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ABSTRACT

Ongoing interest in establishing a base on Mars has spurred a need for regular and
repeated visits to the red planet using a cycling shuttle to transport supplies, equipment
and to retrieve surface samples. This thesis presents an approach to designing an optimal
heliocentric cycling orbit, or cycler, using solar sails. Results show that solar sails can be

used to significantly reduce V,s at Mars and Earth. For example, using a reasonably
high performance solar sail, a V, |,,,.= 2.5 km/s is possible at every synodic period using

atwo-dimensional orbit model. Lower performance sails were also modeled resulting in
paths that behaved more like a ballistic Aldrin cycler with higher V,s. Double

rendezvous missions were explored where the spacecraft must match the velocities of

both Earth and Mars, offering promising trgjectories for Mars sample return missions.
The solutions to these missions, although not necessarily cyclers, show that using asail to
rendezvous with and remain near Mars for an optimal amount of time will minimize the
total transit time between Earth and Mars. Genera-purpose dynamic optimization
software, DIDO, is used to solve the optimal control problem using a pseudospectral

method using both two- and three-dimensiona dliptic orbit models.



THIS PAGE INTENTIONALLY LEFT BLANK

Vi



V.

TABLE OF CONTENTS

INTRODUCTION. ..ottt 1
APPROACH TO OPTIMAL CONTROL SOLUTIONS........cooviiiiiiiiiiaiii 3
A ROADMAP ...ttt ettt ettt et e et e e e e e bbbbe bt be s seeeeeeeeeas 3
1. Coordinate SYSLEMS. ....cevveviiiiiie i ee e e e e e aae s 4

2. S o= o Lo USSP 5

3. Bounding the Problems..........ccooiiiiiiiiiiiei e 6

4, Numerical Analysis, terminology and DIDO>..............ccccoveuvennen. 7

B. VALIDATING SOLUTIONS.....coiiiiiiiiieeai e, 11
1 FEasiDility ... s 11

2. (@] )11 4= 11 2P 12

3. Comparison with Other Optimal Solutions.................coeeeeeens 12
DEVELOPING THE OPTIMAL TWO-DIMENSIONAL CYCLER ............... 15
A. TWO-DIMENSIONAL MODELS.......coooiiiiiiiiiii e, 15
1 Sl MOAE. ... 15

2. DynamiC MOEl.......ccooiiiiiiiiiiiie e 16

3. EVENtSMOCE ..o 17

B. THE OPTIMAL CONTROL PROBLEM ......ccovvviiiiiiiiiiiiie, 18
C. SOLAR SAIL CONTROL LAW ..o, 19
D. RESULTS .oetttttttttitteeeeieee ettt et e e ettt et e e e e e eeeeeeeasbnteebebeeeeeeeeeeeees 21
1. Benchmark Problem Solutions with Circular Coplanar Orbits...22

a. Earth-Mars FIyby........cooovviiiiiii e, 22

b. RENAEZVOUS ......vveiiii e e 28

c Double ReNdezvous.............cueeiiiiieeiiiee e, 36

2 Benchmark Problem Solutions with an Elliptic Coplanar Orbit..42

a Earth-Mars FIYhy.......cooovvviiiiii e, 44

b. RENAEZVOUS ... 46

C. Double ReNdezvouSs............ccoooviiiiiiiiii e, 48

3. Earth-Mars Synodic Cycler Solution..........cccooeeeevivvviiiiiienennns 50

a. EventsS MOdel ..., 50

b. Solar Sail Cycler Problem Formulation.............ccccceeen.... 55

C. Synodic Cycler Results and AnalysiS.........ccovvvveevvvinnnnnnnn. 56

d. REMAIKS ....ooiiiiiieeiee 61

4, Fun with Cycler TrajeCtories..........coovvvvveeiiiiiiiii e 61

a. Double Rendezvous Synodic Cycler ........ccoevvvveevviveeeiiennnnn. 61

b. Taxi Propallant CoSt......ooveeeviiiiiiiiicieie e 63

C. Profiles Using Different Sail Performances...................... 64

E. VALIDATION OF SOLUTIONS.....ccoiiiiiiiiiieaee e, 66
DEVELOPING THE OPTIMAL THREE-DIMENSIONAL CYCLER............ 71
A. THREE-DIMENSIONAL MODELS........ccooviiiiieeeeeeeee, 71
1 Sl MOAE. ... 71



2. DyNamiCS MOUEL.......ccieiiieiieieieiicce e e 72

3. EVENTS MO .. ..o e 73

B. THE OPTIMAL CONTROL PROBLEM ..ot 77

C. SOLAR SAIL CONTROL LAW ..eiei e 78

D. [ T S 82

1. Benchmark Problem Solutions with Elliptic Inclined Orbits....... 82

a. Earth-Mars FIVhY.......cooviiiiii i, 82

b. RENAEZVOUS ... e 85

C. Double RENAEZVOUS........cueeeie e 89

2. Earth-Mars Cycler Sat-Up.......uceiiiiieeiiieeeei e 97

V. CONCLUSIONSAND FUTURE WORK ... 99

A. CONCLUSIONS. ..o e a s 99

B. OPPORTUNITIESFOR FUTURE WORK ... 99

APPENDIX A. APPLICATION OF THE MINIMUM PRINCIPLEX®Y ... 103

APPENDIX B. DERIVATION OF THE 2-D EQUATIONS OF MOTION............... 105

APPENDIX C. DERIVATION OF THE 3-D EQUATIONS OF MOTION.............. 109
APPENDIX D. TRANSFORMATION INTO HELIOCENTRIC - ECLIPTIC

COORDINATES (EEFRAME) .. 113

APPENDIX E. SOLAR SAIL CONTROL HODOGRAPH ANALYSIS..........c........ 117

LIST OF REFERENCES ... oo e e 119

INITIAL DISTRIBUTION LIST .t et 121

viii



Figure 1
Figure 2
Figure 3

Figure 4
Figure 5

Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13
Figure 14
Figure 15

Figure 16

Figure 17
Figure 18
Figure 19

Figure 20
Figure 21

Figure 22
Figure 23
Figure 24

Figure 25

Figure 26
Figure 27

Figure 28
Figure 29
Figure 30

LIST OF FIGURES

Elliptic Orbit in Polar CoOrdiNates.............couvuueiuniinieeeeieeee e 4
Path and Target manifolds (orbit POSItIONS).........iiveeiiiiieiiiii e 7
Path Meeting Event Manifolds (Planet Encounters) in Space (x-y) and

LI 1= SRR 8
Sail normal, solar radial vector and control angle @..........cocovveviiiiiiininneens 16
States and Control for Mars Flyby Mission. Markersare DIDO output and
lines represent propagated Path. ..........ccovvveiiiiiiiiniei e 23
Mars Flyby Trajectory with Sail Profile and Normal..............coooeeiiiieeinnnes 24
Mars Flyby MisSSion COSIALES .......vuuuiiieieiiiieiiiiii et eeeeieees 24
Mars Flyby Cone ANngle CONrol ..........ooooeeiiiiiiiiiiiii e 25
Mars Flyby Mission Propagation (line) with DIDO Output (dots) ............... 26
Hamiltonian Profile for Mars Flyby MisSion.......ccooooeveeiiiiiiiiiiiicn e, 27
Second Order Condition for Mars Flyby .........ccooooveeiiiiiiiii e, 27
DIDO State and Control Output (Markers) and Propagated Path (line) for

EM rendeZVOUS. .........ovvuiiiii i et e 28
Sail Trgjectory and Profile for Earth-Mars Rendezvous...............cevevvveenn. 29
Costates for Earth-Mars Rendezvous Mission ..........ccooeeeiiiiiiiiiiiiin e, 30
Comparison of DIDO Controls and Tangent Steering Control Law for EM
RENEZVOUS. ...ttt 31

2

Second Order Necessary Condition ﬂ;z' 3 0 32
Propagated Path (line) with DIDO State Output (dots) for EM Rendezvous.. 32
Hamiltonian for Minimum Time EM rendezvous. .............ceveeevvviiieeeeiines 33
Mars to Earth Rendezvous. Shows reverse trgjectory of EM rendezvous
LTSS T o P 35
ME Rendezvous States and CONtrolS...........covveuvevemiiinieeeee i eeeeeeeeeeeens 35
States and Controls for EME Double Rendezvous in Minimum Time
(oL 4 38
EME Double Rendezvous Trajectory and Sail Profile (b=.17).................... 38
EME Double Rendezvous with Stay Time & Mars.........ccoevvvveieiiieeeeennennn. 41
EME Double Rendezvous Transit times for Various Mars Stay Times.
(D7) o 42
Minimum Time EM flyby with Mars Elliptical Orbit. Final positionis at
MaIS PEITADSIS. ..ottt ettt e e e e e ettt e e e e e e e e e e e aaaeeaeeeeeeeneene 45
EM Hyby with Mars EHliptic Orbit ...........coovviiiiiiiiiinieeeien e 45
Comparison of State Profiles Using the Circular (markered lines) and
Elliptic (thick lines) Orbits MOEIS..........coviiiiiiiiiiiiie e 47
EM Rendezvous with Mars Elliptic Orbit ............ceiiiiiiiiiiiiiii s 47
EM Rendezvous with Coplanar Elliptic Orbits. ............coovviiiiiiiiinieeiinen, 48
States and Control for EME Double Rendevous with Elliptic Mars Orhit. .... 49



Figure 31
Figure 32

Figure 33
Figure 34

Figure 35
Figure 36

Figure 37
Figure 38

Figure 39
Figure 40

Figure 41

Figure 42

Figure 43
Figure 44

Figure 45
Figure 46

Figure 47
Figure 48

Figure 49
Figure 50

Figure 51

Figure 52
Figure 53
Figure 54
Figure 55

Figure 56
Figure 57
Figure 58
Figure 59

EME Double Rendezvous Trgjectory and Sail Profile with Elliptic Mars

OFDIt.. e s 49
Two-Dimensiona Earth-Mars Cycler Geometry with Circular Coplanar

Planetary OrbitS.........uuuueiiriie i e e e e e e e e 52
Gravity ASSISt GEOMELY......ccevveeeiieieeeeeeeee ettt e ee e e et r e e e e e e e eeeeeeeees 54
DIDO States (markers) and Control with Propagated Path (line through

markers) for aSingle Synodic Cycle. ..........uvveiiiiiiiiiiiie e, 57
Single Cycle Path of Solar Sail Cycler with Minimum Vi|mars: ««eeeeeeeeeennnnnn 58

Propagated Path (line) with DIDO State Output (dots) for Single Cycle.
Solution uses 115 total nodes (45 before and 70 after the interior knot). ....... 59

Varying gin the Complex Combination Cost FUNCtion ...........ccccceeeeveveennns 60
Minimum b Solar Sail States and Controls for an EME Double
RENOEZVOUS. ...ttt bbb ees 62
Trajectory for Minimum b EME Double Rendezvous.............ccccceeveeeeenee. 63
The Effect of Varying Sail Performances on a Cycler with g= 1 in the
COSE FUNCLION ... e e 65

Propagated Path with “Missed” Mars Swingby Phasing. Propagated states
use controls interpolated at time steps different than DIDOs LGL

distributed time steps causing differences at the interior hard knat. ............. 68
DIDO Control Output at LGL Node Points and Interpolated Controls used

in the ODE45 Propagation Near aKnot. Step sizes match fairly well.......... 68
Solar Sail Control Model for 3 Dimensional Dynamics............ccovvvvvvvennnnn. 72

Flyby Mission to Mars with Elliptic, Inclined Planetary Orbital Planes.
DIDO output (dots) and propagated path (line). Mars orbit inclination is
exaggerated for display PUMPOSES........cevvereeeieieeeee et e e e e 83
State History for Mars Flyby (3D MOdEl) .......covvieeeiiiiieice e 84
Cone and Clock Angle Controls for Mars Flyby. History is shown for
DIDO (markers) and tangent steering law using states and costates (lines). .. 84
EM Rendezvous with Elliptic, Inclined Orbits.............cccccoevieiiiiiin, 85
Optimal Profilefor f and w; Statesin the 3D Rendezvous Mission............. 86
Costate History for Minimum Time Rendezvous with 3D Orbits Modd. .....87
Control History for 3D Rendezvous. Displayed are DIDO controls
(markers) and the controls derived from the tangent steering law with the

states and costates as iNPULS (lINES). ...eeevvvveniiiiiee e e 88
Propagated Path of 3D Rendezvous (line) with DIDO Output (dots). Mars

inclination is exaggerated for display puUrpoSES. ........cccvvvviiiiieeeiiiiiiii e, 88
Hamiltonian of 3D EM Rendezvous Problem.............oiiiiiiiniiiiinnnnn, 89
3D EME Double Rendezvous Path (10p VIEW) ........uvvveiiiieeiiiiiiiiiiii e 95
3D EME Double Rendezvous Path (oblique VIeW) ...........ccoovvviiiiiiiininneens 96
Propagated Path (line) and DIDO States (dots) for 3D EME Double

RENAEZVOUS. ......veiiiiii e e e 96
RSW Coordinate SYSEM ......cooveiiiiiiieie e e 109
Spherical coordinate SYStEM ........ueiiiieeeiii e e e e e e, 113
Planetary perifocal SyStem ..........cvvviiiiiiieiiiiee e 116
Hodograph for Cone ANGIE, @ .....vvvieviiiiiiiiiee e e 117



Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8

Table9
Table 10
Table 11

LIST OF TABLES

Canonica Units Used to Non-Dimensiondize the States and Parameters. ...... 6

Event Conditions for Flyby and Rendezvous Problems................occeeeee. 18
Mars-Earth Rendezvous Event Conditions.............eeeeeeieieiiiiiiiiiiiiiiiininnee. 34
Event Conditions for EME Double ReNdezvous .............euveveeiieeeeiiiiiinnnnns 37
Earth-Mars Solar Sail Cycler Flyby Data (b=.17, FL)......cccoeeveeeererernninnnns 59
Cyclic End Condition Errorsfor Synodic Cycler ..........veeeviiieeiiiriiiinnn, 60
Solar Sail Cycler Characteristics for Cycler (b=.017, gF1)........ccovvvvvvrvnnnnn. 65
Mean Square Error of DIDO States Compared with Propagated States

USING Matlah® ODEAS..........cveieeieeeee e e 66
Earth and Mars Orbital Parameters...........eueeeeeeeeiiiiiiiiiiiiiiiiiiieieeeeeeeeee 73
Event Conditions for 3-D Flyby and Rendezvous Missions........................ 77
EME 3D Double Rendezvous Event CONSIraintS..........uvvevveeeeeeeeeeieeeeennnns A

Xi



THIS PAGE INTENTIONALLY LEFT BLANK

Xii



LIST OF SYMBOLS

Subscripts.

oi.f - Initid, intermediate, or final conditions respectively
ul - Upper or Lower bounds respectively

- Earth, Mars or planet respectively

emp
£ - Heliocentric-ecliptic frame
Superscripts:
=" - Immediately prior to or following an interior event respectively
- Optima
Variables:
Dots denote the time derivative of a given variable.

