THE EFFECTS OF ELECTRIC FIELDS ON BIOLOGICAL SYSTEMS

G. Güler, N. Seyhan
Department of Biophysics, Gazi University, Faculty of Medicine, Ankara, TURKEY

Abstract - The aim in this study was to examine protein synthesis in the liver tissue under the effect of exogenous electric fields applied in different intensities and directions. Sixty male white guinea pigs, weighing 350-400 g were used for the study. The E field of 1.9 kV/m obtained from a DC (Direct Current) power supply with 300 V was applied in vertical direction to 10 guinea pigs, and in horizontal direction to other 10 guinea pigs. In the same manner, 0.9 kV/m obtained from a DC power supply with 150 V was applied in vertical direction to 10 guinea pigs, and in horizontal directions to other 10 guinea pigs. The remaining 20 guinea pigs were used as control without any E field exposure. Hydroxyproline level in the liver tissue was determined by the modified H.Stegemann-K.Stalder method. Horizontal and vertical application of electric field of 0.9 kV/m decreased the hydroxyproline level in liver tissue as compared to controls, whereas 1.9 kV/m electric field increased the level in both application directions. Vertical application of both of the electric fields was found more effective than the horizontal one, the differences being statistically significant.

I. INTRODUCTION

Public concern has increased about the possible health risks of exposure to Electric (E) and Magnetic fields generated by electric power distribution systems. There is accumulating evidence from epidemiological studies that exposure to Electric and Magnetic Fields may increase the incidence of various types of cancer, particularly leukemia, brain tumors, and breast cancer [1,2]. However, there is little understanding of the nature of the interaction between Electric and Magnetic Fields and biological systems. The observed effects include changes in enzyme activity and protein synthesis. The aim of this study is to examine protein synthesis under the effect of exogenous E fields in different directions and intensities.

II. MATERIALS AND METHODS

Electric Field Exposure

Guinea pigs (10-12 weeks old) were exposed continuously to uniform E fields of 1.9 kV/m, 0.9 kV/m generated between the parallel plates of a capacitor. The E field of 1.9 kV/m obtained from a DC (Direct Current) power supply with 300 V was applied in vertical direction to 10 guinea pigs and in horizontal direction to other 10 guinea pigs. In the same manner, 0.9 kV/m obtained from a DC power supply with 150 V was applied in vertical direction to 10 guinea pigs, and in horizontal directions to other 10 guinea pigs. Twenty guinea pigs were used as control without any E field exposure, but otherwise maintained under the same conditions. The guinea pigs were exposed to E fields for 3 days, 9 hours/day (between 8 a.m. and 5 p.m.) in wooden cages (50 cm x 50 cm x 14 cm) with copper plates mounted vertically or horizontally over them.

Determination of Tissue Hydroxyproline

Liver tissues hydroxyproline contents of animals were determined with Stegemann-Stalder's Method [3].

III. RESULTS

Hydroxyproline contents of liver tissues of the electric field applied groups were compared with their controls with DUNCAN Test. There was significant difference between hydroxyproline contents of the tissues of liver of vertical and horizontal electric field applied groups and control groups: Horizontal and vertical application of electric field of 0.9 kV/m decreased the hydroxyproline levels in liver tissues as compared to the controls, whereas 1.9 kV/m electric field increased the level in both application directions (Table 1, Fig. 1). Vertical application of both of the electric fields was found more effective than the horizontal one.

TABLE I: Comparison of DC Electric Field Groups with Control Group and Statistical Evaluation

<table>
<thead>
<tr>
<th>E Field</th>
<th>Liver HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical E Field (1.9kV/m)</td>
<td>0.559±0.185**</td>
</tr>
<tr>
<td>Horizontal E Field (1.9 kV/m)</td>
<td>0.464±0.180**</td>
</tr>
<tr>
<td>Control</td>
<td>0.261±0.145</td>
</tr>
<tr>
<td>Vertical E Field (0.9kV/m)</td>
<td>0.077±0.022**</td>
</tr>
<tr>
<td>Horizontal E Field (0.9 kV/m)</td>
<td>0.119±0.030*</td>
</tr>
</tbody>
</table>

**: p < 0.01, *: p < 0.05, HP: Hydroxyproline (µg/g tissue)
<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>Contract Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Effects of Electric Fields on Biological Systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Project Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name(s) and Address(es)</th>
<th>Performing Organization Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Biophysics Gazi University Faculty of Medicine Ankara, Turkey</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>Sponsor/Monitor’s Acronym(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Army Research, Development & Standardization Group (UK) PSC 802 Box 15 FPO AE 09499-1500</td>
<td>Sponsor/Monitor’s Report Number(s)</td>
</tr>
</tbody>
</table>

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document contains color images.

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
3
IV. DISCUSSION

Electromechanical forces generated in the cell membrane by rapidly increasing electroforces can lead to temporary reversible electronic collapse of the membrane [4-6]. DC fields of 1 kV/m have been shown to move protein molecules along the surface of the membrane and through gap junctions [7].

The changes found in our investigation in the levels of HP can be considered as the result of transportation of molecules under the effect of applied.

The observed increase of hydroxyproline content under the influence of the electric field of 1.9 kV/m may be explained by the above mentioned facts: since proteins have a net electric charge depending on the pH value of the medium, and therefore are mobile within the electric field, the fibroblast cells move along the electric field, thus synthesizing more collagen, resulting in an increase in the HP content in the tissue. This increase in hydroxyproline content has also been substantiated with our histological findings [8]. The dense appearance of the fibroblasts in the histological picture of the tissue from this group supports the increase in hydroxyproline content. In livers of animals exposed to vertical electric field of 1.9 kV/m, the increase in collagen fibers is quite obvious in the areas where the connective tissue is dense.

In the 0.9 kV/m study, from both biochemical and histological point of view, decrease in collagen synthesis shows insufficient distribution for collagen fibers in the considered region [8,9]. Therefore, after 3 days E field exposure it is estimated that important defects and degeneration in the healthy guinea pigs’ liver tissue occur. Free radicals are defined as any atom, atomic group or molecule with an uncompensated spin. Toxic Oxygen Free Radicals are extremely reactive in general and can inflict considerable damage to biomolecules, such as RNA, enzymes, membranes and proteins, which may lead to various pathological consequences [10]. The increase in radicals can be traced with the variation in malondialdehyde (MDA) level [11]. In our study carried out in parallel to this study, contrary to 1.9 kV/m, both vertical and horizontal E fields of 0.9 kV/m caused an increase in MDA levels in the liver tissues of guinea pigs, whereas a decrease in the hydroxyproline levels of the liver tissues were observed. Reassessing the results of this study from this point of view, we may say that as a result of energy transfer of electric field to the applied tissue area, molecular O₂ could have been transformed to free radicals. The increase in free radicals may decrease molecular O₂ which is required for hydroxyproline synthesis.

Fig. 1: Changes in liver hydroxyproline levels upon the application of vertical and horizontal electric fields as compared to controls

REFERENCES

