
Abstract- In this work, our interest is related to the 
esophagus inner and outer wall segmentation from 
ultrasound images sequences. We aim to elaborate a 
general methodology of data mining that coherently links 
works on data selection and fusion architectures, in order 
to extract useful information from raw data. In the 
presented method, based on fuzzy logic, some fuzzy 
propositions are defined using physicians a prior 
knowledge. The use of probability distributions, 
estimated thanks to a learning base, allows the veracity of 
these propositions to be qualified. This promising idea 
enables information to be managed through the 
consideration of both information imprecision and 
uncertainty. By considering that, the fuzzyfication 
process is optimized relatively to a given criteria using a 
genetic algorithm. We conclude this paper with some 
preliminary results and outline some further works. 
Keywords – Segmentation, ultrasound, data-mining, fuzzy 
propositions, veracity, probability, genetic algorithms 

I. INTRODUCTION 

In medical imaging and precisely in ultrasound image 
processing, segmentation studies are often based on the 
use of a prior knowledge given by the physicians 
experience. As consequence, knowledge based systems 
appear to be promising approaches for segmentation. By 
this way researchers aim to imitate human ability for 
segmentation and thus, hope to increase segmentation 
robustness. At the present day, we can first consider that 
the most knowledge based works do not describe clearly 
how a prior knowledge are defined and how to evaluate 
their gain objectively when they are involved in a decision 
system. In this work, we introduce a method, which is able 
to quantify the gain that knowledge can contribute to 
performance of a segmentation system. After a description 
of the medical application of this work presented in 
section 2, the problematic of this study is described. Then, 
the main considered principles are exposed in section 3. 
The architecture for evaluating a prior knowledge will 
follow. Some preliminary results are then presented in 
section 4. Finally, conclusions and perspectives close this 
paper. 

II. MEDICAL PROBLEMATIC 

As previously mentioned, the goal of this study is to 
achieve the detection of esophagus outer wall using 
sequences acquired with the echoendoscopic imaging 
system Olympus EU-M3. The catheter, topped with an 
ultrasound transducer, is introduced into the patient mouth 

and progress along the esophagus lumen, toward the 
cardia. Ultrasound waves are emitted in the progression 
transversal plane and, thanks to reflections, an image 
reconstruction is possible. The catheter progression is 
mechanically controlled using a developed acquisition 
system, so images can be captured with a constant spacing 
in order to ensure 3D reconstruction capability. 

In Fig. 2, the difficulties represented by this kind of 
images can be appreciated. Their quality depends mainly on 
two phenomena: the speckle noise (due to the ultrasound 
imaging approach) and multiple waves reflections [1][2], 
called “harmonics” due to the transducer outer-sheath. The 
esophagus fine structure can be analyzed with this diagnosis 
procedure that explains the efficiency of endosonography in 
medical “staging” of esophagus tumors. 
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Fig. 2. An endosonographic image. Notice the esophagus fine structure 
scheme: esophagus wall is composed of several layers alternatively hyper 
(brilliant) and hypo-echoic (dark). 

The general developed methodology is based on the fusion of 
methods, where the complementary aspects of different 
approaches are exploited in order to obtain best results. In our 
particular case, esophagus wall segmentation is achieved by 
combining a fuzzy model, which enables the integration of 
physicians knowledge on echographic imaging (echogenecity, 
echostructure, harmonics positions), and a dynamic model to 
take into account a prior knowledge on the researched 
anatomical structures (shape, contour regularity). In this 
paper, we focus on the fuzzy process. Our goal is to develop 
an approach of data-mining, which consist on the evaluation 
of a prior pertinence using a learning base (LB). 

III. METHODOLOGY 

The methods of supervised classification aims to relate the 
observation space (or feature space) to the decision space. In 
medical imaging several imperfections can affected the 
considered LB: if the observations are ambiguous, then the 
consideration of fuzzy propositions Pi is needed, whereas if 
the imperfections concerns the class Ci, we have to consider 
fuzzy set in the decision space (Fig. 3). 