U denotes a unit vector direction.

a - Semi-major axis

E - Mayer Cost Functional or eccentric anomaly
e - Eccentricity

e - Eventsfunction

F - Lagrange Cost Functiona

f - Right-hand side of Dynamic equations

g - Path function

H - Hamiltonian

h - Orbital Angular Momentum vector

h - Magnitude of h

Xiii



i - Orbita inclination

J - Scaar cost function or performance measure
L - Lagrangian or augmented function
M - Mean anomay

m - Mass of spacecraft

N - Number of nodes

N, - Number of dimensions

N, - Number of interior knots

n - Mean motion of planet

p - Vector of parameters

p - Semi-latus rectum

r - Radius vector from the sun

r - Magnitudeof r

S - Arbitrary bounding set for states
T - Thrust vector

T - Magnitudeof T

t - Time

U - Arbitrary bounding set for controls
u - Control vector

u - Radid velocity

V, - Hyperbolic excess speed

v - Transverse or along-track velocity
X - State vector for spacecraft

Xiv



a - Solar sail cone angle

b - Solar sail lightness number
d - Solar sail clock angle or gravity assist deflection angle
f - 3 gpacecraft state variable
g - Weighting factor in convex combination cost function

- Lagrange multipliers for dynamic constraints

n - Gravitational parameter of sun

m,, m, - Control covectorsfor cone and clock angles respectively

q - Spacecraft angular displacement in ecliptic
? - Angular velocity vector
w - Argument of Perigee

w - Right Ascension of the Ascending Node
R™ - N, -dimensional rea space

z - Earth-Mars lead angle

XV



THIS PAGE INTENTIONALLY LEFT BLANK

XVi



ACKNOWLEDGMENTS

Thanksto...
The Lord God from whom dl blessings flow.

My wife, Jodi, and children, Luke and Kate for their encouragement and untiring

devotion. | loveyou al very much.

My thesis advisor, Mike Ross for his enthusiastic guidance and instruction

throughout this whole project.

Dennis Byrnes and Jon Sims at the Jet Propulsion Lab who supplied valuable
insights into cycler trgjectory modeling and design.

XVii



THIS PAGE INTENTIONALLY LEFT BLANK

XViii



l. INTRODUCTION

Spacecraft orbiting along cycling trajectories between Earth and a nearby planet
such as Mars could be tremendously valuable for missions ranging from sample returns
to ferrying supplies and personnel between the planets like escalators. Naturaly
occurring cycler trgjectories would be ideal, requiring no added energy other than that
provided by the gravity fields of the target planets. If such “free ride’ paths exist, they
could host spacecraft making an infinite number of round trips without requiring
propulsion systems. This hypothetical path would be characterized by a purely natura
Keplerian trgjectory that repeats itself endlessly interrupted only by planetary swingbys.
Such cyclers could be analyzed for various target planets, however Earth -Mars cyclers
will be studied in this thesis because of relevance to establishing a base on our
neighboring red planet. To this end, two prominent Earth-Mars cycler concepts have
been proposed- the Aldrin cycler® and VISIT cycler?. The Aldrin cycler uses gravity
assists from both planets and small well-timed DVs to maintain a continuous cycling
trajectory. While the revisit times are appealing (7 round trips in 15 years), on-board
propellant is required to provide a 15 year cumulative DV of approximately 2 km/s.
Because no fuel is expended trying to reduce speed rear a planet, hyperbolic excess
speeds are high, in excess of 5 km/s. A VISIT cycler, on the other hand, uses neither
gravity assists nor fuel for DV burns for orbit shaping, but rather resides in a natura
heliocentric orbit that makes regular passes of both Earth and Mars. The advantage to
thiscycler is tha no propelant is required to maintain the orbit for up to 20 years, but the
primary disadvantages are the rather long revisit times (3 Earth visits and 4 Mars visitsin
15 years) and large approach distances needed to avoid unwanted gravitationa
interaction. The purpose of this paper is to present an Earth-Mars cycler concept using
solar sails that has the advantages of both cyclers without the on-board propel lant.

Because it has been shown that anearly balistic cycler orbit can be maintained
for 15 years', it is reasonable to speculate that a solar sail cycler is not only feasible, but
more capable since it provides free controls. With solar radiation pressure provid ing free
thrust to the solar sail, acycler orbit may be maintained with short revisit times as well as
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dow planetary approach speeds. Small approach velocities to Earth and Mars at short
distances are desirable for operational reasons and because they exhibit attractive orbit-
shaping characteristics due to large angle swingby deflections.

Given that a solar sail requires no propellant, we are free to determine a cost
function that does not minimize the fuel. What then defines an optimal solar sail cycler?
Often the time of flight or an undesirable cycler characteristic like large approach
velocities may be minimized. A design parameter of the sail itself, such as the size of the
sail may be the set cost function. This thesis presents a framework for solving such
optimal low-thrust cycler trajectories using the general-purpose dynamic optimization
software DIDC®. It is worth mentioning that although solar sails are chosen as the
propulsion method and cycling orbits are selected as the mission for this thesis, the
framework presented here is applicable to any type of propulsion system and mission.



[I.  APPROACH TO OPTIMAL CONTROL SOLUTIONS

A. ROADMAP

At the outset of this thesis work, there were no known works related to optimal
Earth-Mars solar sal cyclers, therefore a cautious approach to the optima control
solution was necessary. Starting with “simple” two point boundary value astrodynamic
problems, a systematic approach was used that gradually increased the model complexity
to arrive at solutions. These solutions were used to both validate the numerical
optimization method and to obtain milestone profiles providing initia guesses and
bounds to more complex problems. Benchmark optimal control problems were solved
using DIDO, and the output solutions were compared with known solutions. Benchmark
problems included Mars flyby, Mars rendezvous and Earth-Mars-Earth double
rendezvous missions. Numerical results were also propagated using initial conditionsand
the output control histories for further validation. For many of the simpler problems(i.e.
no intermediate event conditions) a costate profile was obtained corresponding to al the
Lagrange multipliers at certain pointsin time along the path. Using the costates with the
derived solar sail steering control law enabled a check of compatibility between the
DIDO costate and output control histories. The resulting Hamiltonian output was aso
available to check for optimality. After the benchmark problem solutions had been
verified, additional constraints and event conditions were included to obtain the more

complex cycler trgjectory that includes planetary swingbys of Earth and Mars.

The above approach was used for both two-dimensiona and three-dimensional
models. The two-dimensional solutions approximated both Earth and Mars orbits as
being circular and coplanar serving as an initial estimate for the higher fidelity models.
Fortunately, the relative inclination of Mars' orbit with respect to the Earth ecliptic is
only 1.85° and both orbit eccentricities are not too large, so this approximation is not too
bad. Increasing the fidelity of the cycler model, Mars was given an eliptic, but coplanar
orbit to observe the differences in the optimal paths. Finally, Earth and Mars orbits were
inclined and both eccentricities were taken into account. The results from the battery of
2-D problems provided bounds and initial guesses for their 3-D counterpart problems.
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Comparison of the 2-D and 3-D solutions to the same optimal control problem provided
some interesting insights into astrodynamic optimization.
1. Coordinate Systems

To improve the performance of the numerical analysis, it served well to choose a
coordinate system with states that change slowly with time and dynamics that have few
or no singularities. Using a coordinate system in which states vary relatively dowly with
time seemed to alow accurate solutions with fewer optimization “node”’ points, or points
along the path that are used to approximate the continuous states and controls in the
numeric optimization process. Additionally, singularity avoidance is necessary to obtain

u
\
r
v
q
A
K/"Q

Figure 1l Elliptic Orbit in Polar Coordinates

feasible solutions.

For the two-dimensional model, a heliocentric polar coordinate system was used
as shown in Figure 1. Because the maximum solar sail thrust is inversely proportional to
the distance from the sun, this coordinate system was well suited for this problem. The
only singularity in the polar equations of motion occurs at the center of the sun - an easily
avoidable situation with proper state bounds (see Appendix A). Veocity components
were expressed in terms of radia velocity and along-track velocity (ref 4 p. 43). The
along-track velocity will be referred to as the transverse velocity and is defined as being
normal to radial position vector in the orbital plane. Since the target orbits were
approximated as circular and coplanar in the 2D model, there was no need to define a
principle direction (i.e. along verna equinox).
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Likewise, for the 3D model spherical coordinates were chosen to represent 3-D
states and dynamics because the resulting optimal state and control profiles were
expected to vary dowly with time allowing excellent numerical approximations using
relatively few nodes. Furthermore, these coordinates made it very simple to model the
thrust due to the sail since thrust is dependent on radia distance, r (see Appendix B). By
comparison, states of orbiting bodies in Cartesian coordinates oscillate. This could have
lead to an undesirable condition in case there turned out to be too many cycles in the
solution for the number of nodes to approximate accurately. It should be kept in mind,
however, that Cartesian coordinates present perhaps the best choice when more
perturbations are desired in the dynamics model (in this case, more nodes should be
used). Equinoctia elements provide a set of singularity-free dowly changing variables,
but because it was desirable to keep boundary conditions ssimple and “intuitive’, they
were not used (ref 4 p. 142).

2. Scaling

With the coordinate system chosen to reduce the number of optimization nodes
required to accurately approximate states and controls, it became imperative to select
unitsthat would reduce numerical conditioning by avoiding the extremely large and small
numbers. There is no need to confine the states to familiar units such as miles,
kilometers, seconds, etc. A useful unit system for modeling interplanetary travel is the
canonical system. Choosing a distance unit (DU) to be 1 A.U. and the normalized solar
gravitational parameter mto be 1, other state units may be calibrated accordingly. All
dtates and controls have units that are of the same order of magnitude and dimensio nsare
scaled by afactor of some characteristic dimension. This non-dimensionalization process
also enhances visualizing metric relationships. For instance, the circular Earth orbit
radiusis 1 DU while the Mars orbit radius is 1.524 DUs, over 50% great er than Earth’s.
Heliocentric canonical units are summarized in Table 1.



Dimension | Non-dimensional unit | mks equivalent Comments
Distance unit DU 1.496E8 km Semi-magjor axis of Earth orbit = 1
AU.
Time unit TU 5.023E6 sec Time to traverse 1 radian along
circular orbit at 1 AU
Speed VU =DU/TU 29.78 km/s Velocity of body in 1 AU circular
orbit.
Gravitational i =1DUITV 1.327E11 km/s” Solar gravitation parameter
parameter

Table 1 Canonical Units Used to Non-Dimensionalize the States and
Parameters.

3. Bounding the Problems

Before approaching the full cycler model accounting for gravity assists, simpler
two-point boundary value problems were analyzed. As aready mentioned, this permits
validation of the optimization software. Additionally, important insights may be gained
by observing the behavior of simpler benchmark problems. For both the 2-D and 3-D
models, three benchmark problems were solved prior to the coding of the cycler models.
These are the Mars flyby, Mars rendezvous, and Earth-Mars-Earth double rendezvous
round trip missions. The Mars flyby mission is a simple minimum time trgjectory from
Earth orbit to Mars orbit. This solution provides the absolute shortest time that a solar
sail of a given performance can reach the Mars orbit. Other missions that include an
Earth to Mars transit may use this time as a lower bound since it is impossible to reach
Marsin lesstime. A Mars rendezvous mission is one in which the solar sail istasked to
reach Mars at its local orbital velocity (Vy = 0 with no Mars gravity acting) in minimum
time. The resulting profile is not only useful in observing optimal rendezvous behavior,
but also for bounding the double rendezvous problem that followed. The double
rendezvous mission required the spacecraft to rendezvous with Mars, then track the
planet for atime (with no effect due to Mars gravity), and then return to rendezvous with
Earth. This mission introduced phasing constraints to ensure that Earth was there when
the spacecraft returned. With the double rendezvous bounds established in this manner, a
state discontinuity was introduced representing a gravity assist from the Mars encounter
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making a zero-sphere patched conic cycler model complete. At this point, al the models
and conditions had been established for a solar sail cycler and coded for use with the

numeric optimization software, DIDO.

4. Numerical Analysis, terminology and DIDO®

Ideally, the solution to the optimal trgjectory would view the entire space-time
path of a spacecraft at once and simultaneoudly locate the optimal position for each point
along that path meeting certain boundary conditions and dynamic constraints (Figure 2
and Figure 3). Limiting ourselves to current computer methods, however, we settle for
using certain points along the space time path that will enable us to approximate the
continuous path, thus dscretizing the trgjectory into a workable form for a non-linear
programming (NLP) solver. An Euler method would provide an approximation that
would be burdened by large errors. It was desired for this complex problem to use the
best numerica approximations possible in solving the optimal control problem (OCP).

r r r r r I !
-15 -1 -0.5 0 0.5 1 15

Figure 2 Path and Target manifolds (orbit positions)



space-time plot

time [yrs]

Figure 3 Path Meeting Event Manifolds (Planet Encounters) in Space (x-y) and
Time.

The numerical solution to the optimal control problem presented in this thesis
uses the software DIDO to interface with a generic third party NLP solver. The NLP
solver requires an NLP variable vector, constraints and a cost function. DIDO provides
these requirements set up in a numerically optimal fashion. All state and control path
information are captured at unevenly distributed node points, thus the entire dynamic
problem can be viewed as a static problem with the complete trgjectory history at selected
node points manifested as a single variable vector. The node points are selected in such a
manner that the state and control approximation error is minimized. These numerically
optimal node points are called Legendre-Gauss-Labatto (LGL) points and correspond to
the zeros of the first derivative of the Nth degree Legendre polynomial®®. The
continuous states and controls are approximated by using the variables a the
predetermined LGL node points and Lagrange interpolating polynomials, which are well
suited for interpolation between unevenly distributed data points.

8



Dynamic congtraints are imposed by forcing the derivatives of the approximated
states to equal user-defined differential equations (equations of motion) at all the node
points. Obtaining the derivative of the state variable vector is accomplished using a
differentiation matrix defined in ref 5. This process of discretization and differentiation
is caled the Legendre pseudospectral method and has been used successfully in a variety
of applications (refs 5-8).

Initial, intermediate and final event conditions ae supplied by the user and
structured into a boundary condition vector that DIDO provides as constraints to a third -
party NLP solver. The approach used in this numerical solution to optimal control does
not require propagation or shooting type methods. An initial guessis required, however
it does not need to be a good one, or even a feasible one. Typicaly the end conditions
are supplied and DIDO interpol ates between these points as a guess.

To assist in the reading of the numerica methods used in this thesis, some
definitions from ref 3 are supplied below.

Definitions:

Nodes are discrete points along the path where states and controls are defined.
The entire continuous path is represented by the states and controls at these discrete
points. The states and controls at the al the node points form part of a vector making up
the NLP variable that inputs to the NLP solver. Node locations are unevenly distributed
and are pre-determined at the LGL points. LGL points occur at the zeros of the first
derivative of the Legendre polynomials in order to minimize the mean-squared error in
Lagrange interpolating polynomial approximation of states and controls.

Knots are double node points that are part of the optimization process. T rgectory
end points are also called knots. Interior knots are used to define intermediate events
where there may or may not be state discontinuities. LGL node distribution always
concentrates more nodes next to knots. Intermediate or interior knots hav e a left and

right side where state constraints are imposed.

Eventsare the set of conditions that define the manifolds which constrain the path

(at the knots). The event manifolds usually consist of the boundary conditions; in this
9



thesis they represent the locations and velocities of Earth and Mars along their respective
orbits in space and time. Within the DIDO structure, knots are the primary way to
represent an event condition. An example of event boundary conditions is shown below
where e represents the event vector, and g and g, represent the lower and upper bounds of
the vector respectively.

N

ro ra U &, U

u a a

o doy g
e=ér, Uwhereg =€r,Uand g, =€r;, U
é g, e, U
&1 &' &V

g t & H g H

such that
§ £e(x(t,). x(t). x(t).p bt 1, )E€,

where the vector p contains any static parameters that may constrain the events. Events

form the constraints that DIDO supplies to the generic NLP solver and are listed in tables
for the various OCPs in this thesis.

Path constraints, g, are the state-control constraints that couple control and state

variablesin the following manner.
g £9(x(1),ut),t)£g,

For numerical reasons it is sometimes advantageous to represent the solar sail
controls as the sine and cosine components of the cone and clock control angles instead
of the actual angles themselves. The path function in this case may be represented as

éu’+u,’- 10 . . .
=&, , .awhere g =g, =0 forming an equality constraint. The actua control
dls U, - 1y
angles may be recovered by taking the arctangent of coupled controls (using Matlab’'s

atan2 function serves well here).

