Known Harmful Effects Of Constituents of Jet Oil Smoke

TOXDET-03-04

Andrew J. Bobb, Ph.D., USNR
Kenneth R. Stull, Ph.D., MSc, USN

1. Naval Health Research Center Detachment (Toxicology) – NHRC/TD
 Bldg 433
 2612 Sth St.
 Wright-Patterson AFB, OH 45433-7903
 Correspondence to LT Andrew J. Bobb at NHRC/TD
KNOWN HARMFUL EFFECTS OF CONSTITUENTS OF JET OIL CABIN SMOKE

Andrew J. Bobb, PhD
LT MSC USNR

Kenneth R. Still, Ph. D, MSC, USN

Naval Health Research Center Detachment (Toxicology)
Wright-Patterson AFB, OH

February 2003
(This page intentionally left blank)
ABSTRACT
The construction of cabin pressurization systems of certain commercial aircraft allows pyrolyzed jet oil to leak into the cabin air, often producing visible smoke. The principal toxic constituents of this smoke are tricresyl phosphate, carbon monoxide, and N-phenyl-L-naphthylamine. Long-term neurological effects alleged by airline workers could be due to tricresyl phosphate and/or carbon monoxide exposure.
GENERATION AND CONSTITUENTS OF JET OIL CABIN SMOKE

The BAe-146 aircraft uses precombustion air from the jet engines to pressurize the cabin. At the point at which it is bled off, the air is at a temperature of approximately 500 °C. Failing oil seals can permit leakage of jet oil into the air prior to its being bled off (1). Catalytic converters are designed to remove pollutants, but are insufficient in the event of a seal failure; smoke can often be observed in the cabin (1). A number of complaints have been made by personnel working on these commercial aircraft of long-term neurological effects. Investigations of jet oils under simulated pyrolysis conditions found tricresyl phosphates and Carbon monoxide (CO), as well as some Carbon dioxide (CO₂); trimethyl propane phosphate, Nitrogen dioxide (NO₂) and Hydrogen cyanide (HCN) were not found (1). Other potential constituents were not specifically addressed.

TRICRESYL PHOSPHATE

Tricresyl phosphate (CAS 1330-78-5) is a mixture of isomers, with the primary toxic form being the ortho isomer; formulations made in recent decades have had decreased levels of the toxic isomer (2). Studies using oral dosing suggest that current formulations have a fairly high threshold to produce an acute effect: doses of up to 2 grams per kilogram of organism did not produce any lasting neurological effects (2, 3, 4). It should be noted that route of administration can be important in the dose required to see an effect from toxic substances; no completed studies on inhalation of jet engine oils or tricresyl phosphate were available. One study which assessed the impact of orally-administered jet engine oil on enzyme activities in the brains of hens found that significant differences occurred in brain chemistry between six weeks exposure when no effect was seen, and 13 weeks, when a 23 to 34% enzyme inhibition could be detected (4). Another study, using dermal exposure in cats, found that exposure levels that did not
initially cause an effect began causing typical organophosphate poisoning effects after an initial exposure period, and that this period was itself dose-dependant (5). Therefore, doses below the recognized threshold for acute exposure could cause an organophosphate-type poisoning if the exposure was long in duration. Tricresyl phosphate also causes a dramatic decrease in fertility in male rats, but not in females (6).

CARBON MONOXIDE

Carbon monoxide (CO) was also produced under simulated oil leak conditions, at levels up to 100 ppm (1). Acute exposure to CO produces headache, dizziness, and nausea; long term exposure can cause memory defects and central nervous system damage, among other effects (7). Mice repeatedly exposed to CO exhibit neurodegeneration in the hippocampal region of the brain, and experience marked learning deficits (8). While most study regarding CO focuses on high exposure levels, some studies on lower exposures (0.28 to 2.8 ppm, 100 ppm) have shown a potential mechanism for oxidative damage to mammalian systems at these exposure levels: release of nitric oxide and the production of a toxic metabolite, peroxynitrite (9, 10).

N-PHENYL-1-NAPHTHYLAMINE

N-phenyl-1-naphthylamine (PAN; CAS # 90-30-2) is an antioxidant most often used in rubber formulations. It is readily absorbed by mammalian systems and rapidly converted to metabolites (11). Most toxicological studies focus on its potential carcinogenicity. One study, using both PAN and the related compound N-phenyl-2-naphthylamine administered subcutaneously to mice found a heightened incidence of lung and kidney cancers (12). A high incidence of various forms of cancer was also found among workers exposed to antitrust oil containing PAN (13).
NEUROLOGICAL EFFECTS SUMMARY

Both tricresyl phosphate and CO have been suggested to cause long-term neurological complications. From the available data, the only potential neurological effect of the naphthylamines would be oncological, but there is no evidence to suggest a connection between PAN and brain tumor formation.

LITERATURE CITED

Known Harmful Effects Of Constituents Of Jet Oil Cabin Smoke

Andrew J. Bobb, Ph.D.

Naval Health Research Center Detachment Toxicology
NHRC/TD
2612 Fifth Street, Building 433
Area B
Wright-Patterson AFB, OH 45433-7903

Naval Health Research Center Detachment Toxicology
NHRC/TD
2612 Fifth Street, Building 433
Area B
Wright-Patterson AFB, OH 45433-7903

Approved for public release; distribution is unlimited.

The construction of cabin pressurization systems of certain commercial aircraft allows pyrolyzed jet oil to leak into the cabin air, often producing visible smoke. The principal toxic constituents of this smoke are tricresyl phosphate, carbon monoxide, and N-phenyl-L-naphthylamine. Long-term neurological effects alleged by airline workers could be due to tricresyl phosphate and/or carbon monoxide exposure.

jet oil smoke, tricresyl phosphate, N-phenyl-l-naphthylamine, carbon monoxide
GENERAL INSTRUCTIONS FOR COMPLETING SIF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.

Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with; Trans. of; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, JTAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents.
DOE - See authorities.
NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.
DOE - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
NASA - Leave blank.
NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.

Block 16. Price Code. Enter appropriate price code (NTIS only).

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)