<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Papers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see attached</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC)</td>
<td>M162</td>
<td>346120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT</th>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Force Research Laboratory (AFMC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFRL/PRS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 Pollux Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edwards AFB CA 93524-7048</td>
<td></td>
</tr>
</tbody>
</table>

| 11. SPONSOR/MONITOR'S NUMBER(S) | | |
| | | |

12. DISTRIBUTION / AVAILABILITY STATEMENT		

Approved for public release; distribution unlimited.		

| 13. SUPPLEMENTARY NOTES | | |

| 14. ABSTRACT | | |

| 15. SUBJECT TERMS | | |

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
<th>19b. TELEPHONE NUMBER (include area code)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Leilani Richardson</td>
<td>(661) 275-5015</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO) 22 May 2001

Heller, R.A., "Statistical Treatment of Crack Propagation Data"

International Conf. on Computational Engineering & Science (Puerto Vallarta, Mexico, 24-28 August 2001) (Deadline: 15 June 2001)

1. This request has been reviewed by the Foreign Disclosure Office for: a.) appropriateness of distribution statement, b.) military/national critical technology, c.) export controls or distribution restrictions, d.) appropriateness for release to a foreign nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:

__

__

Signature __________________________ Date ________________

2. This request has been reviewed by the Public Affairs Office for: a.) appropriateness for public release and/or b) possible higher headquarters review.
Comments:

__

__

Signature __________________________ Date ________________

3. This request has been reviewed by the STINFO for: a.) changes if approved as amended, b.) appropriateness of references, if applicable; and c.) format and completion of meeting clearance form if required
Comments:

__

__

Signature __________________________ Date ________________

4. This request has been reviewed by PR for: a.) technical accuracy, b.) appropriateness for audience, c.) appropriateness of distribution statement, d.) technical sensitivity and economic sensitivity, e.) military/national critical technology, and f.) data rights and patentability
Comments:

__

APPROVED/APPROVED AS AMENDED/DISAPPROVED

PHILIP A. KESSEL Date
Technical Advisor
Space and Missile Propulsion Division
Statistical Treatment of Crack Propagation Data

R. A. Heller

Summary

Crack propagation data are available for two different particulate composite materials. A larger set of 38 observations is used to draw statistical inference for the second set consisting of 5 data. The Paris crack propagation relation, whose two parameters are functionally related, is used.

Introduction

Two sets of data, on particulate composite materials containing hard particles in a rubbery matrix, have been examined; one consisting of 38 observations and a smaller one of 5 observations. It is desired to obtain statistical inference for the smaller data set, including confidence limits, with the aid of the larger group of observations. It has been postulated that the rate of crack-propagation follows the Paris relationship and that the two parameters of this rule are functionally related. It has also been indicated that the parameters are normally and normally distributed. The two materials designated as MM for the larger set and MX for the smaller, though different, have similar characteristics. Furthermore, MM was tested at a cross-head speed of 0.1 in/min and MX at 0.2 in/min.

According to the Paris rule, the rate of crack propagation

$$\frac{da}{dt} = C_1 K_f^2 = \dot{a}$$

(1)

where C_1 and C_2 are correlated parameters and K_f is the stress intensity factor in psi \sqrt{in}.

Taking logarithms of both sides

$$\log \dot{a} = \log C_1 + C_2 \log K_f$$

(2)

log C_1 as well as C_2 are assumed to be normally distributed random variables (C_1 is consequently log normally distributed).