Bounds are the upper and lower limits on states, controls or times. The resulting
restriction is in the form of an equality or inequality constraint. For instance, a set of
state variables may be bounded by x1 S1 R" usually written in the form xT [x , X ]

or x, ExX£x,. Equality condraints are implemented simply by making x, =X, .
10



Within DIDO, states and controls are discretized, so variables are bounded at the node
points.

Event Constraints are those linear or non-linear conditions that restrict states at

the events. For instance, in an orbital rendezvous problem, the final spacecraft velocity is

I

forming a non-linear event constraint. When a state at a particular event condition is

coupled with the fina radius of the target planet according to the relation v, =

unconstrained, it is considered free. For example, when intercepting Mars in minimum
time, we do not specify where in space or time the intercept must occur, thus final time

and find angular displacement are free variables.

B. VALIDATING SOLUTI ONS

Once a solution to a particular trgjectory was obtained, it was important to see if
the path was physicaly feasible and if so wasit optimal. Checking for feasibility proved
to be relatively straightforward, while verifying optimality was a bit thornier. This
process linked the stark numerical optimization solution with a physical spacecraft
trgjectory that “made sense’.

1 Feasibility

A glance at the state data at the knots would verify that the event constraints had
been met. In order to verify that the entire state history conformed to physical laws
governed by the eguations of motion we use a propagator. Taking the control history
generated by the numeric optimization and the initial conditions, the path of the sail could
be propagated by means of a numeric ordinary differentia equation solver on the non-
linear equations of motion. The propagation used the same dynamics employed by the
DIDO code to verify that DIDO was properly applying the dynamic constraints to the
path. To verify the equations of motion in the dynamic model used by DIDO, the
equations were propagated without controls to generate familiar Keplarian orbits. The
state and control history figuresin this thesis generally show the DIDO states represented

11



by markers at the discrete node points and the propagated sol ution as a line that will pass

through DIDO’ s markers when the solutions are consistent.

2. Optimality

After testing for feasibility, the solution was checked for optimality. The primary
method of verifying that an optimal trgjectory had been achieved was observing the
behavior of the Hamiltonian, H(x, u, |, t). DIDO-derived Hamiltonian values were
generated at the predetermined node points for simple problems (i.e. no intermediate
knots) and were used to verify minimum time optimal controls. Since none of the
problems posed in this thesis have a Hamiltonian as explicit function of time, then we can

say

Hamiltonians that are constant with respect to time are necessary (but not
sufficient) conditions for optimality in these cases. Moreover, the optima control
solution isthe one where H is minimized with respect to controls, u thus defining an NLP
problem with the Lagrangian of the Hamiltonian (for details see Appendix A). For
minimum time problems, H =-1 for all time. The first and second order necessary (but
not sufficient) conditions for optimality using the Hamiltonian are written as

2
ﬁ:oandﬂH3

0
fu u?

Additionaly, dual variable outputs were used with the derived solar sail control
law to produce controls that could be compared with the DIDO-derived controls. This
would test if the optimal controls were conforming to the anaytical optimal control
steering law solution. Occasionally there existed one or more local minimums in which
case varying theinitial guess assisted in finding a better local minimum.

3. Comparison with Other Optimal Solutions

Often it serves well to verify DIDO-generated optimal solutions that use the
pseudospectral method with solutions created using other methods. As mentioned before,
12



there are no known optimal control solutions to the actual solar sail cycler, however there
are solutions to the simpler “benchmark” problems. One of the reasons for using the
methodical build-up approach using smple building blocks in the form of benchmark
problems was to verify that the coded models were producing verifiable results before
proceeding to the uncharted waters. Comparisons are presented in the benchmark
problems when other solutions are available.
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I[Il. DEVELOPING THE OPTIMAL TWO-DIMENSIONAL
CYCLER

A. TWO-DIMENS ONAL MODELS

1. Sail Model

A solar sail is a very large thin lightweight structure that transfers momentum
from inbound solar photons to the spacecraft. Newton's laws dictate that the sail will
accelerate twice as fast when photons are reflected than when they are absorbed. Thus,
for maximum effectiveness the sail must be made of a very reflective materia. For this
analysis, the sail is modeled as a flat film (non-billowing sail) with a perfectly specular -
reflecting surface on one side only. To characterize sail performance, we use the sail
lightness number, b , defined astheratio of the acceleration from solar radiation pressure

(SRP) to the acceleration from the sun’s gravity (ref 9 pp. 38-40).

2NRS A o
—==_Acos‘a
asp —_mc

a m

grav

b=

where W, is the solar energy flux at 1 AU, R is the Sun-Earth distance, A is the sail
area, a is the angle of the sail with respect to the Sun and m is the solar gravitationa
parameter®. Both accelerations are proportiona to the inverse square of the radial
distance from the sun, so b is an apt indicator of sail performance independent of
location. A lightness number of b =.17 was used to moded a reasonably high
performance solar sail for most problems in this thesis for comparison to other solutions
using the same sail*°. Often the characteristic acceleration™, a,, is used to describe the

performance of the sail instead the sail lightness number. This characteristic acceleration
isthe changein velocity that the sail would experience at aone AU distance from the sun
when the sail exposes al of its area toward the sun. The relationship between the
lightness number and the characteristic acceleration is

15



For example, a sail lightness number ofb =.17 corresponds to a characteristic

acceleration of a; :1m—£n.
S

The sail control angle, a, is defined as the angle between the sun-sail position
vector, r, and the sail normal, n called the cone angle (Figure 4). This angle determines
both the magnitude and direction of a solar force imparted to the spacecraft. Notice that

when a =0, maximum thrust is achieved and when a =90°, thrust is zero. The sail can
never impart aforce toward the sun (only gravity can do this). To ensure the sail will not

flip over exposing its non-reflective side, the control angle is bounded by

p p
1 -—fafZ™
D > >

T A

n
a
a
@)
Figure 4 Sail normal, solar radial vector and control angle a.

2. Dynamic M odel

Using the polar coordinates in the heliocentric frame, the two-dimensiona
equations of motion are derived in Appendix B Given the state vector x =[r g,u,v]",

the equations of motion are expressed as x =f (x u) wherecontrol u=a,
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The states r, g, u, and v are the radia distance, angular displacement, radial
velocity and transverse velocity respectively. The angular displacement, g, is decoupled
from the other equations and may be excluded in special cases making x1 R*. For
numerical analysis of some problems, ( was retained as a state for proper intercept

phasing during encounter events (more on that later).

Having thus imposed the dynamic constraints between the desired manifolds, we
seek to constrain the conditions at the manifolds. This is accomplished by setting the
constraints of the desired events.

3. Events M od€

All the benchmark missions modeled here share the same cost function, dynamic
equations of motion and sail control model. The distinguishing feature of each mission is

its particular event function. The events are arranged into an event function vector e such

that el R™ where N, isthe number of event constraints. Elements of e may be linear

or nonlinear expressions and may be bounded as equality or inequality constraints. These
event constraints for the flyby and rendezvous missions are summarized in the following

table where a,, isthe semi-mgor axis of Mars orbit (1.524 AU).
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Flyby Rendezvous
Event [Ib,ub] [1b,ub]
A [1,1] [1,1]
qO [0,0] [010]
U, [0,0] [0,0]
VO [1’1] [11]-]
re [a,.a,] [a,.a,]
a, free free
u, free 0
A L f [0,0]
S ree )
f \/E
Table 2 Event Conditionsfor Flyby and Rendezvous Problems

Notice that al the initiad states (denoted by the ‘O’ subscript) are equality
constraints with the same lower and upper bounds ( [Ib,ub]) indicating that the spacecraft
will launch from a circular Earth orbit at Earth’s orbital speed. The fina rendezvous
along-track velocity (denoted with the “f” subscript) is the only non-linear constraint.
These events ae assembled within DIDO into a condraint vector,

T

e=[r, f, WV f; A, U,,v.’r, - 47, The last element is written in a different form to

avoid the +/- ambiguity using the square root.

B. THE OPTIMAL CONTROL PROBLEM

We now come to posing the solar sail optimal control problem (OCP). Thisis
where one must question what exactly are we trying to do. With most conventional
propulsion schemes, it is desirable to minimize fuel consumption. Solar sails, however,
require no propellant so the goal of most of the solar sail trajectories presented her eisto
accomplish a given mission in minimum time. The general OCP is stated as follows®.

Minimize the Bolza cost functional:
18



X uCh 1.ty Pl = E(X (), X ¢ ).t £ ) + c‘é’ F(x(1), u(t),t;p)dt

Subject to:
Dynamic constraints x =f(x(t),u(d)
where f isgivenin equation (2) and U are the controls,
Path constraints g £ 9(x(t),u(t),t) £9,
Event constraints g £e(X, X, X, t,t, 1. p) £¢€,

and bounds on state and control variables

X EX(H)EX,
u £ut)£u,

With an established coordinate system and scaling system, we are postured to
model the sail, dynamics and events. These models are structured into aformat ready for
DIDO to use as the OCP constraints. Before attempting a numerical solution, we desire

the analytical solar sail steering law to help verify the solution as described below.

C. SOLAR SAIL CONTROL LAW

Following the guidelines set forth by the minimum principle (Appendix A), we
start by establishing the cost function. To minimize time, we choose to express the cost

functional from the previous section in Lagrange form.

E=0,F=1

The state space vector and its derivativ e are written as

eu u

é a

& 0 e q
Gy er 4
x=¢€u and f(x,u) =62 u
euu év—-—r?+b—Tcos3a a

¢ a ar r? r a
eu €uw bm_, . U

& —+—-cos’asinay

€ r u
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where the control is given by the sail coneangle a(t).
Notice that q is uncoupled from the other equations, therefore it will be ignored

for the rest of the sail control analysis. Thus, we write the Hamiltonian as
u 2w b > . 0
—+ r—zcos ashna=

é 1 b
H(x,ul)=F+1 f =1+I u+l, g—- S+=cos’ag+l, &
a&r rror g e P

where | isthe costate vector and the solar gravitational parameter has been normalized

to unity.
The Lagrangian of the Hamiltonian is therefore
& 1 b u w b .0
Lx,ul )=H + g =141 u+l  g—- —+—cos’a g+, & —+—-cofa sina 2+ ma
gl r r a 8 r g

where m isnow the covector associated with the path constraint - %E at P .

Applying the minimum principle yields
fiL_ , 3b . é 2b _ i B
—=-1,=cos’asna+l —7 cosa sin’a +r_ZCOS3a H+ m =0

fa
som may bewritten as
_b : 2
m —Fcosa (3I ,cosasina+2l sin‘a- | Vcosza)
For the given control constraints, the KKT conditions give

p
=-—,m £0
a >

p nl30

a=+—,
2

i<a<B =0
2 7'M

Limiting the analysisto the interior controls where - Pca< % and m=0, we can

obtain the control law.
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(3, cosasina +2 sin’a -1 ,cos’a)=0

Dividing the equation by cos?a produces a quadratic equation with tana as the

independent variable.
2l tan*a+3 ,tana-1 =0
-3l 14/9I 2482
(3) tana = —— al - -

This tangent control law will not have quadrant ambiguity since we limited the
control angle by - %E at %

D. RESULTS

Before analyzing results, it is useful to correlate certain key sail angles with
physical meaning. Asmentioned in the discussion of the sail model, the thrust magnitude
due to the solar radiation pressure (SRP) on the sail is not a free control variable asit is
with many conventional propulsion systems. The acceleration imparted by the sail, T ¢/m,
has a magnitude that is dependent on radial distance and the control angle, a, according

to the relationship L:b—rznoosza . Notice that for a given r, maximum radia thrust
m

r
occurswhena =0and it'ssail areaistotally exposed to the sun. Alternatively, the sail is
effectively “off” and the trgjectory becomes ballistic when a = +p/2. The sail can never
isolate tangential thrust from radial thrust. Radial thrust is present for all control angles
except for a = £p/2 when the sail edge is toward the sun. To assist in interpreting the
control profile, we determine the control angle at which maximum transverse acceleration

occurs. The transverse acceleration is given by:

a, :szna :b—Tcosza sna, - Pca<k
m r 2 2

Setting the derivative with respect to a to zero for a given r yields the control

angle providing maximum transverse acceleration.
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d .
9& _ . cosa sin*a +cos’a = 0

(4)
a =.615=35.2

1. Benchmark Problem Solutionswith Circular Coplanar Orbits

a. Earth-Mars Flyby

The purpose of solving the flyby mission serves several purposes. First,
the solution may be compared to other known solutions to verify that the numerical
analysis using DIDO works properly. Second, the minimum time of flight serves as a
lower time bound for future coplanar trgjectory optimization problems.  Third,
groundwork is established to model a bounded initid C3 from Earth alowing a li mited
“boost” from a conventional rocket at timet = 0.

Given an initial guess of the initial and final positions and velocities,
DIDO outputs the minimum time Mars flyby states and controls (plotted as markers in
Figure 5). For a minimum time flyby path between circular coplanar orbits, a sail with
lightness number b=.17 takes 0.45 years. The probe sails past Mars at a speedy 8.7 km/s
(relative to Mars). Sail attitude favors a large local transverse acceleration profile
initially to rapidly build radial acceleration, and then gradually exposes more sail areato

the sun throughout the maneuver until the sail normal is parallel with the sun’s rays

(Figure 6). DIDO costate outputs representing | =(| |" areplotted in Figure 7,

olgi il
and may be used with the tangent steering control law in equation (3) to generate derived
controls. The true anomaly costate, |, is zero as expected since g does not appear in
the Hamiltonian. A comparison of costate-derived controls with the DIDO output

controls appears in Figure 8.
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Mars min time flyby. DIDO vs. propagated states and controls. 16 nodes.
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Figure5 States and Control for Mars Flyby Mission. Markersare DIDO
output and lines represent propagated path.
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Figure 6 Mars Flyby Trajectory with Sail Profile and Normal.

Costates for Mars minimum time flyby problem. 16 nodes.
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Figure7 Mars Flyby Mission Cogtates
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Figure 8 Mars Flyby Cone Angle Control

Thus far, the flyby model has restricted the sail to start under its own
power without the aid of a kick motor. Modeling a kick motor is accomplished by
changing the initial conditions in Table 2 for the u and v velocity components to be
constrained variables according to the following relationship.

0£|V,|E£DV,,
where V, =[u,,v]" - V. Not surprisingly, the optimal solution makes use of whatever

DV __ is permitted to intercept Mars in the quickest time, athough the direction of

max

departure depends on the maximum allowable kick. The mission is accomplished much
faster than the previous sail-only solution. For example, when DV, = Gk-m1 the optimal
s

solution uses all the initial help it can get reducing the time to intercept to only .22 years.
We find, however, that the same behavior does not apply to the rendezvou s problem with
its final velocity constraint.
Feashbility of the solution is demonstrated in Figure 9 depicting the path
propagated using an ODE solver given the initial conditions and the DIDO -derived
25



control profile. Although difficult to rigorously provethat thisisthe optimal trgjectory,
we can at least show that necessary conditions for optimality are satisfied in accordance
with the discussion in the section on Optimality. The Hamiltonian is constant with

2
respect to time (Figure 10) and the second order condition lTT—HZ 3 0 istrue (Figure 11).
a

180

270

Figure 9 Mars Flyby Mission Propagation (line) with DIDO Output (dots)
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Figure1l  Second Order Condition for Mars Flyby
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b. Rendezvous

As expected, the Mars rendezvous mission takes longer to accomplish
than the flyby mission, requiring a full 1.11 years, which is consistent with the solution
presented in ref 12, (Figure 12). The spacecraft final velocity is constrained to match
Mars' orbital velocity, which costs the sail extratransit time to accomplish. A surprising
feature of the trgjectory is that the probe sweeps an arc outside of the circular orbit of
Mars (Figure 13). This maneuver is observed in more complex minimum time solar sail
missions as well since it appears to make the best use of radial and transverse thrust.
Thereis apoint on the outbound path (almost a quarter of the way into the mission time)
when the control angle rotates from a small angle, where much of the sail areais exposed
to the sun, to amore edge-on aspect. The sall attitude gradually rotates after this to favor
more transverse acceleration as it sweeps past Mars' orbit radius and approaches Mars.
By the time the sail has reached Mars, the control angle is 5° greater than its maximum
transverse velocity setting.

