planned Efforts (FY-2001)
HEDM Goal

- To Develop fuels with increased Isp over LOX/RP-1
 - LOX/RP-1 (Calculated Isp) = 300 sec
 - LOX/RP-1 (Delivered Isp) = 263 sec

Determined at sea level and 1000 psi chamber pressure
To Meet IHPRPT Phase II and Phase III Objective

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time</th>
<th>Improvement Over SOTA* Isp (del)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2005</td>
<td>+ 5 Sec</td>
</tr>
<tr>
<td>III</td>
<td>2010</td>
<td>+ 11 Sec</td>
</tr>
</tbody>
</table>

*SOTA: LOX/RP-1 Propellant Isp(del) = 263 Sec. Isp (calc) = 300 Sec.
NASA Goal

- FY-1999
 - Deliver three advanced hydrocarbon fuel in 8-
 10 lb quantity.
 - Quadricyclane
 - 1,7-Octadiyne
 - Bicyclopropyldiene

- FY-2000
 - Screen four hydrocarbons for their physical and
 hazardous properties.
Criteria for Fuel Selection

- Predicts better performance (Isp) over LOX/RP-1 system
- Most desirable physical properties
 - Lower vapor pressure compared to RP-1
 - Higher density (\geq RP-1 = 0.801 g/ml)
 - Freezing point (\leq -10 °C; RP-1 = -41.4 °C)
 - Boiling point \geq B. P. Of RP-1
- Storable
- Compatible with the current system
Approach

- Structural requirements
- Survey of energetic hydrocarbons
- Selection of hydrocarbons based on improved theoretical performance
- Synthesis of target hydrocarbons at bench scale.
 - *Easy preparation, cost effective and safe*
- Translate bench-scale synthesis to pilot scale.
Heat of Formation of Saturated Hydrocarbons

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>ΔH_f (Obs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethane</td>
<td>CH$_3$CH$_3$</td>
<td>-20.04</td>
</tr>
<tr>
<td>Propane</td>
<td>CH$_3$CH$_2$CH$_3$</td>
<td>-25.02</td>
</tr>
<tr>
<td>Butane</td>
<td>CH$_3$(CH$_2$)$_2$CH$_3$</td>
<td>-30.03</td>
</tr>
<tr>
<td>Pentane</td>
<td>CH$_3$(CH$_2$)$_3$CH$_3$</td>
<td>-35.08</td>
</tr>
</tbody>
</table>

ΔH_f/added CH$_2$ \approx -5 Kcal/mole
Heat of Formation of Unsaturated Hydrocarbons

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>ΔHf(Obs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>CH₂=CH₂</td>
<td>+12.5</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>CH₂=CH-CH=CH₂</td>
<td>+26.11</td>
</tr>
<tr>
<td></td>
<td>ΔHf/C = ~ +6.25 Kcal/mole</td>
<td></td>
</tr>
<tr>
<td>Acetylene</td>
<td>HC≡CH</td>
<td>+54.36</td>
</tr>
<tr>
<td></td>
<td>ΔHf/C = ~ +27.1 Kcal/mole</td>
<td></td>
</tr>
</tbody>
</table>
Structural Requirement for High Energy Contents (Cont..)

- The energy content is also increased by incorporating strain in the molecule
 - Ring compound \(\Delta H_f \)
 - Cyclopropane
 + 12.73 kcal/mole
 - Cyclobutane
 + 6.78 kcal/mole
 - Cyclopentane
 - 18.44 kcal/mole
Incorporation of small ring (strain) and unsaturation in a molecule increases its energy contents
Performance Comparison of Energetic Hydrocarbons (Theoretical)

<table>
<thead>
<tr>
<th>Hydrocarbons</th>
<th>H/C ratio</th>
<th>Density (g/ml)</th>
<th>Calc. ΔHₚ (Kcal/mole)</th>
<th>Calc. Isp (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-1</td>
<td>1.9</td>
<td>0.80</td>
<td>-5.76</td>
<td>300.0</td>
</tr>
<tr>
<td>Quad</td>
<td>1.14</td>
<td>0.98</td>
<td>72.2</td>
<td>307.0</td>
</tr>
<tr>
<td>BCP</td>
<td>1.33</td>
<td>0.85</td>
<td>76.1</td>
<td>312.5</td>
</tr>
<tr>
<td>AFRL-1</td>
<td>1.2</td>
<td>0.77</td>
<td>64.0</td>
<td>311.3</td>
</tr>
<tr>
<td>AFRL-2</td>
<td>1.25</td>
<td>0.87</td>
<td>73.4</td>
<td>307.2</td>
</tr>
<tr>
<td>AFRL-3</td>
<td>1.0</td>
<td>0.93</td>
<td>123.6</td>
<td>307.2</td>
</tr>
<tr>
<td>AFRL-4</td>
<td>1.0</td>
<td>-</td>
<td>129.6</td>
<td>321.4</td>
</tr>
<tr>
<td>AFRL-5</td>
<td>1.33</td>
<td>0.80</td>
<td>56.3</td>
<td>308.7</td>
</tr>
</tbody>
</table>
Results

