
 

 

Abstract-We propose a new lossless compression method for 
medical images, based on a hierarchical sorting. Hierarchical 
sorting is a technique that achieves a high compression ratio by 
detecting the regions where image patterns change abruptly, and 
by sorting pixel order by value to increase predictability. This 
method enables control of sorting accuracy along with size and 
complexity. As a result, we can reduce the sizes of the 
permutation tables and reuse the tables for other image regions. 
Comparison of this method through experiment reveals better 
performance for medical images generated by X-ray CT, MRI  
and large size CR····DR instruments. This technique applies a 
quad-tree division method to divide an image into blocks in 
order to support progressive decoding and fast preview of large 
images. 
Keywords - lossless compression, medical image, sorting 
algorithm, hierarchical coding 
 

I. INTRODUCTION 
 

In medical imaging, data compression techniques are 
needed for archiving the many images generated by medical 
imaging instruments, because medical law mandates that 
these images be kept for long periods. In keeping with the 
nature of medical diagnosis, the original image quality must 
be preserved through compression-decompression. 
Progressive retrieval is another requirement in this field. It 
promotes fast diagnosis via rapid data transmission and a 
quick preview function. When developing medical image 
compression, we must take into account the image format 
used in the field. In general, medical images use more bits per 
pixel than standard photographs. Most medical images use 
10- or 12-bit/pixel formats. There are two other compressible 
aspects of medical images. One is that there are extremely 
large image formats such as for digital radiography (DR) and 
computed radiography (CR). These images are represented in 
1024×1024-pixel or higher resolutions. The other is the case 
where a set of many images with similar imaging parameters 
is generated. Advanced medical imaging instruments such as 
helical-mode X-ray CT and 3D MRI generate a series of 2D 
images whose members are very similar to each other. 
Considering these characteristics, we developed a new 
compression algorithm that achieves high compression 
performance for medical images. 

In general, image compression algorithms consist of three 
steps: prediction, modeling and encoding. Prediction is based 
on the experiential principle that the entropy of the prediction 
error is smaller than original entropy if the next pixel can be 
predicted fairly accurately from the already coded data [1]. 
This principle is fundamental to image compression. 

In lossless image compression, the algorithms used for 
JPEG (lossless mode), an ISO standard, are well known [2]. 
These algorithms use several prediction methods and entropy-
coding methods depending on the image type. For entropy-
coding schemes, either Huffman coding or arithmetic coding 
is used. However, since these compression methods are 
intended for common photographic images of 8-bit/pixel 
format, these are not applicable for medical images in 10- to 
12-bit/pixel format.  

In 1996, Weinberger et al. developed LOCO-I (applied to 
JPEG-LS) which supports not only 8-bit/pixel but also 16-
bit/pixel formats [3]. LOCO-I is a lossless and near lossless 
compression algorithm which combines the simplicity of 
Huffman coding with the compression potential of simple 
fixed context models. Since the method employs a one-pass 
scheme, the compression speed is usually higher than that of 
two-pass schemes. The compression ratio of LOCO-I is better 
than schemes based on arithmetic coding. However, LOCO-I 
doesn't support progressive reconstruction and it handles only 
a single image for each compression process. 

This paper proposes a new lossless coding method for 
medical images. To approach the problem with conventional 
methods, we developed the new technique, “hierarchical 
sorting.” This method can achieve a high compression ratio 
by detecting patterns observed in an image set collected by X-
ray CT and MRI instruments. This technique also supports 
progressive decoding. 
 
 

II. THEORY 
 

If pixels are sorted perfectly in density order, a predictive 
coder generates the smallest possible predicting code. 
However, a table is required to restore the pixel positions to 
recover the original image. The size of the table is usually 
greater than the size of the original image. Hierarchical 
sorting does not sort the pixels in an image accurately. This 
technique generates “permutation tables” and applies those 
tables to many regions of many hierarchical layers. 
Hierarchical sorting consists of two processes: block division 
and permutation table creation. In the first process, the 
original image is divided into sub-blocks.  Then, the 
permutation table is created to sort the pixels in the block, 
and the block is tested for whether to sort at this level.  

Some lossless compression algorithms developed recently 
employ hierarchical image segmentation for progressive 
reconstruction. Such algorithms help us quickly understand 
the detailed characteristics of the image. There are two 
hierarchical image segmentation methods. One is multi-scale 
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encoding of an image based on wavelet analysis. This method 
decomposes an image into four bands: HH, HL, LH, LL, then 
reduces the resolution of the image [4], [5]. In this method, 
characteristics observed in each band are analyzed and the 
overall characteristics are detected as a result. Another 
method is to analyze the block level characteristics after 
subdividing the image using binary or quad trees [6]. We use 
the latter method in order to detect details of image structure 
progressively. 

Hereafter, we assume that all images are square, with 2n 
pixels per side, and that logarithms are base 2. 
 