EM Rendezvous with 50 nodes
1.6

1.4 it * T

ot
0O u

12 l‘-\ O VvV
N\h.._ —— cone angle

o s

normalized units

0 0.2 0.4 0.6 0.8 1 1.2
Time (years)

Figure12  DIDO State and Control Output (Markers) and Propagated Path
(line) for EM rendezvous.
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EM rendezvous with 50 nodes
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Figure13  Sail Trajectory and Profile for Earth-Mars Rendezvous

Interpreting the costate history provides a more complete physical analysis
of the optimal trgjectory. Each costate in Figure 14 represents a Lagrange multiplier that
signifies instantaneous sensitivities of the cost function to instantaneous variations in the
corresponding state. Once again, the costate corresponding to q is zero since this state is
completely uncoupled from the other states in the dynamic equations and never appears
in the Hamiltonian. Several observations may be made regarding the critical point in the
first quarter of the trajectory when the control angle makes a radical change. Recalling

the optimal sail steering law in equation (3) it is seen that when |, =0, then the

N

maximum transverse velocity profile occurs. This value would occur when tana = ~

(a =35.2°). Also, when | ® O then a ® 90°. Observing the costates for the Earth-
Mars (EM) rendezvous, we note that |, crosses zero at t = 1.225 years and soon
afterwards |, reachesits closest point to zero. Thisis consistent with a rapid change of

sail attitude at that time during the mission and corresponds to when the sail reaches
maximum radial velocity.
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Lagrange multipliers along with state outputs are fed into the derived

tangent steering law (eguation (3)) to obtain a control profile. The resulting control
profile is shown in Figure 15 and is plotted with the DIDO control output for comparison.

Costates for EM rendezvous mission. 50 nodes.
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Figure14  Costatesfor Earth-Mars Rendezvous Mission
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Figure1l5  Comparison of DIDO Controlsand Tangent Steering Control Law for
EM Rendezvous.

Propagating the spacecraft with the given control history producesthe path
shown in Figure 17 with DIDO states at node points shown for comparison. Testing the

ﬂzHgo

a2

second order necessary conditions for optimality we observe in Figure 16 that

for all time and aso the Hamiltonian is fairly constant (Figure 18).
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Figure 17  Propagated Path (line) with DIDO State Output (dots) for EM
Rendezvous
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Figure 18 Hamiltonian for Minimum Time EM rendezvous.

What happens when we reverse the problem such that we seek the
minimum time from Mars (Vy|mas = 0) to Earth rendezvous? It turns out that swapping
initial conditions with final conditions generates a time-reversed state history and a
control profile that is inverted and reversed. The experiment may be carried out within

the DIDO structure by simply reversing the event conditions.
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Event ME I[TE?:E]ZVOUS
o [a,.a,]
d, free
U, [0,0]
€1 1d
* R
ry [11]
a; free
u [0,0]
Vi [1L1]
Table 3 Mars-Earth Rendezvous Event Conditions.

The state history of the optimal Mars-Earth rendezvous is a mirror image
of the Earth-Mars rendezvous (Figure 19 and Figure 20). Time of flight, Dt, and the
change in angular displacement, Dg, are precisely the same for both profiles.
Furthermore, the control profile is inverted and time reversed. This result leads to an
even more interesting question; what happens when we desire the sail to launch from
Earth, rendezvous with Mars, then immediately start its trek back home to rendezvous
with Earth? This benchmark mission is the subject of the next section.
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C. Double Rendezvous

As a next step toward modeling a cycler orbit, we explore the double
rendezvous. In this mission we seek the minimum time that it takes to make an Earth -
Mars-Earth (EME) round trip with a zero relative velocity at both planets for a given sail
lightness number b. To study the behavior of the optima trgjectory, one assumes that
Earth or Mars gravity will not significantly influence the craft. Low relative velocity is
desirable while encountering the target planets since it requires less energy for a greeting
taxi craft to intercept and dock with the passing spacecraft.

For the preliminary analysis, the initial, intermediate and fina orbits are
modeled as circular and coplanar. Earth phasing for the final Earth rendezvous event is
accomplished by coupling the sail and Earth final positions using the Earth’s mean
motion and the time of flight.

The solution to the minimum time EM rendezvous problem provides a
lower bound for the time that it must take to reach Mars during the double rendezvous
problem. Since the fastest possible time to rendezvous with Mars with the given solar
sail (b=.17) was determined to be 1.11 years from the previous section, this serves as the
minimum time to encounter Mars halfway through the double rendezvous mission.
Remembering that the reverse Mars-Earth (ME) rendezvous took exactly the same
amount of time, we now have bounded the time to complete the whole EME double
rendezvous. Setting the intermediate destination at the Mars orbit and the fina
destination with Earth and constraining the event velocities to match those of the
respective planets we are in a position to solve the optima EME double rendezvous.
Shown in Table 4 is a summary of the event constraints where superscripts indicate
before (-) or after (+) the intermediate knot representing the Mars encounter. Thereisa
single non-linear event constraint that is responsible to ensure proper phasing (i.e. Earth
makes more orbits around the sun than the sail does, but till meets with it in the end).
The output states and controls are shown Figure 21 with the path shown in Figure 22.
Essentialy it turns out to be the EM minimum time rendezvous solution patched together
with the ME rendezvous solution with dlightly longer transit times. The most obvious
features of the profile are the state symmetries and control antisymmetry about the mid -
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maneuver point. Event conditions at the interior knot required only that the states be
continuous and equal to Mars dtate.

Event [Ib,ub] Event | [Ib,ub] | Event | [Ib,ub] | Event | [Ib,ub]
o [1,1] r lana]| r | [ ]| 1 [1,1]
% free q free | o |[o a1 d free
u | [00] y oo | oy |ly.yl| oy | [00]
Vo [1,1] L/ B AR A B VAR I AR AN I B R

Non-linear cons raint cos(d,, +N.(t; - t))- ;) [1,1]
Table 4 Event Conditionsfor EME Double Rendezvous

For the given sail, the total time to complete the trgjectory is 2.41 years
with both legs of the journey taking 1.205 years. The reason that the EME problem takes
longer than the patched EM-ME problem is that the final Earth rendezvous event must be
phased with Earth’s position at the fina time. The individua EM and ME rendezvous
solutions only served to provide a lower time bound for the EME problem, so imposing

the constraint that the sail fina position is phased with Earth is about 10% more than the
lower bound.

37



1.5

0.5 P
-0.5 \
v radial dist \\’\"\ l
-1 —— radial vel
—4— transverse vel \./
—1— sail angle
-1.5 T
0 0.5 1 1.5 2

Figure 21

Figure 22

EME rendezvous - min time

y}—*—i‘-{e...

wmﬁ

e

FEAN

EME Double Rendezvous Trajectory and Sail Profile (b=.17)

Time in years

(b=.17)

States and Controls for EME Double Rendezvousin Minimum Time

38




This round trip solution only takes into account a quick trip out to graze
the Mars orbit and then a return trip home. It may be desirable to have the probe linger
with Mars for a span of time allowing for some sort of mission while traveling with the
planet then returning back to Earth. The next question one may ask is the following.
Given asail of certain performance and Mars stay time, what is the minim um transit time
EME trgectory (not including the Mars stay time)? For a given Mars stay time, some of
the trangit time to and from Mars is expended in performing a phasing maneuver to meet
Earth at the final time. This characteristic phasing maneuver is exhibited in al double
rendezvous problems with varying stay times but one — the one where the stay time spent
with Mars happens to be just the right time to allow areturn trip to Earth with no phasing
maneuver required at all. As mentioned, this minimum possible return trip time is 1.1
years for sal lightness number b=.17. The following anaysis shows that given the
optimal time and angular displacement required for the EM rendezvous (and thus the ME
rendezvous), we can deduce the Mars stay time that minimizestransit time. The optimal
transit time and true anomaly traversed by the sail for an EM rendezvous (and ME

rendezvous) are given by the following.
t' =1.116 years q" =4.337 radians

The following equations capture the mation of the Earth relative to that of

the cycler craft where t = Mars stay time, Dg,= change in Earth angular position and

n,and n_ represent Earth and Mars mean motion respectively.

©) Dg, =n, (2t +1,)
Equation (5) indicates that Earth changes position by Do, during the same

time that the sail transits outbound in t* years, stays with Marsfor t_ years, then returns

homein t' years. Recognizing the n_ =1% we can rewrite equation (5) as

(6) Dg, -t =2
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During the round trip mission time the spacecraft traverses q~ radians on

the outbound leg, n_t, radians along with Mars, and g~ on the inbound leg.

(7) Dg =29" +n,t,,

All the while, Earth traverses the same span plus an extra N revolutions.
8) Dy, =Dg +2pN. (N =[0,12.])

Congtraining the solution to include only the first Earth pass on the return (N=1), we

substitute equation (7) into equation (8) and rear range to obtain
9 Da, - n.t,= 20 +2p
Recognizing that the scaled mean motions of Earth and Mars are given by
n,=1and n, =\/%= .534 respectively, we may solve for Dqg, and t, simultaneously

using equations (6) and (9). This resultsin a Mars stay time of t =7.0114TUs = 117
days and an Earth span of Dg,=16.03 radians corresponding to 2.55 years of total

mission time.
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Figure23  EME Double Rendezvous with Stay Time at Mars

When using the outbound and inbound transit times as a cost function,
DIDO produces the output shown in Figure 23. The path mimics apatched minimum
time EM-ME solution where the optimal Mars stay time is 123 days for the given sail
(5% difference from the estimated value of 117 days). Any more or less time spent at the
planet will either require a time-wasting phasing maneuver to all ow Earth to catch up for
arendezvous, or a maneuver to catch up to the speeding target Earth. A plot showing the
impact of various Mars stay times on mission transit times appears in Figure 24. Notice
that it is safer to design a shorter-than-optimal Mars stay time into the mission. In the
event of a schedule dide, the return transit time looks increasingly grim beyond the
optimal point because the sail has a lot of space to cover as it attempts to catch up to
Earth.
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round trip transit duration for various Mars visit times

245

.“ /

N
w

Transit time (years)
N
w
a

225

\

—]

22
90 100 110 120 130 140 150

Time at Mars with Vinf=0 (days)

Figure24  EME Double Rendezvous Transit timesfor Various Mars Stay Times.
(b=17)
The analysis thus far has only dealt with sails of lightness number b=.17.
An interesting question that may be asked now is the following. Given a desir ed time of
round trip flight with no stay time at Mars, what is the minimum size solar sail required?
This question will be addressed later.

2. Benchmark Problem Solutions with an Elliptic Coplanar Orbit

Running the same battery of problems from the previous section using a higher
fidelity model provides enormous insights into the characteristics of an optimal
trgjectory. Modeling trajectories between circular Earth and coplanar elliptic Mars orbits
generates resultsthat may be compared with the circular orbits model to reveal the “knees
in the curve” that the optimization process seeks in an effort to reduce the cost function
just a little more. Knowing these characteristics of optimal solar sail trgectories will

assist in understanding the behavior of optimal solar sail cyclers.

Because the final target manifold represents Mars' dliptical orbit, the new events
model must relate the final Mars radial position, r_,, and velocity, V,, with the fina sail

7 Tmf 2

state, X, .
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Congtraining the initial and final sail angular positions to be coincident with the
initial Earth and final Mars angular positions respectively, we obtain the following
relationship for coplanar orbits.

qm =q I (Wm+VVn)
where g, isthefinal sail position, w_ isMars argument of periapsisand W, isthe right
ascension of the ascending nodes.

In a perifocal system, Mars final polar coordinates r . and q,, arerelated by

Pr

10 =
(10) frt =4 e, cosq, ;

where p, in the numerator is the “parameter” or semi-latus rectum of the Mars orbit.

The final event condition for radia position of the sail is simply
(12) re=r,

For the rendezvous mission, we need to target the final Mars velocity aswell. The speed
of Mars at the final time is expressed as

where a, is the semi-mgjor axis of Mars. Components of the planetary velocity vector

are defined in terms of the flight path angle b, by

. m .
cosbm,:rr;*/11 and sinb :hmTensm(qu)
mf © mf nf

where h_ represents the magnitude of the Mars angular momentum vector.

The velocity vector resolved in the local vertica local horizontal frame (LVLH)

produces

u, =V, sinb
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v, =V, cosb

Representing final Mars and sail velocitiesby V_ . =[u_,v.]" and V, =[u, v, T
respectively, we obtain an additional constraint for the eliptic rendezvous mission
(12 V=V,

It now remains to run the same battery of battery of benchmark problems with the
eliptic Mars event model.

a. Earth-Mars Flyby

Modeling Mars' orbit as an €llipse using eccentricity e, =.0935 provides

target radia distances that vary with the planets true anomaly (equation (10)). Earth’s
orbit eccentricity is only .0167, so the circular Earth orbit assumption is a good one
(elliptic Earth orbit is considered in the 3-D model in the next chapter). Not surprisingly
the time optimal mission selects a path that drives the sail from Earth orbit to Mars
periapsis at high speed (Figure 25). This optimal path exploits Mars eccentric orbit and
presents the shortest distance from Earth to Mars, and thus the shortest transit time
required since the fina velocity is unconstrained. The time to intercept Mars using the
standard sail (b =.17) is only 137 days, about 27 days faster than the corresponding

circular orbits model (Figure 26).
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b. Rendezvous

To achieve the rendezvous mission in minimum time the path must
account for target velocity as well as distance, both of which vary with respect to target
planet true anomaly. Initia and final true anomalies, thus launch windows and arrival
dates, are optimization parameters that seek to reduce the cost function by finding the
optimal points on the target manifolds to bound the path. It isfascinating to observe that
the optima rendezvous with Mars (dliptic orbit) is actualy faster than the smplified
circular coplanar rendezvous (0.977 years vs. 1.11 years). Comparison of this state
history with the circular coplanar counterpart gives insights as to why this occurs ( Figure
27). In the circular coplanar model, any mission start date is as good as any other

therefore the boundary condition g, =0 was avalid restriction where the Mars lead angle

was determined in the numerica solution to the OCP. Because in the new events model
we alowed the optimal ¢, to be determined in the OCP solution, a launch window was

chosen such that Mars would be near the dowest point in its dliptic path at the time of
rendezvous. Mars matches the sail velocity at the final event as it slows down on its
approach to aphelion. The optimal rendezvous trgjectory takes advantage of Mars' slow
velocity as the sail approaches the planet at aradia distance that is 95% of the aphelion
distance. Figure 28 shows how the sail meets the Mars position on its orbit.