In our particular case, we try to evaluate the power of the 
relation between fuzzy sets (associated to fuzzy propositions) 
defined in the observation space, and the possible decisions 
defined in the decision space. 
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Fig. 3.  Learning base possible imperfection 

Also the learning base is constructed as follows: 

 { }( ) { }{ }niWP ik ,...,1,, ∈=Β  (1)  

where {Pk} is a set of fuzzy propositions corresponding to a 
prior, and µPk the membership function associated. By this 
way, we can envisage to define fuzzy sets associated to some 
fuzzy propositions, which maximize the probability to 
classify a pixel in the right class. In the same time, the 
attribution of a veracity degree becomes possible and can be 
considered during an eventual fusion process of each 
considered fuzzy concepts. 

A. Fuzzy image concept 

Let’s introduce first, the concept of fuzzy images based on 
the theory of Zadeh [3]. A fuzzy image is defined as the 
transformation of an image (considered as a MxN array of 
gray level associated with each pixel) into an image with the 
same dimensions, where each pixel is associated with a value 
denoting the reliability of possessing a fuzzy property P: 

A: M x N → [0;1] 
 I(i,j) → µP (I)  (2)  
where, µP (I) reflects the appropriateness or the validity of the 
fact that the pixel I(i,j) possesses the fuzzy property “P”. 
Concerning the application of the esophagus wall detection, 
four fuzzy images are defined. Similarly to [1][4], the 
following concepts are represented in terms of fuzzy images: 

Harmonics: Before starting any echoendoscopic processing 
method, the characteristics of the harmonics (i.e. their 
positions as well as their gray level distributions) must be 
known, else they will impinge on the extraction of useful 
information.  
Region: Due to the acquisition system, a strong contrast 
defines two different regions, which can be easily 
distinguished: esophagus lumen (appears in black) and tissue 
area (appears usually brilliant). This information is very 
precious for the computation of inner wall belief image.  

Contour: The concept of a contour is strong information 
on the presence of the esophagus inner and outer wall. A 
gradient operator, defined by two 5x5 convolution masks, 
similar to Sobel operator, is used to estimate contours in 
the data volume.  
Intensity: Given the fact that a hyper-echoic tissue (for 
example the inner and outer wall) appears as brilliant in an 

ultrasound image, the gray level intensity is an important 
feature to consider.  

B. Probability of a fuzzy event 

In this work, in order to characterize esophagus wall, we 
focus our interest on the two following fuzzy propositions: 

• “Esophagus wall is brilliant”  - P1 
• “Esophagus wall is a contour”  - P2 

These propositions are defined by using physician a prior 
knowledge: inner wall and outer are hyperechoic (that 
means they have a high ability to reflect ultrasound), inner 
wall is located between esophagus lumen and mucous that 
are hypoechoic, whereas outer wall is situated between 
muscular membrane and internal tissues, that are 
hypoechoic in comparison.  

Our approach lies on the closed world assumption where 
the possible events are grouped in the set Ω={W1, W2,…, 
WN}. The possible events correspond in our particular case, 
to inner wall (object 1), outer wall (object 2) and others 
tissues (object 3). In this context, we assume that it is 
possible to do the hypothesis of exclusivity and 
exhaustivity. Thus, That means in this study we have: 
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From this starting point, we can commonly consider the 
problem according to the Bayes model. Given the a 
stochastic vector of features labeled X(i,j), which attributes 
at each pixel (i,j) a set of features, we can express the 
following conditional probabilities: 
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If we assume now that the vector of features is not an 
event perfectly accurate that means that the object is 
defined by a fuzzy proposition as for example “being 
brilliant” or “being tall”, then it is possible to talk in terms 
of probability of fuzzy events because a probability is 
associated to an ambiguous concept. Such fuzzy 
proposition can be associated to a membership function 
taking its values in [0;1]. By using the Bayes expression, 
we can express the a posteriori probability to observe the 
class Wi given the membership value to a given concept 
given by the fuzzy proposition P. 
  p2 
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• p(Wi) is the probability of each class Wi. This probability is 
directly estimated for each class from the predefined learning 
base. 
• p(µP(i,j)=µ) represents the probability distribution to 
observe a given membership value on the LB. This 