A. Hierarchical sorting 
 

As mentioned above, digitally similar density patterns 
rarely appear in an image. Further, compared to ordinary 8-
bit/pixel photographs, 12-bit/pixel medical images have a 
smaller likelihood for this condition. This tendency explains 
why methods based on exact pattern matching don't work 
well for medical images. 

Here we propose another fundamental approach to 
compressing digital images: We pay attention to the order of 
pixel values and not to the pixel values themselves, because 
bit depth does not affect the order of the pixel values. 

Fig. 1 shows the relationship among the original block, the 
permutation table and the sorted block. It is clear that the 
sorted block generates a small predicting code. Our concept, 
based on hierarchical sorting, is to improve the image 
compression ratio by choosing the size of a table and using 
partial sorting. We developed a table generation method that 
takes into account only the order of the pixels in a block. 
 
A-1. Block division 
 

In a process similar to so-called quad-tree division, the 
image is divided into four non-overlapping square blocks.  
The image to be compressed is represented as a square array 
of pixels. For an image of size SS × , division level Ln  (n = 
0,1,2,···,logS) is defined. Then, sub-block size iL

BS  at Li and 
number of blocks iL

BN  at Li are defined. A predictive coding 
method is applied to each block and it produces a code of size 
cp(n) for division level Ln. At the same time, the block is 
sorted according to a permutation table created from the 

pattern of the block. Then the same predictive coder is 
applied to the sorted results. The size of code generated by 
this procedure is cs(n). The difference of the code sizes, cl, is 
computed by 
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We select the coding method ca for a block based on the value 
of cl. If cl is greater than 0, the permutation table is applied 
before predictive coding; otherwise, the predictive coder 
codes the block directly. 
   All blocks of Li are tested using (1), then each block is 
tested with (2) or (3) for whether to do further sub-division. 
   By dividing an image into small sub-blocks, detailed 
characteristics of an image can be well understood; however, 
subdivision of such fine granularity will increase the number 
of blocks to be processed. In the first step, the entropy of four 
L0 blocks and L1 blocks is compared to that of the code for L1 
blocks that consist of four large blocks. 
   The necessity of L1 subdivision is determined by (2). 
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At L1 subdivision level or higher, it is not necessary to have 
the entropy of all the sub-images. Estimating the entropy of 
the entire image at all division levels might overlook the 
details of the image. Therefore, further subdivision can be 
performed locally by taking into account only the image area 
to be processed. 
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The block division process ends when S / 2Li becomes ST, 
where ST is the size permutation table. 
 
A-2. Permutation table creation 
 

We must determine the size of the permutation table before 
starting hierarchical sorting. Let us define the necessary bits 
for storing the permutation table as Tbit. When the size of 
permutation table is ST, Tbit is given by TTbit SST log= . As ST 
increases, Tbit increases rapidly. There are ST ! different 
patterns in the set of permutation tables of size ST. If we make 
ST small, one pattern can be applied to many places in the 
image. However, the result of setting parameters this way is 
that complex regions of the image get divided into many 
blocks, so many bits are required to record the inter-block 
connections. Conversely, if ST is large, the compression ratio 
of the region becomes high. However, the necessary storage 
for the permutation table increases and the likelihood of 
applying the generated permutation table to other regions 
decreases. In order to increase the probability of reusing the 
permutation tables, we use fixed-size permutation tables for 
all division levels. Hereafter, the word “resolution” indicates 
the number of segmented regions within a block that are 
formed by quad-tree subdivision or permutation tables. For 
example, the resolution of a quad-tree block division is 4. If 

Fig. 1. Relations among original block, permutation table and sorted
block 



 

 

the resolution of the permutation table is higher than that of 
quad-tree block division, the sorting of Li overlaps that of Li+1.  

In the complex regions of an image, although rough 
sorting is done at Li , more precise sorting is done on Li+1. We 
call this technique "hierarchical sorting." When the size of 
the permutation table is 2×2, both the resolution of this 
permutation table and that of the quad-tree block division are 
4. In this case, sorting is repeated within each block, and the 
size of the predicting code may become large in the complex 
regions of the image. Therefore, a permutation table of size 2
×2 is not used with this technique. 

As described above, if the size of the permutation table is 
8×8 or greater, multiple appearances of the permutation 
pattern rarely occurs. Hence, permutation tables of size 4×4 
are better for our hierarchical sorting. 

 
B. Coding 

 
In hierarchical sorting, an image is divided into two different 
types of blocks. The block type determines the encoding 
method. For one type, only predictive coding is applied. This 
is called "coding for smooth regions." For the other type, 
predictive coding is applied after the block is sorted using 
permutation tables. This is called "coding for complex 
regions." With one additional bit used to identify the block 
type, the total bit count of typebit for an image becomes: 
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Each encoding method is explained in the following sections. 
 