Another interesting departure of the dliptic orbit solution from the circular
solution is that the spacecraft does not follow atrgjectory that sweeps out to a maximum
radius and then returns inward to meet Mars at the required velocity (Figure 27). Mars
orbital path however does cross inside the spacecraft path as Figure 28 readily reveds.
The optimal 3D trajectory takes the fastest path from the optimal location on Earth’'s
orbit to intercept Mars without having to undergo a negative radial velocity during the

whole maneuver, i.e. u>0 for al time (Figure 29).
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C. Double Rendezvous

Once again, aphelion provides the optimal Mars rendezvous point (Figure
30 and Figure 1). The total transit time is only 2.3 years in contrast to the 24 years it
took to reach the circular Mars orbit. In contrast to the double rendezvous orbits (see
Figure 21), the radia velocity, u, does not change as much in the vicinity of the interior

knot thus “flattening” the radial distance profile as the spacecraft sweeps past Mars.
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Mars Or bit.
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3. Earth-Mars Synodic Cycler Solution

Having established a collection of solutions for basic solar sail trgjectories, we are
in a position to take the next step toward a cycler model. There are two key differences
between the double rendezvous mission of the previous section and the solar sail cycler
mission. With cyclers, end conditions are equal (i.e. cyclic) by definition to ensure
repeatability. Additionally, gravity assists at target planets will be modeled. Planetary
swingbys offer enhanced cycler performance since the turn angles are optimized to creste
a path that achieves the minimum cost. Since the time to complete a cycle is
predetermined by the synodic period (Figure 32), a minimum time synodic cycler
problem has no meaning for spacecraft shuttling between circular coplanar orbits. Thisis
not so for the cycler between non-circular coplanar orbits. A new cost function is desired
that is not burdened with minimizing fuel or time. Because an attractive feature of
cycling trgjectories is a dow swingby velocity at Earth and Mars, these velocities formed
the cost function.

a. Events Modéel

The key to modeling a repeating cyclic trgjectory is to constrain the initia
state of the spacecraft to equal the final state of the spacecraft. Since the Earth and Mars
orbits are approximated as circular and coplanar, the problem is simplified in that the
initia relative angular position between Earth and Mars (lead angle z ) may be used to

congtrain final angular position for a single cycle since planetary distances and velocities
are independent of the their inertial angular positions (Figure 32). Lead angle is
determined from the event states as follows

O :qm0+nm(tf - to)
Uy =q0+ne(tf - to)
where

Ao =0, - N, (& - 1)
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Mars and Earth angular (g,, and q,) are obtained using their respective

mean motions (n,, and n,).
The Earth-Mars lead angle at initia and fina times are
Zp=Qp - Qo
Z; =0n - Qer
Initial and final relative angular positions are constrained by
(13) Cos(zf B Zo) =1
wherez, =z,- 20N,, N, =0,1,2,...
Numerically, equation (13) is preferable over the above equation since the
cosine function will permit multiple revolutions without introducing integer variables.
The cyclic end condition for the spacecraft radial distance is expressed
smply as
(14) r, =T,
Initial and final velocities are aso constrained to be cyclic and will be
addressed later.
Given the condition in equation (13), the final time, t, , depends only on

the relative mean motions of the planets given by the synodic period,

t,= 2
Tne- |

For Earth and Mars, the synodic period is 2.135 years'. Although not
explicitly constrained to the synodic period in the numerical analysis, the resulting final
time must equal this synodic period in order for the cycler to be periodic. Having
established cyclic end conditions, we now turn to setting up gravity assist conditions for
planetary encounter events.
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Figure32  Two-Dimensional Earth-Mars Cycler Geometry with Circular
Coplanar Planetary Orbits

Force imparted by the solar sail shapes the path between event manifolds,
but gravity assist maneuvers at the event manifolds drive the form of the whole cycler
trgectory. Aswith the conventiona Aldrin cycler, gravity assists are implemented in the
solar sail cycler to shape the tragjectory at these planetary encounter events to improve the
revigt times. To model the swingby events, state discontinuities are employed at the
planet to change the velocity direction and magnitude of the spacecraft in the heliocentric

frame (sometimes caled the “zero sphere patched conic’*

or matched asymptotes
model). It is assumed that the interaction time with the subject planet is negligibly small
in comparison to the total cycletime. The velocity of the spacecraft with respect to the

planet changes direction such that V" =V_~+DV,where V_ =[u,v]'- V, and V, is

the velocity of the subject planet relative to the sun. The position states, r and g are
constrained to be continuous at both Earth (equation (14)) and Mars encounter events
given below.

(15)
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The DV s due to the swingbys are optimally chosen in the OCP solution,
but they must be properly constrained. Constraints on the velocity changes are most
easily imposed using the planet frames where inbound and outbound velocity magnitudes
are equal just before and after a planet encounter forming the event condition,

(16) v

= |Vsp+

=V, (planet frame)

sp_
where V, is the hyperbolic excess speed. The velocity direction change is expressed in

the planetary frame using the turn angle, d , which exists in the region shown in .
Veocities before and after a swingby event in the planet frame are coupled by the cosine
of the turn angle,

- + 2
Vg Vg =V,”cosd
VoV, '
(17) cosd :% (planet frame)

2
¥

The spacecraft experiences a direction change during the interaction that is
restricted by the hyperbolic excess speed and the permissible periapsis pass distance from
the center of the subject planet, r . This restriction is expressed by the following

relationship in the planet frame where V, is scaled by the circular orbit speed at the
surface of the planet and r is scaled by the radius of the planet (ref 15p. 24).

1

18 in(d /2) = o
( ) ﬂn( ) V¥2rp 41’ pmin

£rp f;‘rpmax

Although equations (17) and (18) themselves are not event conditions,
they limit the achievable change in velocity direction, DV, dueto the swingbys at Mars

and Earth. Design limitations include a selected r__. that is well above the atmosphere

pmin

where drag effectsare negligibleand an r . such that the encounter occurs close enough

to the planet to execute a desired task. For agiven V, , the turn angle is maximum when

r and minimumwhen r, =r . Substituting these values into equation (18) and

p = rpmin

solving for d as afunction of V, provides an expression for d__ and d_,, respectively.

min
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To include the case of maximum deflection in the opposite direction it is necessary to
place the lower bound of acceptable turn anglesat -d_;.and -d . (Figure 33). With
equation (17) characterizing the instantaneous change in path direction and equation (18)

providing the limits, the boundary conditions are expressed at Earth and Mars event
manifolds as

(19) cos(d,, ) £cosd £ cos(d

rin)

p

“cos(B) feasible region A

Figure33  Gravity Assist Geometry.

Velocity constraints at Mars and Earth have identical form, however the
initid velocity magnitude at Earth has an additional limitation based on available
departure rocket capability. Because the sal's journey starts at Earth, the initia
conditions are bounded by maximum C; available. Presumably an impulse rocket is used
to start the solar sail craft on its cycler trgjectory, so the initial velocity relative to Earth,
Vo Lo » 1S restricted.  The magnitude of V, |, is limited by a maximum allowable

velocity change at t=0 provided by a kick motor, which provides another boundary
condition

(20) 0£|V, || £ DV, (Earth frame)
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The direction of V|, is driven by the optimal control problem and is
limited only by the allowable turn angle a each Earth swingby.

Finaly, phasing the spacecraft with Earth at the end of a cycle was
considered. Earth encounter events were constrained to ensure that the sail trajectory
intersected Earth’s orbital path at precisely the time that the planet is a that same
location. The circular orbit assumption is particularly useful for ensuring proper phasing
of events since the angular position of a planet is a linear function of time. The fina

angular position is given by
(21) qr =0 Nt - PN,

where N is an integer number of Earth orbits, n, is Earth’s mean motion, and g, isthe

angular position of Earth a t =0 (when we the Earth position is coincident with the sail,

0., =0,)- Having established the sail, dynamic and events models, we set up the optimal

control problem.

b. Solar Sail Cycler Problem Formulation

The solar sail cycler optima control problem is constructed using

weighted spacecraft \ks at the Mars and Earth encounters as the cost function. The
optimal path is subject to two-dimensiona equations of motion, cyclic end conditions,
and planetary gravity assist constraints. The cost function uses a parameter gto weight
the Vs while the initial and final state and control conditions are constrained to be equal
to ensure repeatability of the trgjectory. We can write the optimal control problem asthe

following.

Minimizethe cost

(22) ‘](Xi! g) = gv¥ IMars +(1' g)v¥ IEarth

Subject to dynamic constraints from the equations of maotion (equation (2))
and event constraints that model repeatability (equations (13) and (14)), continuity
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(equation (15)), swingby effects (equations (16) and (19)), launch limitations (equation
(20)) and phasing (equation (21)).

In addition to the bounds on controls (equation (1)), there are bounds on

states. States are bounded only to avoid singularities in the dynamics.

For this paper, a single Earth-Mars cycle was modeled where the
following initial, intermediate and final conditions in astronomical units define the target
manifolds

rh=r;=1
r, =1.524
The parameters that bound the path deflections at the event manifolds are

the maximum G available at the initiad Earth orbit departure, DV, in canonical units,

and the minimum and maximum periapsis pass distances at Earth and Mars.

DV, =-2 (~=6km/s)
lmin —1.06 Marsradii

I —unbounded
r... =1.16 Earth radii

emin

I —10 Earthradii

C. Synodic Cycler Results and Analysis

Shown in Figure 34 is the state and control angle output from DIDO for a
single cycle of the synodic cycler with g=1. As expected, the time required to complete a
cycle under this set of constraints was 2.135 years, the Earth-Mars synodic period. A
quick glance at the state history reveals that the spacecraft sails from 1 AU out to Mars
orbit at 1.524 AU and then returnsto Earth. A discontinuity in both velocity states occurs
at 1.524 AU and 1 AU representing Mars and Earth swingbys respectively. T he optimal
path makes use of large gravity assist maneuvers (in the planet frame) during planet
encounters owing to slow Vys. The spacecraft initially accelerates in the radia direction
while decelerating in the transverse direction. At the appropriate time, the sail rotates to
an attitude that favors more and more positive transverse acceleration to intercept Mars

with the lowest Vy to minimize the cost function while setting up for the swingby event
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initiating the return trip. Following Mars swingby, the spacecraft sweeps out to nearly 2
AU to ensure proper phasing for Earth intercept. Sail attitude gradualy reaches a
maximum negative transverse acceleration profile @ = -35° see equation (4)), then
“shuts off” and follows a ballistic path as it presents an edge aspect to the sun. A plot of
the sail trgjectory with Earth 1, Mars 2 and Earth 3 encountersis shown in Figure 35. A
similar gravity assist is accomplished at the Earth encounter and, since cyclic end
conditions were imposed, the same control profile will reproduce the tragectory
repeatedly. Owing to these constrained end conditions, the initiadl Earth departure
hyperbolic excess velocity only required 4.3 km/s — not the maximum allowable limit of
6 km/s.

Synodic Cycler with 115 total nodes
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Figure34  DIDO States (markers) and Control with Propagated Path (line
through markers) for a Single Synodic Cycle.
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Solar sail trajectory with sail profile
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Figure35  Single Cycle Path of Solar Sail Cycler with Minimum Vy|mars

A noticeable difference between the solar sail cycler and the traditional
impulse rocket Aldrin cycler is the large swingby angular deflections with respect to
Mars and Earth. The Aldrin cycler, because it is minimizing fuel mass, resides in a
natural Keplarian orbit most of the time. As such, it tends to have alarge Vy in excess of
6 km/s at Mars and excess of 5 km/s at Earth, thus restricting turn angles. The solar sall,
on the other hand, can change orbital energy with no impact to the cost function and
achieve low hyperbolic excess speeds that permit large turn angles. The results of this
analysis show that a 75° Mars turn angle and a 29° Earth turn angle provide the optimum
path. Interestingly, the sail never goes down to the minimum allowable pass distance
with Mars to get a bigger swingby deflection. Furthermore, the sail swings by Earth at
the maximum allowable perigee distance, not the minimum allowable distance. Table 5

summarizes the cycler parameter datafor the cost function with g=1.
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Vy (km/s) | rp(planet radii) d Time to planet

Mars 253 1.27 75° 7.7 months

Earth 4.3 10 20° 18 months

Table5 Earth-Mars Solar Sail Cycler Flyby Data (b=.17, g=1)

It should be noted that the parameters shown in Table 5 are highly
sengitive to the states right before the Mars and Earth encounters. These numbers
represent the optimal parameters given the approximated state and control history. By
dightly modifying the approximations using more node points, states preceding a knot
could change enough to generate adightly different optimal parameter set.

To verify the solutions, states were propagated using initial conditions,
gravity assist conditions and the DIDO-generated control history using a Matlab® ODE
solver as described in the Vdidating Solutions section. Propagated states are shown
passing through the DIDO output markers in Figure 34 producing the path in Figure 36.

Figure 36 Propagated Path (line) with DIDO State Output (dots) for Single
Cycle. Solution uses 115 total nodes (45 before and 70 after theinterior knot).
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To capture the effectiveness of the cyclic end condition constraint, the
initial and final propagated states were compared for a single cycle. A comparison
summary appears in Table 6 where the error between final and initial conditions of the
propagated path are shown with states given as radia distance, r, Mars lead angle, z

velocity magnitude, V , and zenith angle,y  (complement of flight path angle).

Final state Value Initial state Value % Error
r 1.0053 r 1.000 0.53
z, .6525 z, .6512 0.20
V, 1.1249 v, 1.1256 0.06
Y 92.38° Yo 93.86° 1.60
Table 6 Cyclic End Condition Errorsfor Synodic Cycler

Up to this point, we have only minimized the hyperbolic excess speed at
Mars with the weighting factor g in equation (22) equal to unity. To suit the needs of
any particular cycler mission, however, it may be desirable to minimize a combination of
a both Earth and at Mars. Varying the weighting factor produces the range of Vs
shown in the graph in Figure 37. A g of approximately 0.3 will minimize the cost

function the most with least total Vy.

V-infinity at Earth and Mars

6
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Figure37  Varyinggin the Complex Combination Cost Function
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d. Remarks

Using a reasonably high performance solar sail to achieve optima
heliocentric cycler trgjectoriesis a viable aternative to traditional impulse rocket cyclers.
There are severa interesting ways to pose an “optimal” solar sail cycler problem. One
such problem would be a synodic cycler that achieves Mars and Earth encounters with
the constraint that =0. This double rendezvous synodic cycler could aso pose an
intriguing design optimization problem in which one desires the minimum sail lightness
number required to achieve a double rendezvous in a synodic period. These cases are

investigated in the next section.

4, Fun with Cycler Trajectories

a. Double Rendezvous Synodic Cycler
Using the standard performance sail (b =.17), a cycler has been

presented that minimizes Vy during planetary encounters. It may be interesting to seek a
synodic cycler that is constrained to rendezvous with each planet such that Vy is zero at
both planets. Recal that performing an EME double rendezvous mission with the
standard sail with unrestricted end conditions took at least 2.41 years. This sail would
never reach Earth again within a synodic period of 2.135 years. A higher performance
sail however might be able to. Intuition tells us that there ought to be a sail with just
barely enough area to achieve an EME double rendezvous within a synodic period. This
sail design optimization problem may be stated as follows.

Find the minimum sail lightness number that would enable a double

rendezvous cycler where Vy = 0 a both Earth and Mars.
Minimize: J=b
Subject to dynamic constraints

x-f(x,u)=0
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and event congtraints given in Table 4 with the additional constraint that the end
conditions are cyclic. Hyperbolic excess velocity is zero at the initial and final times, so
the only additional constraint is that the EM lead angle, z , isthe same at both times.

ZO :Zf

The solar sail lightness number is established as a static parameter, a sail
design characteristic that remains constant in time. The results in Figure 38 and Figure
39 show that the path has characteristics of both a synodic cycler and a double
rendezvous. Thereis symmetry in ther and v states, and antisymmetry in the u state and
control angle like the double rendezvous. Initial and final conditions are precisely the
same as in a cycler, although no gravity assists are used. The time of flight turns out to
be, of course, the EM synodic period. The minimum sail lightness number required to
perform such amission is b=.297. This corresponds to a sail that is nearly double the
Size of our standard solar sail with the same payload mass!

Minimum Sail Lightness Number for EME Double Rendezvous
2

-'-*—r
8- ¢ a
-V

ND units

0 05 1 15 2 2.5
Time [years]

Figure38  Minimum b Solar Sail Statesand Controlsfor an EME Double
Rendezvous
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Solar sail trajectory with sail profile history.

