
Abstract- Pulsed-field Gel Electrophoresis (PFGE) is an 
important tool in genomic analysis.  The result of PFGE is 
presented in an image.  Each image contains several lanes.  And 
each lane consists of bands.  Two lanes are identical if the 
relative positions of bands are the same.  We present a method 
that uses computer to extract the lanes and compare the lanes in 
the electrophoresis images.  The presented method consists of 
two major steps.  The first step is image processing and lane 
extraction.  The second step is to convert a lane into chain code 
representation.  The lane comparison is carried out through 
calculating the longest common subsequence between lanes.  We 
define the distance between lanes in term of the LCS and the 
lengths of two lanes.  Two lanes have smaller distance tend to 
have similar pattern.  This method eliminates those very 
different patterns to help biologists reduce the lanes that need to 
be compared. 
Keywords - electrophoresis, image processing, chain code, 
dynamic programming. 

 
I. INTRODUCTION 

 
Pulsed-field gel electrophoresis (PFGE) was developed in 

1982 by Schwartz et. al. as a means of resolving very large 
DNA molecules [1].  PFGE can be used to separate DNA 
molecules from 10 kbp to approximately 10 Mbp and is an 
invaluable tool for genomic analysis.  PFGE can be used for 
many applications in the different fields like biology, 
biochemistry, biotechnology, medicine, clinical diagnosis etc.  
This technique produces images that consist of several 
vertical lanes.  Each lane contains some horizontal bands.  
Two subjects have the same gene sequence if their lanes have 
the same pattern.  This work studied the method that uses 
computer techniques to identify the lanes and compare the 
lanes.   

There are many factors that could affect the image quality, 
such as applied voltage and field strength, pulse time, 
reorientation angle, agarose type, concentration, the buffer 
chamber temperature, etc. [2-3].  Furthermore, the locations 
of the lanes and the size of the lanes in the image are different.  
All these factors make the lanes extraction and comparison 
difficult.   

The images acquired in our system have grid-like texture 
in the background.  The first step in the presented method is 
to remove the grid-like texture.  The locations of lanes are 
than extracted by histogram analysis.  The extracted lanes are 
then converted into chain code representation.  Finally, 
comparison is carried out by calculating the LCS between 
lanes.   

In the next section, we describe each step.  The results are 
shown in Section 3.   
 
 
 
 
 

II. METHOD 
Preprocessing 

 
Let the added noise be denoted ),( yxn .  Due to the added 
noise the PFGE images are blurry containing many grids and 
spot.  We can express the PSE system as the following 
equation, 
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For the convenience of computing, we let the sampling 
frequency be 1.  We apply the 1D Fourier Transform 
to ),( yxf  in the direction x . 
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We apply (1) for PGFE image (denoted ),( yxf ).  We found 
that there are some peaks of magnitude in certain frequency.  
We try to let ),( yxW  as a notch filter and apply it for Fig. 
1(a) to remove the texture background. The result is shown in 
Fig 1(b).  The texture background was almost removed. 

 
(a) 

(b) 
Fig. 1. (a)Original image (b)After removing the texture 

background. 
 

In order to remove the background, we apply histogram 
analysis of the images.  Fig. 2(a), (b) show the histogram of 
before and after removing the texture background, 
respectively.  In an image, the major part of the pixels 
belongs to the background that has lower intensity.  After 
analyzing about 350 images, we noticed that the second peak  
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in the histogram of an image can be set to the threshold to 
eliminate most of the background. 
 

 
(a) 

 
(b) 

Fig. 2. The histogram of before (a) and after (b) removing the 
texture background. 

 
Lanes Extraction 

 
We assume that lanes are almost vertical.  Given an image 

after preprocessing, we calculate the sum of the intensities on 
each column.  A column in the background generally has low 
intensity.  On the other hand, the accumulated intensities is 
high if a column passing through a lane.  By examining the 
accumulated intensity, we can identify the location of the 
lanes.  For each lane, we use the five columns in the center to 
represent the lane.  Average intensities of rows along the 
column are converted to a polygonal curve as shown in Fig. 3.   
 

 
Fig. 3. the intensity distribution along the vertical line 

 
In Fig. 3, the x-coordinate of the curve corresponds to the 

rows in the column and the y-coordinate represents the 
average intensity of rows.  Averaging consecutive 5 rows 
along a column smoothes the polygonal path.   The lanes and 
the associated polygonal paths are shown in Fig. 4.   

 
 

Chain Code and Lane Comparison 

Chain code encoding is one of the most fundamental 
techniques to present a polygonal path[4,5].  Chain code for a 
polygonal path is a stream of characters.  The sequence of the 
characters describes the direction changes along the 
polygonal path.  The chain code representation of a polygonal 
path provides an advantage that we can compare a pair of 
polygonal paths by comparing their chain code.   

Fig. 4. Lanes and the associated polygonal paths.   
 

Two polygonal paths are similar if their chain codes are 
similar.  The similarity between two chain codes is defined 
by their longest common subsequence.  Consider two chain 
codes 1s and 2s of lengths p and q, respectively.  Let their 
longest common subsequence be denoted s, and the length of 
s is r.  The distance between 1s  and 2s  is defined to 

be )/()2( qprqp +−+ .  Suppose 1s  and 2s are identical, 
the distance between them is 0, otherwise the distance 
between the pair of chain codes is 1.  The longest common 
subsequence of two chain codes can be obtained using the 
dynamic programming technique in )*( qpO  time.   
 The longest common subsequence of a pair of chain code 
can be represent pictorially as show in Fig. 5. 

 
Fig. 5. The longest common subsequence of a pair of chain 

code. 
Observe that, suppose 1s  and 2s are identical, the common 

subsequence is shown as diagonal straight line.  If 1s  and 

2s are very similar, the diagonal is a stair case curve close to 
the diagonal straight line.  There are cases that the distance is 
short but the stair case line is far from the diagonal straight 
line.  Furthermore, such lanes are perceptually different.  That 
means, two lanes are similar if their chain codes meet the 
following conditions. 
1. Distance between the pair of chain codes is short. 
2. The stair case curve corresponding to the longest common 

subsequence is not far away from the diagonal.   
 
 

III. RESULTS 
 We applied the proposed method to compare a set of data 
consisting of 300 lanes.  We first visually identified a pair of 
identical lanes.  The threshold for the distance between and 
chain codes and the threshold for the distance between the 
stair case cure and the diagonal straight line are obtained 
from these pair of polygonal paths.  We then computed the 
distances between all the pairs of the chain codes.  All those 



pairs whose distances are less than the given thresholds are 
possibly identical.  And the determination of the similarity of 
these candidates is determined by the use of user assist 
system.   

The presented method can serve as a screen system.  Such 
screen system reduces tremendous amount of comparisons.  
In our experiment, there were 300 lanes so that there used to 
be 45,000 lanes.  By using the proposed method, we can 
eliminate most of the pairs and leaves only 3000 candidates.  
This method could save many efforts for the biologist in 
comparing the lanes.   
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