Synthetic Sequence of BCP

1. EtMgBr/cat.Ti(OPr-i)_4/Ether
2. 10% Aq. H_2SO_4

Ph_3P/Br_2

Characterization of BCP

Physical properties
- B.P. = 101 °C
- M.P. = -12 °C
- F.P. = -6.4 °C
- Density = 0.8454 g/ml
- ΔHf (exp.) = 67.4 kcal/mole
- ΔHf (calc.) = 76.1 kcal/mole

Hazardous properties
- Zero card gap (negative)
- Drop test > 200 kg/cm
- Friction test 133 newton
 - **Toxicity**
 - (Inhalation LC50) 1.95 mg/L
- Adiabatic Compression (psi)
 - 3000 Neg.
Is BCP Hypergolic?

- **Qualitative Test**
 - BCP is found to be hypergolic using nitrogen tetroxide (NTO). Spontaneous reaction with visible flame.
 - Hypergolic with inhibited red fuming nitric acid (IRFNA) as oxidizers. (Darren M. Thompson, U.S. Army missile command).

- **Ignition Delay**
 - The work is in progress under SBIR phase-1 with TDA Research, Inc.
Synthesis of AFRL-1

- Two steps synthesis
- Involves readily available materials
- Yield in both steps is > 90 %
Characterization of AFRL-1

Physical Properties
B.P. = 52- 55 °C
Density = 0.77 g/ml
ΔH_f (Exp.) = 67.4 Kcal/mole
ΔH_f (Calc.) = 64.0 Kcal/mole

Hazardous Properties
“0” card gap (Negative)
Liq. Impact test > 200 Kg-cm
Friction Test 78 Newtons
Adiabatic Compression (psi)

3000 Neg.
Synthesis of AFRL-3

- One step synthesis from AFRL-1.
- Requires oxidative coupling of AFRL-1.
- Yield is 92%.
Characterization of AFRL-3

Hazardous Properties

- "0" card gap (negative)
- Liq Impact test <20 kg-cm
- Friction Test = 64.8 Newton

Adiabatic Compression (psi)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physical Properties

B.P. = 102 °C
M.P. = -13 °C
Density = 0.93 g/ml

ΔHf (Calc.) = 123.6 kcal/mole
ΔHf (Exp.) = 117.0 kcal/mole
Synthesis of AFRL-5

- Higher homologue of AFRL-1
- Two step synthesis
- Yield in both steps is greater than 90%
Characterization of AFRL-5

Hazardous properties

"0" card gap (TBD)
Liq. Impact Test > 200 kg-cm
Friction Test = 43.12 newton
Adiabatic Compression (psi)
3000 Neg.

Physical properties

B.P. = 78 °C
M.P. = -92.8 °C
Density = 0.7957 g/ml
\(\Delta H_f \) (Exp.) = 50.39 kcal/mole
\(\Delta H_f \) (Calc.) = 56.3 kcal/mole
Accomplishments (FY 00)

- Delivered four hydrocarbons to NASA/Marshall.
 - Cyclopropyl acetylene (AFRL-1).
 - Bicyclopropylidene
 - Quadricyclane
 - 1,7-Octadiyne
- Synthesized two advanced hydrocarbons (AFRL-1 & AFRL-3) at bench-scale level.
- 200 gm of AFRL-3 was synthesized in the laboratory.
Planned Efforts of Fiscal Year 2001 (Technical)

- To continue exploring bench scale synthesis of advanced hydrocarbon (AFRL-4).

- Evaluate physical & hazardous properties of AFRL-4 & AFRL-2.
Alliances

- Industry
 - Boeing
 - TRW
 - Kistler
 - Aerojet
- NASA
 - Marshall
 - Glenn
- DOD
 - Navy- China Lake
 - Army- Huntsville
Team Efforts

Research
- Suresh C. Suri
- Michael Tinnirello
- Jacob Marcischak

Theoretical Efforts
- Jeffrey Mills

Physical Properties
- Paul Jones, JoAnne Larue, Jeff Yinn

Hazardous Properties
- Tommy W. Hawkins, Adam Brand, Milton Mckay, Ismail Ismail
Financial Support

- Air Force Office of Scientific Research (AFOSR)
- National Aeronautics and Space Administration (NASA)/MSFC