p1 



probability distribution is directly estimated from the LB 
histogram of membership values. 
• p(µP(i,j)=µ |Wi) -or p2- corresponds to the probability to 
observe a given membership value, corresponding to a given 
concept, knowing the class Wi. This means that the 
distribution of probabilities can be estimated by the 
exploitation of the membership value histogram on the class 
Wi. This estimation is achieved by using the LB defined 
before. 
• p(Wi|µP(i,j)=µ) -or p1- corresponds to the probability to 
classify a given pixel in the class Wi, knowing its membership 
value to the concept P. In other terms, this probability gives 
the appropriateness of the considered fuzzy set defined by µP 
to characterize the class Wi. 

Considering the learning base, it is possible to evaluate 
how a particular fuzzy proposition characterizes each 
class. We have to answer the two following questions: 
which membership function has the best power to 
characterize a class, and in the same time, how can we 
define the fuzzy proposition veracity, relatively to this 
class? 

C. Veracity of a fuzzy proposition 

Given the fuzzy proposition P (based on a fuzzy concept) and 
an the associated membership function µP, then an example 
of belief probability distributions can appear as in Fig. 4.  

 
Fig. 4. An example of beliefs probabilities distribution  

In Fig. 4, we can notice that high membership values are 
preponderant on a posteriori probability distribution. This 
means that, given a membership value, the probability to 
observe the considered class is significant. On the other hand, 
from the examination of beliefs a prior distribution on the 
learning object, we can notice that the probability to observe 
high beliefs is low. In this case, the chosen membership 
function is not sufficient. Then, a criterion to be satisfied by 
the membership function can be defined using the following 
considerations: 
• The distribution p2 have to contain “significant” probability. 
This means that the maximum (MAP) of the a posteriori 
probability pm=p(Wi|µP(i,j)=µ) must be considered in the 
criterion. 
• The significant probabilities have also to correspond to 
any “important” membership values. Thus, we must 
include the corresponding membership value in the final 
criteria which is defined as follows: 

 ( )( )[ ]µµµ == jiWp Pim ,maxarg  (6) 

• On each object, high membership values have to be in 
majority in the beliefs distribution. This means that this 
distribution of probability must be skewed toward the high 
membership values. In this work, the estimation of the 
distribution skewness κ is given by (9), 
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where µ , µ~  and µσ denote the mean, the median and the 
standard deviation of the ( )ji,µ  distribution. 

• Finally, the distribution p1 must be the more uniformly 
distributed as possible, to preserve sufficient information 
during all the process. As consequences, the consideration 
of the entropy S will ensure that data will not be reduced to 
only one value. Its expression is as follows: 

 ( )∑ ⋅−=
i
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By considering these constraints, we can define a final 
criterion, which can be also considered as a veracity 
measurement of the fuzzy proposition P. The searched 
membership function must maximize this criterion, which 
is defined in general as follows: 
 ( ) ( ) ( ) ( ) ( )( )222 (,, pSiphgpfpp mmmm ⋅⋅⋅=Γ κµµ  (9) 

In the last expression, f is an increasing function of the pm, 
g is an increasing function of the membership value µm 
associated with pm, h and i are respectively increasing 
functions of the beliefs distribution skewness and entropy. 
The considered functions take all their values in the 
interval [0;1]. To conclude, the searched membership 
function is defined by the following expression: 
 ( )[ ]2,,max ppArg mmPopt µµ Γ=  (10) 

D. Genetic processing 

We propose here a genetic algorithm [5] in order to find 
optimal membership functions corresponding to fuzzy 
propositions. In the particular case of this study, we 
parameterize the membership function by a S-Shape function 
Sa,b,c, which depends on three parameters a, b, and c.  