B-1. Coding for smooth region 
 

Predictive coding must be done at each division level for 
progressive decoding. When predictive coding starts at the 
division level of Li, the average densities of pixels in each 
block at Li are written to a compressed data stream. Let us 
denote the number of blocks coded by the coding method at 
Lj as jL

BNP , the block at Lj as jL
mB  (m = 1,2,3···, jL

BNP ), and 

the nth pixel value in jL
mB as )(nv jL

mB
. The jL

mB
v is the average 

density value of jL
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The predictive coder encodes all jL
mB

v  generated by (6). Then 

the entropy coding is applied to the result. At further division 
level, the difference of jL

mB
v  and 1+jL

mB
v  is encoded by the 

predictive coder until the size of divided block equals that of 
permutation table. The predictive coder encodes all 
differences of the blocks at the division level and the entropy 
coding is applied to the generated code set. The results are 
written in the low order of division level. 

 
B-2. Coding for complex region 
 
The permutation tables at all division levels sort all blocks, 
and the predictive coder encodes the pixels in these blocks. 
The result is sent to the entropy coder.  Let us denote the first 
division level of the block-applied permutation table as Lk . If 
Lk is higher than Lj, we can use the average of the previous 
division level or Lk-1. If the block at Lk is complex and the 
blocks at Lk+1 are smooth, this method writes the average of 
the pixels in the Lk block.  
   If the block at Lk and higher blocks use permutation tables, 
the pixels in the block are encoded by using all of the 
permutation tables generated at the Lk and higher division 
levels. In this case, the progressive structure breaks down. 
However, the length that sequential decoding requires is only 
the block size at Lk.  
   Finally, all generated codes are combined. The compressed 
data consists of permutation tables, the table of block type, 
and entropy codes of the smooth and complex regions. 
 
 

III. IMAGE SET COMPRESSION 
 

The permutation tables used by our method are of fixed 
size. If the image set has similar characteristics, the same 
permutation tables can be applied to many regions of many 
other images. 
   We proposed an image set compression method based on 
this assumption. This approach is based on hierarchical 
sorting. Fig. 2 illustrates the process in which the permutation 
tables of the previous image in the set are applied to the 
current image. In Fig. 2, the current image references only 
permutation tables in the previous two images, in order to 
reduce the number of code bits used for referencing.  

 
 

IV. IMPLEMENTAION 
 

An image compression system using hierarchical sorting is 
independent of the pixel scan and of the predictive coding 
methods. In our implementation, we used the Hilbert curve to 
scan an image. We used simple DPCM as the predictive 
coding method. We showed in Fig. 3 the blocks to which the 
permutation tables were applied.  In our case, we used 4×4 

Fig.2. Image set compression: sharing permutation-tables among images



 

 

pixel permutation tables, with no limit on the number of 
permutation tables. Fig. 3 shows an example of the blocks to 
which the hierarchical sorting method was applied for X-ray 
CT images. 
   In the example, we used a 512×512 medical image in 12-
bit/pixel format. Fig. 3 is an example of our image set 
compression picked out from the image sequence in the set of 
sample images. Fig. 3 (a)(c)(e) were original image; (b)(d)(f) 
are permutation tables generated using the image set 
compression method. In the complex regions of the image, 
permutation tables were used at several division levels.  
These regions were highlighted in (b)(d)(f). It is obvious that 
many more permutation tables were used for images (c) and 
(e) than for image (a). Our image set compression used the 
permutation tables that were generated for previous images. 
 

V. RESULTS AND DISCUSSION 
 

Table 1 shows details of sample images that were used to 
compare performance to that of the standard JPEG-LS 
method. Fig.4 and Fig.5 show performance comparison of the 
proposed and standard JPEG-LS compression methods. As 
shown in Fig. 4, when the proposed method was applied to a 
single image, our method showed poorer performance than 
JPEG-LS for smaller-sized images (256×256). However, it 
showed superior performance when the image resolution was 
greater than 512 × 512. Fig.5 shows the image set 
compression ratios, normalized by the compression ratios of 
JPEG-LS. As seen in Fig.5, our method outperformed 
conventional methods for all image sizes. 

 

 
VI. CONCLUSION 

 
In this paper, we proposed a lossless image compression 

method for medical images, based on hierarchical sorting. 
Our method takes into account both the global properties of 
the image and the local complexity of the pixels. We 
implemented the method and compared performance to a 
conventional JPEG-LS compression scheme.  The results 
show that our method achieved a compression ratio the same 
as or better than that of JPEG-LS when applied to a stand-
alone image. Furthermore, as our method is designed to 
handle image sets produced by medical instruments, we 
confirmed that it outperforms conventional methods when 
applied to large sets of medical images. 
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100 MRI images 

20 X-ray helical CT images (chest) 
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