15F
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05

-15F
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Lightness no = .3 (min beta to achieve EME double rendezvous)

Figure39  Trajectory for Minimum b EME Double Rendezvous

b. Taxi Propellant Cost

One mission that could benefit from a cycling orbit is replenishing
supplies at a station on or around Mars. In concept, a taxi craft could leave its parking
orbit about Mars and greet the passing cycler sail on its hyperbolic trgectory around
Mars. A better cost function in this case would be the fuel required to meet the cycler on
its swingby path from a parking orbit (equivalently, we could minimize the Dv). We
assume a circular parking orbit with a radius equal to the closest cycler approach
distance. Since the same exact pass conditions would be met every cycle, it is presumed
that the taxi craft is positioned in this orbit. Following the discussion in ref 16 p. 102, the
Dv required to go from a circular orbit to match the cycler’ s hyperbolic orbit is

Dv= [h

T Vom

pm

wherer, andv,  arethe periapse position and velocity with respect to Mars. Since the

energy of ahyperbolic orbit is
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2
Vy :Vperi_%
2

pm

Chyp =

and the periapse velocity of the spacecraft with respect to Marsis

The change in velocity required to join the cycler craft on its hyperbolic

v o fop2m [m,
pm ¥
I'pm I’pm

Note that if the circular parking orbit grazes the closest approach point of

trgjectory is then

the cycler orbit (for fixed r, ) the Dv is proportiona to v, . Thusfor this taxi model, a

minimum v, is equivalent to a minimum taxi Dv problem. For éliptic or 3D target
orbit models where the closest cycler pass distances vary from visit to visit, the optimal
taxi intercept path would differ. In this case, the cost would also have to include
propellant expended to get from a nomina parking orbit to a non-grazing hyperbolic
cycler path.

C. Profiles Using Dif ferent Sail Performances

As with any other blossoming technology, advances in sail material design
are related to the amount of interest and thus funding. In order to make a cycler mission
feasible it is useful to know what mission designs are available for any given sail
performance. In the next analysis, a range of sail lightness numbers were fed to the
dynamics model in equation (2) and analyzed in the same fashion presented using the

standard sail. Results for g =1 in the cost function of equation (22) for a range of
lightness numbers are shown in Figure 40. Thetimeto Mars, t_, and V, | ., aeused to

compare trajectory characteristics. The higher performance sails tend to take a longer

time to reach Marsin order to reduce the hyperbolic exc ess speed a Mars.
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Optimal Cyclers with Different Sail Lightness Numbers

Time to Mars
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Sail Lightness Number
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Figure40  TheEffect of Varying Sail Performances on a Cycler with g=1in the
Cost Function

As the sail performance is reduced down to b =.01, the cycler flyby

characteristics look more like a ballistic Aldrin cycler that passes closer to Earth using
more bend angle. The sail attitude only changes the orbit enough to prevent the sail from
dipping below the minimum pass distance restriction. A sail with 1/10 ™" the performance
of the standard sail (i.e., b=.017) will reach Mars in a short time, get a small bend, then
sweep outside Mars orbita path to return to Earth close enough to get alarge bend. The

planet encounter parameters are shown in Table 7.

Vy (km/s) | rp(planet radii) d Time to planet

Mars 8.4 2.9 7° 5.2 months

Earth 53 2.2 61° 20.4 months

Table7 Solar Sail Cycler Characterigtics for Cycler (b=.017, g=1).
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E VALIDATION OF SOLUTIONS

The primary method of vaidation was accomplished through numerica
propagation. Using the same dynamic equations and initial conditions employed by
DIDO aong with the control history, a propagator will generate a trgjectory that may be
compared with the output state history. A match of resulting states indicates that the
solar sail with the given control history follows a feasible path conforming to physica
laws. The control profile may be obtained from the direct DIDO output, or derived from
the costate history (for OCPs without an interior knot) and the sail control law. The latter
generally provides “smoather” control for interior controls (when control angleisnot at a

limit, i.e. - %<a <%). A comparison of DIDO and costate-derived controls were

shown in Figure 8for the flyby and Figure 15 for the rendezvous problem.

Numerical propagation was accomplished using the Matlab® ODE45 and ODE23
solvers. Controls had to be interpolated between DIDO node points in order to produce
an accurate sal attitude at time steps generated by the ODE solver. Generdly, a cubic
interpolation served well while a spline method proved inaccurate in regions with

concentrated node points, i.e. near knots.

Validations of the benchmark problems are shown in Figure 9 and Figure 17.
DIDO paths and the propagated paths closely match as shown in Table 8 listing the mean
squared error for the different runs (DIDO dynamic constraints were met with less than
107 for both runs).

State Flyby Rendezvous
r 1.2393e-009 1.0944e-006
q 6.3148e-009 3.3749e-004
u 1.0952e-009 3.4343e-006
v 1.0258e-009 3.4093e-006

Table 8 Mean Square Error of DIDO States Compared with Propagated
States Using Matlab® ODE45
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Propagation of swingby trgjectories, such as those used in the cycler problems,
became more of an art than a science. The propagation was enacted for one cycle only
with an intermediate event condition defined at Mars orbital radius. To simulate the
gravity assist, a switch was used in the propagator to add a DV to the sail’ s velocity prior
to the encounter equa to the DV determined by DIDO. Because of the sharp
discontinuity in the path velocity due to the gravity assist at the knot, the subsequent
trgjectory was driven by where the assist occurred. Small differences in where the
outbound path encountered Mars caused the DIDO states and propagated results to differ
on the inbound leg Figure 41. The discrepancy lay in how the sail was being controlled
just prior to the interior knot. Output controls often appear “shaky” near aknot. Wit hin
the propagator, these somewhat erratic controls must be approximated at the time steps.
If the time steps of the propagator were large in comparison to the DIDO controls at the
LGL points, approximation errors resulted. These small errors are enough to dightly
change the Mars swingby event location causing the remainder of the trgjectory to
deviate from the DIDO solution. The discrepancy is resolved by forcing the propagator
step sizes to be approximately the same size as the distance between DIDO -generated
LGL points near the knot (Figure 42). In this way, better approximations are made near
the defined points producing closer matches between DIDO and propagated paths. This
can be accomplished by either imposing a maximum step size on the propagator or by
adjusting the number of nodes used by DIDO to manage node spacing. Better control
approximations in the neighborhood of the planetary encounters yielded a closer match
between the optimal solution states and the propagated states. This, however, only
confirms that the output really does match a propagated solution for the given erratic
control behavior just before the hard knot. We desire a solution that does not require the

sail to perform radical attitude changes near the Mars encounter.
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Propagator
Mars Encounter

Figure4l  Propagated Path with “Missed” Mars Swingby Phasing. Propagated
states use controlsinterpolated at time steps different than DIDOs LGL distributed
time steps causing differences at the interior hard knot.
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Figure 42 DIDO Control Output at LGL Node Points and Interpolated Controls
used in the ODE45 Propagation Near a Knot. Step sizes match fairly well.
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The controls may be made “smoother” by adding “inertia’ to the controls; i.e. by

limiting the rates. The control then becomes the time rate of change of the cone angle.
x=[rguval
where the control is u, =a(t).

Using this control and state variable convention provided inherently stable cone
angle control, a more desirable design for a solar sail attitude control system.
Additionally, the pitch rate, &, was be restricted to provide the “inertia’ to the sall
without having to switch from a 3 DOF problem to a 4 DOF problem. Numerical
solution time was expected to shorten as well since the hodograph of “control” & is
convex (see Appendix E).
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V. DEVELOPING THE OPTIMAL THREE-DIMENSIONAL
CYCLER

We now extend the boundary conditions and dynamics of the 2-D solar sail
trajectory models of the previous chapter to include a third dimension and use the same
methodical approach to solve the optimal cycler. The definition of a “cycle” for the 3
dimensional problem however becomes more complex than the 2D case. Initial and
final cycle end conditions do not repeat exactly in a synodic period as they did in the 2-D
circular coplanar model. Planetary orbit inclination and eccentricity make conditio ns
such that Earth and Mars do not repeat their relative positions with each other but about
every 15 years.

The motivation for obtaining a3-D optimal control profile for asolar sail cycler is
not only to increase the fidelity of the model but aso to compare results to the 2-D case
to learn more about the nature of optima cycler orbits. The inclination of Mars' orbit
with respect to the ecliptic plane is roughly 1.85° not a great difference from the
coplanar case. Elliptic orbits for Earth and Mars are modeled, so optimal tragjectories are
similar to the dliptic coplanar solutions. We perform the same series of benchmark 3D

solutions to rate them against their 2D circular and eliptic counterparts.

A. THREE-DIMENSIONAL MODELS

1 Sail Model

Our sal in the new model now has an extra degree of freedom due to the addition
of the third dimension. With most conventiona engines, the controls generaly have
three degrees of freedom, one for each of three dimensions. However, with the sail,
thrust magnitude is dependent on the cone angle providing a constraint, therefore only
two degrees of freedom are required. The cone angle serves well as one of the control
variables since the thrust magnitude is related to it. Another angle is required to
determine where on the cone the sail normal vector lies. It isconvenient to define aclock

angle as the angle between the projection of the sail normal onto a plane normal to the
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sun-line and a reference direction in the same plane; so we adopt a model used in ref 9
p.115. This reference direction is taken to be the vector normal to the instantaneous
orbital plane of the sail. Figure 43 makes the representation more clear with unit vector

p asthereferencedirection. Notethat apositive clock anglerotation isin the negative r

direction using the right hand rule.

Plane perpendicul ar tof

a = coneangle
d= clock angle

Figure43  Solar Sail Control Model for 3 Dimensional Dynamics

2. Dynamics M odel

Since the thrust magnitude is dependent on the radial distance from the sun,
spherical equations of mation provide a simple way of including the acceleration due to
the sail (see Coordinate Systems Section)

For the three degree of freedom state variable x=[r g f VW, W " the state

derivative is given by
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where the last three terms are from the equations of motion (Appendix C).

In choosing these dynamic equations, we must bound the states to avoid
singularitiesat r =0 and cosf =0. It turnsout that avoiding these state val ues keepsthe

Jacobian of f free of singularities as well.

3. Events M od€

The 3D target orbit manifolds are the locations and corresponding velocities of
Earth and Mars aong their respective inclined dliptic orbits. These events define the
boundary conditions of the optima control problem. In defining the boundary
conditions, it is necessary to know the relative orbital shapes and orientations of the
departure and destination planets. The orbital elements of Earth and Mars orbits are
summarized in the following table™.

a [AU] e i w w
Earth 1.0 .0167 0 undefined 102.9°
Mars 1.524 .0935 1.85° 49.57° 286.5°

Table9 Earth and Mars Orbital Parameters
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In al the problems presented, the planet’s true anomaly at the events remains a

free variable to be determined in the numerica solution.

In order to rendezvous with a planet, it is essential to describe the position and
velocity of both spacecraft and planet in a common 3-D (Np=3) coordinate system.
Although the spacecraft states are represented in spherical coordinates, the events at t;

and t, are given in perifoca coordinates in the respective planetary orbital planes. To

match the sail states with the planetary states at the end conditions, Earth and Mars

orbital planes were transformed into a common heliocentric -ecliptic coordinate system
along with their respective velocities along the orbital paths. For simplicity, the frame is
referred to as the E-frame. These orbital states define the target manifolds to which the

spacecraft event conditions are to be constrained (see Appendix D).

First, the initid Earth angular position and find Mars angular position are
congtrained to be equal to the sail’s position in the common E-frame. Resolving these
manifolds in the Eframe we obtain the planetary positions in a common coordinate
system.

Congtraining the initial and final sail angular positions to be coincident with the
initial Earth and find Mars angular positions respectively, we obtain for smal
inclinations (ref 4 p. 135) in the E-frame

qeO =q0- (We +Vve) qnf »qf_ (Wm+V\(n)
where ¢p isthe initial spacecraft position and ¢ is the final sail position.
In aperifocal system, the planetary polar coordinates r, and o, are related by

P P

v M =
1+eeC03:]eo 1+em Cosqu

where p in the numerator is the “ parameter” or semi-latus rectum of the respective orbit.

Now theinitial and fina sail target positions in Cartesian coordinates are given by
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oo CO0)0 a8y C0(0 )6
Re =A,Sr,sin@,) ; for Eathand R, =A St sin(@, ) for Mars

S o g S0 g
where A_ and A are the respective Earth and Mars 3-1-3 rotations transforming into

the E-frame (Appendix D). In like manner the velacities of the planets may be defined in
their own perifocal frame by

where V, is the speed of the planet, |rp| is the distance of the planet from the sun, and a,

is the semi-mgjor axis of the planet. Components of the planetary velocity vector are
defined in terms of the flight path angle b by

cosb , =|rh|p and sinb, :%e sin(qp)
Pl P

where h, represents the magnitude of the planet’s orbital angular momentum vector.

A planet’s velocity vector resolved in the loca vertical loca horizontal frame
(LVLH) hascomponents

u,=V,snb,
v, =V, cosb,
Finally resolving these components in Cartesian coordinates and transforming
them into the E-frame yields the target velocities Ve and V. (transformation is given in

Appendix D). For the rendezvous mission, V.g is required to match the fina sal
velocity, but knowledge of Mars velocity is not needed for the flyby mission.

The constraints may now be set such that the spacecraft states at the initial and
final events are equal to the target planetary states. Theinitial and fina sail positions are
given asfollows.
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The left column represents the sail position at the beginning, r,, and the right
column represents the sail position at the final time, r, . All coordinates are resolved in

the Eframe. After applying the transformation given in equation (45), the spacecraft
velocities a eventsin LVLH frame are given by

arO Vrf O
(; -
Voo Vor

v, =
o Vi

The velocities need to be transformed from LVLH into Cartesian coordinates in

the E-frame using a transformation matrix B defined as
B =[B] =[R(-0)][R.(f)]
2® 3

where the R matrices correspond to standard rotation matrices (Appendix D). The

gpacecraft velocity in the Cartesian E-frame is therefore
Ve =BV, VT R% '

The left column of V. represents the initial sail velocity, V,, and the right
column of V. represents the fina sail velocity, V,. Having defined al the necessary

states in the same coordinate system, it is now a simple matter to set boundary conditions

for the initial and final rendezvous events.

The sail position starts at Earth and ends at Mars

@2

(25) R,-R_=0

mE

and likewise the initial sail velocity is the orbital velocity of Earth and fina velocity is
equal to the orbital velocity of Mars.
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(26) Vo' VeE =0

(27) Vf -VmE = O

The fina velocity event constraint in equation (27) applies to the rendezvous
mission only where the spacecraft must match the velocity of Marsin its orbit. Table 10
summarizes the event conditions in equations (24) through (27) for a rendezvous. All
coordinates are resolved in Cartesian coordinates in the E-frame. Within the DIDO
framework we code the event conditions in a more compact form that ensures end
condition manifolds are constrained.

R.-R.=0andV_ - V. =0

For only two end conditions without intermediate conditions the dimensions of all

the matrices are N, © N, where N, isthe number of dimensionsand N isthe number

of events.

Event Flyby constraints | Rendezvous constraints
[lower,upper] [lower,upper]
R, [Re Rl [Re Rel
Vo [Vee Vel [Vee Vel
R, [R: Rl [R.e Rl
V, free [V.e. V]

Table 10 Event Conditionsfor 3-D Flyby and Rendezvous Missions.

B. THE OPTIMAL CONTROL PROBLEM

In keeping with the step-by-step approach to reaching a cycler model, we first
seek the minimum time solutions to the 3-D flyby and rendezvous missions. To thisend
the new 3D OCP is stated in a similar fashion asthe 2D OCP. Because the state variable

has now expanded to six variables (3 position, 3 velocity), we constrain the state
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derivatives to the 3D equations of motion (equation (23)). States are bounded to avoid
the additional singularity at the solar poles.