A family of random solutions {Gi} (the chromosomes) is 
initially computed in the search space ∆, which is a bounded 
by the maximum value authorized for the given scalar feature 
in the entire learning base. First solutions elaboration step 
being ended, three kinds of operators are now applied on each 
chromosome. During the reproduction stage, best 
chromosomes are duplicated, in order to build a new set. The 
likelihood of duplication depends on values of the fitness 
function, which are computed on each chromosome. Several 
crossovers, which correspond to chromosomes melting, are 
operated on {Gi}. The main advantage of this kind of operator 
is to speed up the algorithm convergence. The mutations 
operated on {Gi} ensure that all the search space is taken into 



account. Therefore, chances that the coefficients being 
stabilized in a local minimum are reduced. Mutations are 
accomplished with an uniform likelihood law. At each 
generation, the best solution, corresponding to the best set of 
fuzzy function parameters relative to (10), is retained from 
the original solutions set. The genetic progress is stopped 
when the standard deviation of the fitness function on each 
chromosome is less than a threshold, which is a percentage of 
the mean fitness value computed in the chromosome 
set/family. In the case where this condition is not realized, the 
genetic process is stopped after a given number of iterations 
Ngen. Finally, we compute the parameters histogram, in order 
to choose the best solution.  

III. PRELIMANARY RESULTS 

This section presents first experiments obtained from real 
sequences acquired in the Brest center hospital (France). The 
set of possible events is composed of three elements 

{ }321 ,, WWW=Ω  where W1=”inner wall” – W2 = “outer 
wall” and W3=”other tissues”. The constituted learning 
base is composed, for instance, of two hundred images of 
non-pathologic cases. Two fuzzy propositions are here 
considered: P1=”local gradient is high” and P2=”gray level 
is high”.  

(a) (b) 

 (c)  (d) 

Fig. 5. Study of the fuzzy proposition P1 on the esophagus inner wall. (a) and 
(c) corresponds a non-optimal membership function whereas (b) and (d) 
corresponds to an “optimal” membership function. 

(a) (b) 

 (c)  (d) 
Fig. 6. Study of the fuzzy proposition P2 on the esophagus outer wall. (a) and 
(c) correspond a non-optimal membership function whereas (b) and (d) 
correspond to an “optimal” membership function. 

The Fig. 5 and Fig. 6 presents obtained histograms for the 
cases of esophagus inner and outer walls. We can appreciate 
how it is possible to increase the reliability of a prior through 
the optimization of membership functions using a learning 
base. The Fig. 5.a, 5.c and Fig. 6.a, 6.c present the obtained 
histograms with non-optimal membership function, whereas 
Fig. 5.b, 5.d and Fig. 6.a, 6.b correspond to optimized 
membership function. 

TABLE I: Veracity of fuzzy proposition for inner and outer wall 
 Measureme

nts µP1 µP1 opt µP2 µP2 opt 

Pm 0.46 0.78 0.2 0.1 
µm 0.6 0.9 1 0.8 
κ -1.9 -0.3 -2.5 -0.1 
S 2.5 2.80 2 2.5 

Inner wall 

Veracity 0.01 0.28 0.003 0.004 
Pm 0.3 0.27 0.3 0.38 
µm 0.8 1 0.6 1 
κ -2.5 -1.1 0.4 -0.5 
S 2 2.2 2.3 2.7 

Outer wall 

Veracityl 0.007 0.025 0.03 0.25 

As we can see in Table 1, the “brilliancy proposition” cannot 
well discriminate between esophagus inner wall to the other 
anatomical structures due to a veracity of 0.004. In 
comparison with the “contour proposition” is more pertinent 
with a veracity of 0.28. Otherwise, the ability the “contour 
proposition” has to separate outer wall from other anatomical 
structures appears significant with a veracity equal to 0.25, in 
comparison with “brilliancy proposition”, which just has in 
the “optimal case” a veracity of 0.025.  

IV. CONCLUSIONS 

Some preliminary results, obtained with this approach, give 
elements to envisaged the possibility to quantify a particular 
aspect of the fuzzy propositions veracity, in considering 
another aspect of the information imperfection: the 
probabilistic uncertainty. Results have shown, for some 
simple examples of fuzzy propositions, that a blink use of a 
priori knowledge given by physicians is not always sure. 

In this work, a priori knowledge has been evaluated 
before any fusion process. The next step of this study will be 
to optimize fuzzy function after the a priori knowledge has 
been combined in a fusion process. By this manner, it will be 
possible to consider the step of data-mining and the fusion 
process as a coherent whole. 
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