C. SOLAR SAIL CONTROL LAW

Since the sail attitude control system is responsible for driving both the cone

angle, a, and clock angle, d, we seek two steering laws. Aswith the 2-D model, weturn
to the principles of optimal control theory to generate these steering laws. Tailoring the
Bolza cost function in Lagrange form for a minimum time problem we get
&
J=E+ gt
0

E=0,F =1
Using dates consistent with a  sphericd  coordinate  system,
x=[r,q.f v, ,w,,w 1", we construct our state derivative vector f from the equations of

motion (Appendix C).

s{D)_‘Q\

¥e)

4

(28)f(xa,d)=&Wa COSF +rw®- T4 2 s’
Ay - r r
1

r cosf

D> D> D> (D> (D>

bm
82\/\/ rw;, sinf - v, cosf )+—cos a sina sind
r

ceN

(@ Y e ey ey en eny enY enl e} en Y en ¥ eny enld

C|D_)\(D> [
8

8 VW, +b—cosza sina cosd - -qusinf cosf
&r

7]

Thus, the Hamiltonian is

Hx,u,l )=F+1Tfx u)
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The Lagrangian is therefore

LO(t),u(0),1 (9) = Hx(0), u(t), 1 (§) +," (1)g(X(t), u())
or simply,

L=H+md+ma whereal my=0if dis unconstrained.

€P pu,,
§ 220
However in the actual implementation of control bounds, d is limited by

di ¢ % %E to avoid non-distinct controls where two (a,d) control pairs could produce

Dy

the same resulting thrust vector. It will be apparent later why this restriction isimportant.
First deriving the control law for the clock angle we calculate

[«
T ﬁl—b—mcos asmacosd——b—cos?asmasmd+mj =0
qd  rcosf r? ror?

Dividing by b—chosza sina , we obtain the tangent steering law for the clock
r

angle d interior controlsfor a * O,t% .

tand = ——%— =
(29) an |, cosf M =0

The control angle d has no effect on the resulting thrust vector when the sail is

exposing its full areato the sun or when it is exposing no area %a p O Applymg
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the KKT conditions (Appendix A) to obtain the circumstances when the clock angleis at

the “stops” we get
-_P
d=-=m £0
> m,
p
d=+=m30
> m,

where the sign of the covector determines which way the clock angleis oriented.

Next, we desire the steering law for the cone angle, a. Applying the same KKT

conditions to cone angle, a, we obtain similar results. The “stops’ of the cone angle

control occur at % and % when the control dud variable meets the following

conditions.
__b
a=-—m¢«£O0
5 m
p
a=+=m:330
> m

The “interior” cone control is defined where the dual variable is zero.

_B<a<Bma:0

2 2’

Continuing with the Minimum Principle, we obtain

&LIV,b—T(Bcoszasina)+#'—b—Tsind(-Zcosasinza+oossa)

a r rcosf r
+|Vfbmd2 in’a +cos’a |+m =0
—L = cosd (- 2cosa sin*a +cos’a ) +m, =

rr

Dividing by b_rzn cos’a produces
r

|
(30) -3, tana s _gng (- 2tan®a +1)+—~cosd (- 2tan*a +1) +m, =0
r cosf r
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wherea ! + % . Thiscorrespondsto the interior controls only when the cone angle
multiplier iszero, m =0. Using equation (29) for tand, we form an expression for cosd
and sind as a function of the states and costates.

| . cosf . I
cosd = + 4 sind =+ %

(1 cost )12 (1 cost ) +12

The sign ambiguity is resolved when we take into account the control bounds, i.e.

EH therefore sind > 0. Recdl that equation (29) isnot valid at a =0.

Rearranging equation (30) into standard quadratic polynomia form for tana
atan’a +btana +c=0, al & b B'; andato
& 272
where the coefficients are given by the following:
[
a=-2—19_gind- 2 cosd

r cosf r

| . |
c=—w9 _sind +— cosd
r cosf r

Solving the quadratic yields the tangent steering law for the cone angle interior
controls.

(3)  |tana =BEVD-4AC I 1 @D PO ag
2a & 2'2%

Following numerical solutions to smple optimal control problems (i.e. no interior
knots), DIDO will output the time histories of costate as well as dua variables associated

with the control angles. Steering laws in equations (29) and (31) use these outputs to
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generate control profiles that may be compared to the DIDO control history output for
verification.

D. RESULTS

1. Benchmark Problem Solutions with Elliptic Inclined Orbits

The question in reviewing the same series of benchmark problems with elliptic
inclined orbits is the following. Does adding a degree of freedom in the dynamics to
meet the 3D event conditions enable us to further reduce the cost from the éeliptic
coplanar case or does it hurt us? Apparent from the first several solutions is that the 3
DOF model minimizes the transit time to a smaller value than the circular coplanar

model, but produces alarger trgjectory time than the éliptic coplanar case.

a. Earth-Mars Flyby

To reach Mars as quickly as possible and sail past without gravitational
interaction, it wasintuitive that Mars periapsis provided the minimum path distancein the
coplanar model. Now when we consider that the target orbital planes are inclined with
respect to each other it may be desirable to choose a path that avoids orbit “cranking”
even when hitting the periapsisis not possible in plane. The solution shows that the sail
changes planes a small amount in order to reach Mars at its perihelion as shown in Figure
44. Mars orbit has a small inclination with respect to the ecliptic so it is preferable to
traverse a short distance even though a small cranking maneuver isincurred. Figure 45
revealsthat the timeto intercept Marswith our standard sail (b=.17) is 138 days, whichis
about the same as transiting to an in-plane eliptic Mars orbit (137 days). The sail cone
angle control history is very similar to the coplanar case cone history while the clock
angle steadily increases (Figure 46). Controls derived from the tangent steering law

using costates are compared to the DIDO control output showing a close match.
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Mars flyby sail trajectory. DIDO states and propagation

Figure44  Flyby Mission to Marswith Elliptic, Inclined Planetary Orbital
Planes. DIDO output (dots) and propagated path (lin€). Mars orbit inclination is
exaggerated for display purposes.
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Mars flyby. DIDO states and propagated states. 20 nodes.
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Figure46  Coneand Clock Angle Controlsfor Mars Flyby. History isshown for
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b. Rendezvous

Observing the f and w, statesin Figure 47 and Figure 48 gives insight

into what is required to perform the plane change maneuver. The sail trgjectory remains
in the Earth ecliptic plane for the first quarter of the mission time, then “cranks’ the
orbital plane to match the find sail f and w, with Mars exactly at the time of Mars
encounter. The mission is 1.01 years, which is a month faster that the circular coplanar
and takes only marginaly longer than the eliptic coplanar orbit model (0.977 years).

80 nodes
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"0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (years)

Figure47  EM Rendezvous with Elliptic, Inclined Orbits.
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Figure48  Optimal Profilefor f and w; Statesin the 3D Rendezvous Mission.

Turning to the costate analysis, it is evident that as in the 2-D solutions
thereisacritical time during the maneuver at which all costates are at alocal maximum
or minimum or zero (Figure 49). It is beyond the scope of this thesis as to why this
behavior occurs, however at this point in time (about /4" into the mission time) the
control angles make large adjustments to achieve the state changes previously described.
When inserted into the control laws derived in equations (29) and (31), the costates and
states will produce derived cone and clock angle controls. A comparison of costate-
derived controls and DIDO controls is shown in Figure 50. The optimal control does not
rotate the cone angle to the extremes that the coplanar model control did. The controls
here only pressed the cone angle between 18 and 60 degrees versus between 10 and 70
degrees. The optimal cone angle has to account for the clock angle as well in this 3 DOF
model.
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Costates for the minimum time 3-D Mars rendezvous
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Figure49  Costate History for Minimum Time Rendezvous with 3D Orbits

Checking feasibility, the propagated controls were observed to match
closely with the DIDO output (Figure 51). For optimdity, the Hamiltonian is constant in

Figure 52
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Derived controls using costates and DIDO controls
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Figure50  Control History for 3D Rendezvous. Displayed are DIDO controls
(markers) and the controls derived from the tangent steering law with the states and
costates as inputs (lines).

Propagated path and DIDO state output

Figure 51 Propagated Path of 3D Rendezvous (line) with DIDO Output (dots).
Marsinclination is exagger ated for display purposes.
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Hamiltonian for 3D EM rendezvous. 80 nodes
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Figure52  Hamiltonian of 3D EM Rendezvous Praoblem

C. Double Rendezvous

To optimize the Earth-Mars-Earth (EME) double rendezvous, we add to
the rendezvous event conditions a return trip to Earth. The 2-D dliptic coplanar double-
rendezvous exhibited symmetry in states and controls on the outbound and inbound legs
(Figure 31). Now using inclined ellipses with their corresponding positions and velocity
vector fields as target manifolds, we seek insights into the double -rendezvous with this
higher fidelity model.

The event conditions now include an interior event corresponding to a
rendezvous with Mars and a final event corresponding to a rendezvous with Earth. To
ensure Earth is actualy present when the sail intersects its orbit manifold, we constrain
the time of flight using Kepler's equation. This last non-linear constraint replaces the
corresponding one in the 22D model that was listed in Table 4. Fortunately, the non-
linear equation does not need to be solved explicitly as it simply serves as a constraint to
the trgjectory. In thisway, the time of flight is coupled with the eccentric anom ay that
the Earth traverses, E. Earth’s angular displacement traversed is constrained by the
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flight time of the spacecraft. As long as Earth’s true anomaly change is the same
displacement as the spacecraft angular displacement plus a multiple of 2p, phasing will

have been achieved.

In order to rendezvous with a planet, we need to describe the position and
velocity of both spacecraft and planet in 3-D (Np=3) for all 4 events (Ng=4).
Spacecraft 3D position at events in Eframe Cartesian coordinates are

expressed as

+

& X X% X0
v ) . -
Re=¢Yo ¥ i yff
§Zo Z 7 7

and likewise spacecraft 3-D velocity at eventsin LVLH.

- + ..
wro Vri Vri Vrf 0

—_ - + .
Ve=CVyo Vgi Vi Vor+
R + £

é\’fo Vi M Mg

Transforming the sail velocity vector from LVLH into in E-frame, we use

the transf ormation matrix.

B =[B] =[R(-0)][R.(F)]

So spacecraft velocity in E-frame Cartesian coordinates is
Vg =BV, V.1 RM

Because the craft is returning to Earth, it must be properly phased with
Earth to ensure the planet is there when the spacecraft arrives. This constraint makes an
Earth orbital motion model necessary accounting for its position in space and time. The
following equations are used to constrain initia and final Earth events to élipsesin three

dimensions. All state vector multiplication and division operators are element -wise.

First, we define the Earth initial and final angular positionsin the perifoca

frame.
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Qe:@eo qu:g:]O qul'We[ne ne]i

Notice that q,1 R’where g, q,f are the initid and fina angular

spacecraft positions in E-frame which are coincident with Earth’'s initial and fina
position. The following eguations relate Earth’s eccentric anomaly to its true anomaly.
Eccentric anomaly is expressed as a vec tor with each element corresponding to a knot, or
end condition. The purpose of expressing it in this manner is to be able to handle

multiple cycles with multiple encounters ( N >1) using asingle variable.

The initia and find cosine of Earth’s eccentric anomaly are contained in
the vector cosE. The vector operations are performed in an “ element-wise” fashion

where the cosine of the vector g, is the cosine of each individual €lement of vector q,.

o =&+ 5(a)
1+e,cos(q,)

, CosEl RM:
Earth’s radia position as afunction of coskE is given by
r,=a,(1-ecosE) ,rT R
where r, =[r,,r,]" so that vector sinE may be expressed as

sing = feSN(G) , 11 RN
a1- e’

Thus, Earth’s initia and final eccentric anomaly are contained in the
vector E.

LasnE 6

E=tan -——=
&cosE

, ET RMe Earth’s eccentric anomaly

The next set of equations is used to define Earth’s position based on the
initial and final time.

n=[— Earth’s mean motion
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M, =E,+esinE, Initial mean anomaly
M, =nNtoasr Final mean anomaly

Now we define the initial and final Earth position event matrix in
heliocentric Cartesian coordinates, E-frame where.

a,,c08(0,) T, C0S(d,) 0
Re =¢rosin@,) fisin() 3
&0 0 4

The speed of Earth onits eliptical path around the sun is

®e2 160 IO
Vo=, [me—-—=, VIR
\/m§|re| % 5

with velocity components expressed as

h,
AV,

e

cosly, =

cosB T R"e

m

sinl3, =
hV.

e.sin(q,), sinB, T R"

where cosf3, and sinf3, are the cosine and sine of Earth’s flight path angle at the event

knots. Earth’s velocity in radial and transverse components in the perifoca frame are
expressed in the following equations where the symbol A is used to emphasize that this
is an “eement-wise” multiplication such that each element in one vector is multiplied by
the corresponding element in the other vector.

u,=V_Asin ,ud RM
v, =V_A cos3, , v I R
ael, 0
Veowr Z[REWIVes ) Viguar TR
0%
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V_=AV ,veETRND'NE

eE e " eCART
where A, isamatrix performing a 3-1-3 transformation from Earth perifocal to Cartesian
heliocentric inertid (E-frame). See Appendix D for the derivation.

Having defined all the necessary quantities, it is now a simple matter to set
boundary conditions. Letting the spacecraft initia and final event states be Rgng and
Vsend, We have

w(o Xf o ngxo va 0
G - _ B
R =cYo Yir o Veens _(;Vyo Vyv N
gzo Z 5 §Vz0 V., ;
and intermediate event conditions are
& X0 ¥ V0
2 LT _C . .
Ri=¢Y Y=, Viz¢ V=
& 75 &, V5

s0 the boundary conditions at the earth encounter events become

Rey-Re =0
and
VEnd -\/eE:O
We can establish the Mars intermediate events in a similar fashion.
R,-R, =0
and
V.-V __=0

i mE

One last event constraint ensures proper phasing with Earth. This is
accomplished by forcing Kepler’s equation as a constraint.
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E-egsinE- M, -M, =0

Earth mean anomaly and eccentric anomaly are represented by M and E
respectively. The event constraints for the 3D EME rendezvous mission are summarized
in the table below.

Double rendezvous
Event constraints
[lower,upper]
REnd [ ReE 4 ReE]
VEnd [ VeE 1 VeE ]
R, [R.e:R.el
Vi [ VmE ’VmE ]
E-esnE-M - M, [0,0]

Table 11 EME 3D Double Rendezvous Event Constraints

States and controls for the 3 DOF model are bounded by
xT SI R®
uf Ul R?
Where the set Sis chosen to avoid singularities in the dynamics and the set

U was chosen to avoid duplicity in the controls. Because it was desired to obtain distinct
(@ d) pairs (every sail normal vector orientation is represented by only one (@ d) pair),

the bounds were such that 0 £a E% and -p £d <p . It wasrecognized that the sin and

cos components of the normal vector could have been used as the controls with proper
path constraints, however the numerical solutions took longer to complete, so the cone

and clock angles were retained as the controls.
Results and Analysis

Once more, Mars aphelion played the role of the optimal rendezvous point

at the intermediate event for the round trip. Modeling Mars smal inclination with the
9



ecliptic produced a solution that looked very similar to the 2D dliptic when case when
looking from the top view (compare Figure 53 with Figure 31). The mission time,
however, was dightly longer than the 2D case taking 2.42 yearsinstead of 2.3 years since
the spacecraft must change planes twice. The mission time of the 3D model is the same
as that of the 2D circular orbits moded except that there is no longer the precise symmetry
of states and controls exhibited by the other model. In three dimensions, the spacecraft
takes 1.03 years on the outbound leg and 1.39 on the inbound (2D circular coplanar
model required 1.205 years/leg). One of the amazing features of the path is that the
spacecraft sails out of both Mars and Earth orbital planes for a significant portion of the
return trip to Earth rendezvous (Figure 54). This large departure from the planetary
planes is accomplished in order to reach Earth orbit in phase with Earth to an accuracy
2.64E-4 radians (~=39E3 km from the center of the Earth). Testing the feasibility, the

control profile was entered into the propagator producing the result in Figure 55.

Figure53 3D EME Double Rendezvous Path (top view)
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Figure54 3D EME Double Rendezvous Path (oblique view)

Figure55  Propagated Path (line) and DIDO States (dots) for 3D EME Double
Rendezvous
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2. Earth-Mars Cycler Set-up

Formulating the 3-D élliptic orbit cycler model into an OCP is a formidable task
because cyclic end conditions are no longer imposed every EME round trip. Many round
trips occur before Mars and Earth positions are exactly the same as they were at the start
of the trgjectory. The events as structured in the previous section are set up to handle
multiple passes for a“cycle”. Since meeting synodic conditions with each round trip is
no longer required, a possible OCP formulation would be to seek the minimum time to
achieve a given number of EM passes. Using the framework outlined in this thesis, this
would entail performing successive solutions to increasing number of EM visits (and thus

number of knots) using intercept end conditions until initial state conditions are achieved

a the final time.
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V. CONCLUSIONSAND FUTURE WORK

A. CONCLUSIONS

Solar sails provide a viable means of propulsion for an Earth-Mars cycler. For a
solar sail with lightness number b =.17, an orbit can be maintained with rapid revisit

times between destination planets and slow V, s a each planet, both desirable cycler

characteristics. Furthermore, the cycler lifetime is only dependent on sail degradation in
the space environment since no propellant is depleted making solar sail cyclers attractive
in comparison to conventional low thrust and chemical propellant cyclers.

The framework in this thesis outlines a method of state and control optimization
for both 2-D and 3-D cycler models. This framework can be applied to other missions as
well by changing the event conditions. With relatively simple dynamics and sail models,
trgjectory design could be accomplished by properly formulating desired events in the
form of constraints. The pseudospectra method used within DIDO to solve the OCPs
produces optimal controls and states that were verified as feasible (through propagation
of initial conditions with a third party ODE solver) and optimal using the necessary

conditions for optimality.

B. OPPORTUNITIES FOR FUTURE WORK
The following are some areas of interest for continuing work.

Earth-Venus-Mars cycler. Is a cycler possible with three target planets and if
s0, what does it look like? Is it possible to reduce the revisit times from a two-planet
cycler? This problem would require the solution to include the optimal order of planetary

encounters.

Use a solar sail to establish an optimal halo orbit. Many non-Keplarian orbits
are possible with solar sails. Orbits around Lagrange points may be modeled and
examined for missions such as early detection of geomagnetic storms on the sunward side
of the Earth-Sun L1 point (ref 9 p. 231). Cycling orbits between L points could also be
explored.
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Implement two synodic period cyclerswith solar sails Reference 19 outlinesa
plan to make multiple passes of atarget planet within acycle (2 synodic periods). Planet -
centered dynamics may play aroleif trajectories spend significant time in a planet’s SOI.

SEP/Solar Sail hybrid cyclers. Modeling a SEP/solar sail hybrid spacecraft
would show when it is optimal to favor the SEP and when it is preferable to favor the salil

for various cycler orbits (or any trgjectory for that matter).

Variablelsp cycler. Whenisit optimal to use high thrust-low Isp and when is it
best to use low thrust-high Isp in a cycler trgectory? There are trades to examine with

weighted cost functions between fuel mass and time.

Make smoother controls near hard knots. Changing the controls to include
“inertia’ assisted in making controls somewhat smoother near knots, however for 3D
problems it was important to implement constraints to ensure that arbitrary sail
orientations resulted from unique cone angle/clock angle pairs. Implementing the sin and
cos components of these angles as controls (with a path constraint) slowed the algorithm
down and was not implemented, however this may have aleviated some of the jumpy
control outputs.

Improve gravity assist model. The matched asymptotes model as presented in
thisthesisis accurate for the problems posed, however more accurate solutions to some
problems may call for a better gravity assist model. Possibilities are to either change
dynamics inside SOI or use a jJump in time and theta at the interior knot in addition to
velocity.

Improvesail model. A higher fidelity model of the sail is available that includes
billowing and diffuse reflection (see ref 9 pp.51-54). Once the dynamics and events
models have been thoroughly tested, there are some design trades that could be explored
asfar asthe sail itsalf.

Change to dynamic equations that are better suited for cyclers. The
discussion on coordinate systems outlined some benefits and pitfalls of using certain
coordinates in cycler trgjectories. Perhaps other coordinates than those presented here

can be better implemented for optimal cyclers (e.g. equinoctia).
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Solar sail stability. Solar sails have been used in spacecraft to dump
accumulated momentum in reaction wheels due to torque perturbations. A possible OCP
would be to minimize the time to dump momentum in reaction wheels for a given earth -

centered orbit.
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APPENDIX A. APPLICATION OF THE MINIMUM PRINCIPLE¥?Y

The first step in solving an optimal control problem is to construct the scalar
Hamiltonian function,H ,

H(xut,1)=F (xu,t)+l (t)'f (xu,t)

where f (x,u,t) are the dynamic constraints on the system, and | (t] are the Lagrange

multipliers called costates. According to Pontryagin’s Minimum Principle, the optimal
control is obtained by solving the following problem at each ingtant in time.

Minimize H with respect to u, with ul U where U isthe set of all alowable
controls. To solve this praoblem, the Lagrangian of the Hamiltonian is written as:

L(x,u,t,l ,ug] =H (x,utl )+, (t) g(x,u,t)

where g(x,u,t) are the path constraints and p, (t) are the associated path covectors.

The path constraints include al trgjectory path constraints as well as any state and control
bounds. Applying the Karush-Kuhn-Tucker (KKT) theorem to the Lagrangian results in
a set of first order necessary conditions and provides a means to demonstrate the
optimality of a solution.

(32) R

with
i£0 g =g(xut)
Lag (x.u,t)=
bo=t_g it S
Py= g <g(xut)<g,
fany g =9,
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The third case above describes a special condition when the constraints in g are

interior or non-binding,
g <g(x.ut)<g,

For these cases, the multipliers, p, =0 and equation (32) simplifies to

(33)

> fu? "0
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APPENDIX B. DERIVATION OF THE 2-D EQUATIONSOF
MOTION

Lagrangian mechanics are used to achieve the 2D eguations of motion using
polar coordinates. Velocity variables are then written into a more familiar form using the
radial and transverse velocity components. Figure 1 shows the states and coordinate
convention used in the derivation. In general form Lagrange’ s equation is written as

where L B the Lagrangian, x is the generalized coordinate vector, and Q. is the
generalized non-conservative force vector'®,
We start with writing the specific kinetic energy as

1 1.2, 22
T==vxw==(r"+r
> >( q°)

Potential energy due to gravity is

V:-_M:-m
r r

The Lagrangian may be written as
L=T-V :%(r2 +rag?) + 1
p

The non-conservative generaized force is due to the solar radiation pressure
(SRP) onthe solar sail. Accderation magnitude is given by

m 2
—=—-cos’a
rO

Thus the acceleration in the radia direction is

T bm
a, =—cosa =—;cos’a
m o

and the applied acceleration in the along-track direction is
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Writing the Lagrangian equations of motion, we obtain

dagLo_ .. L _ 2. M
dt &9 & ' TIr a r?
(34 r-r+ D= g
dadLo - = L
— 2= 2rfq +r — =
dt &1q & a+r fia

(35) 2riq +r°g = a,r
where g,r isageneralized specific torque.

Equation (35) reduces to the conservation of angular momentum when g, =0.

Now to convert the fsand qsinto u and v velocity components, we use the
following relations.

Transverse velocity is

(36) v=rq
and transverse acceleration is

(37) V=rg+rqg

Using the relation in equation (36) with equation (34) we write the equation of

motion for u.

(39) a=Y. M, M sta
ror’ o,

Rewriting equation (35) and factoring an r yields
(39) r(rq'+r'q'+r'q'):aqr
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Recall that u=r therefore w =frq . Using (37) with (39) we obtain the equation
of motionfor v.
IV+rig =a,r

L_w
V=- —+
" &

._ uw _ bm .
(40) v=- —+—-cos’asna
roon
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APPENDIX C. DERIVATION OF THE 3-D EQUATIONSOF
MOTION

Aswith the 2-D case, we use the Lagrangian approach to acquire the 3-D equations of

motion.

Figure 56 shows the RSW spherica coordinate system (ref 4 p. 42) and
convention used to represent the states.

Figure56  RSW Coordinate System
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In general form Lagrange's equation is written as
(41) > T=q,

where L is the Lagrangian, x is the generalized coordinate vector, and Q.. is the
generalized non-conservative force vector™. The generalized non-conservative force for
this case is the solar radiation pressure (SRP) on the solar sail resolved in radia (Fi ),

along-track (S), and cross-track (W ) directions.

We dart by writing the specific kinetic energy as

Tzlvxv
2

where the velocity v is
v=rR +rq cosfS+rfW
Specific potentia energy is

m
r

V=-
making the Lagrangian

L=T-V :%grz+(rq'cosf )2 +(rf')zg+7m

The external acceleration due to the SRP on the sail has a magnitude of

T _bm_,
a=—=-—-cos"a
m r

and have components in the radial, along-track and cross-track directions, written as

acosaR+asinasind S+asina cosd W

Having established the necessary quantities, we proceed to derive the Lagrangian
equations of motion. For ther state, we have the following.

iadT_L,‘?_':r Ezrq'zcoszf wrfz. 0
dt&Trs T r?
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(42) t-rq?cos’f - rf 2+ rmzz acosa

Turning to the g state we form the quantities

daLo . . . 5 . . i
——==rq(-Z& cod sinf |+cos°f (rq +2rri —=0
dt 19 & a ) (1% + 2rrd) 19

The generdized force is a torque about the W axis
Q, =asinasind(r cosf )
Lagrange' s equation (41) becomes
rzq'(—Z"cos‘ sinf ]+coszf (rzq'+2rr'q') =asinasind (r cosf )
Dividing by r cosf resultsin
rq ( 2sinf f')+ cosf rq +2rq = asina sind

Finally, we rearrange terms to get the equation of motion for q .

43 = rf sinf - rcosf )+ asinasind{
(“3) 4 cosf 82]( ) u

Note that we need to be cautious at the singularities where r=0 and cosf =0.

Now for the f state we write

%g&?:zrff#r?f" T = - 172 cost sint

T g Tt
The generalized forceinthe f sense direction (torque in this case) is given by
Q =arsina cosd
Substituting into equation (41) yidds

2rrf +r% +r2cf cosf sinf =ar sina cosd
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Dividing by r and rearranging gives the equation of motion for f .

(44) f :%(-er' +asina cosd)- q’sinf cosf

112



APPENDIX D. TRANSFORMATION INTO HELIOCENTRIC -
ECLIPTIC COORDINATES (E-FRAME)

The matrix derivations below are used to transform the spacecraft state and event
conditionsinto acommon coordinate system — heliocentric ecliptic Cartesian coordinates,
called the Eframe. Spacecraft states at the events (position and velocity) are given in
spherical coordinates while the target planet manifolds (elliptical paths with velocity
related to position) are most easily expressed in a perifoca frame.

X,9

Figure57  Spherical coordinate system
SPACECRAFT

Referring to the Figure 57, we transform the spherical position coordinates into
Cartesian coordinates as follows. It isworth noting that some texts (e.g. ref 18) choose

the f coordinate as the complement angle from the one depicted above, so it is important
to be careful in deriving the transformation matrices.

éxu @ cosf cosqu

&0 _ U
Svg =g cosf sing ;
gz € rsinf
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The spacecraft velocity state has elements given as r,q,f . In the parlance of
DIDO, these spacecraft states are the “primal .states’. First we need the velocity vector of
the spacecraft in v,,v,,y components where the subscripts indicate which sense

direction the velocity vectors point. This transformation appears as

&u é r U

&, 1= &1 cosf

i H e rf §
or in our notation

& e v 0

é u_eé U
(45) @Vq 0 érwq cosf G

rH & W f

These coordinates may now be transformed into the E-frame using a 3-rotation
and 2-rotation matrix.

& &, 0
yq =R (-a)BER, ( )Bgh g
8. b B H

We choose to call the matrix gR, (- q)ggR.(f )§ the B matrix.

écosq cosf - sing cosqsinf u
B=gsinq cosf cosg singsanf ﬂ
g - sinf 0 cosf

Using transformations given in boxes, we can transform the position and vel ocity

of the spacecraft in spherical coordinates (primal.states) into the Eframe coordinate
frame.
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PLANETS

To define the manifolds of Earth and Mars we need their positions, defining an
ellipse, and equations for their velocities at any point onthe ellipse. Timeisimposed asa
non-linear constraint in the event conditions without need for transformation, so it will
not be addressed here. An elipse may be represented easily in either polar or Cartesian
form, so we choose the polar form since most astrodynamic textbooks use this form.
Positions and velocities in the perifocal frame (Figure 58) are related by the following

r:—p andV = mae_?_ 39
1+ecosq, & ag

The g, used in these equations is the angular positions of the planet from their

equations.

perihelion at a particular event. The relation between the planet true anomaly and the
gpacecraft angular position is

g, »q - (Wp +Wp)
for small inclinations (ref 4). For larger inclinations another transformation is required.

Taking the locus of planet positions, the elipse, and transforming into Cartesian
coordinates we write

X, =rcosq,
ypzrsinqp

z,=0

Transforming into the E-frame requires a 3-1-3 rotation matrix defined using the

longitude of ascending node W, inclination i, and argument of periapsis w (ref 13).

This matrix that transforms Cartesian coordinates from the perifocal frame to the
E-frameis defined as
A =R (-w)BER (- 1)aeR. (-W)g

écosWcosw - cosisinWsinw - cosi SinWcosw - cosWsinw  sinisinw (i
= Soosi cosWsinw +sinWcosw  cosi cosWcosw - SnWsinw - s’nicosWH

@D> (D>

sinisinw sini cosw cosi
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R denotes rotation matrices about the 1, 2, or 3 axis. See ref 13, p.80, ref 18,
p.190, and ref 4, p. 151 for more details.

Now transforming the planetary velocity vectors from the perifoca coordinates

(Figure 58), u and v in figure to the E-frame. Firgt, transform u and v into Cartesian
coordinates in the perifocal frame.

> > N
2
(e ey o]

y

g\/z Hperifocal

Finaly, transforming the Cartesian velocity vector in the per ifocal plane into the
E-frame, we use the A matrix again.

(¢

a0 &Ll

u _ u
g =AY,
8v. b 2 Bleritocal

D yﬂ

-

Figure58  Planetary perifocal system
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APPENDIX E. SOLAR SAIL CONTROL HODOGRAPH ANALYSIS

A hodograph is useful in determining convergence char acteristics of a solution
using a particular set of controls in the dynamics. Figure 59 shows the hodograph, the
mapping of the control, a, onto the u- v plane. Because the thrust magnitude and
resulting acceleration due to the sail is completely coupled with the sail angle, the
controls map as closed curve, not a region. Equations (38) and (40) plotted for al
feasble a values produces the hodograph. The curveis not convex in that a line drawn
between any two points on the curve does not remain completely in the locus of points
defined by the control mapping. There may be arelation of convexity and convergence
speed.

Figure59  Hodograph for Cone Angle, a

Using a new control scheme by setting the control variable equal to @ mapsasa
straight line, which is inherently convex using the above definition. Solutions do in fact

converge faster for this case.
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