As a result, log \dot{a}, the sum of two normally distributed variables, is also normal with a mean of

$$\log \dot{a} = \log C_1 + C_2 \log K_f$$

(3)

and standard deviation

$$\sigma_{log \dot{a}} = [\sigma_{log C_1}^2 + \log^2 K_f \sigma_{C_2}^2]^{1/2}$$

(4)

The relationship between log C_1 and C_2 is linear

$$\log C_1 = A - BC_2$$

(5)

1Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA
or in terms of standardized variables

\[
\frac{(C_2 - \bar{C}_2)}{\sigma_{C_2}} = \frac{-\log C_1 - \log \bar{C}_1}{\sigma \log C_1}
\]

(6)

that is

\[
\log C_1 = \frac{\sigma \log C_1}{\sigma_{C_2}} (C_2 - \bar{C}_2) + \log \bar{C}_1
\]

(7)

Substituting Eq. 7 into Eq. 2

\[
\log \hat{a} = C_2 \left(\log K_f = \frac{\sigma \log C_1}{\sigma_{C_2}} \right) + \frac{\sigma \log C_1}{\sigma_{C_2}} \bar{C}_2 + \log \bar{C}_1
\]

(8)

is obtained. Therefore, the variance

\[
\sigma_{\log \hat{a}}^2 = \left[\sigma \log C_1 \log K_f - \sigma \log C_1 \right]^2
\]

(9)

Data Analysis

The two sets of data: 38 observations of \(\log C_1\) and \(C_2\) for \(MM\), at a cross-head speed of 0.1 in/min and 5 observations for \(MX\), at a cross-head speed of 0.2 in/min are listed in Table 9, together with their sample means and sample standard deviations. The crack propagation rates, \(\log \hat{a}\) for \(K_f = 40\) psi \(\sqrt{\text{in}}\) are also listed in the table.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>(C_2)</th>
<th>(\log C_1)</th>
<th>(\log \hat{a})</th>
<th>Test No.</th>
<th>(C_2)</th>
<th>(\log C_1)</th>
<th>(\log \hat{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>2.42161</td>
<td>-8.91899</td>
<td>-5.03856</td>
<td>132</td>
<td>1.527031</td>
<td>-5.86331</td>
<td>-3.41701</td>
</tr>
<tr>
<td>109</td>
<td>1.76573</td>
<td>-6.7678</td>
<td>-3.93244</td>
<td>133</td>
<td>1.627629</td>
<td>-6.91217</td>
<td>-3.98331</td>
</tr>
<tr>
<td>106</td>
<td>1.507719</td>
<td>-6.85865</td>
<td>-3.4449</td>
<td>134</td>
<td>1.608371</td>
<td>-6.17429</td>
<td>-3.59736</td>
</tr>
<tr>
<td>107</td>
<td>1.563305</td>
<td>-6.90666</td>
<td>-3.59224</td>
<td>135</td>
<td>2.094406</td>
<td>-7.88458</td>
<td>-4.52035</td>
</tr>
<tr>
<td>109</td>
<td>2.229644</td>
<td>-8.55145</td>
<td>-4.82417</td>
<td>137</td>
<td>1.381992</td>
<td>-5.43623</td>
<td>-3.22227</td>
</tr>
<tr>
<td>110</td>
<td>1.718226</td>
<td>-6.53545</td>
<td>-3.78085</td>
<td>138</td>
<td>1.273468</td>
<td>-5.06151</td>
<td>-3.02123</td>
</tr>
<tr>
<td>111</td>
<td>1.829256</td>
<td>-7.08562</td>
<td>-4.08712</td>
<td>139</td>
<td>2.019887</td>
<td>-7.35751</td>
<td>-4.36059</td>
</tr>
<tr>
<td>112</td>
<td>2.319284</td>
<td>-8.21514</td>
<td>-4.67068</td>
<td>140</td>
<td>1.944194</td>
<td>-7.29269</td>
<td>-4.17809</td>
</tr>
<tr>
<td>113</td>
<td>1.853258</td>
<td>-7.15843</td>
<td>-4.13824</td>
<td>141</td>
<td>2.516103</td>
<td>-9.19896</td>
<td>-5.16802</td>
</tr>
<tr>
<td>114</td>
<td>2.286922</td>
<td>-8.46155</td>
<td>-4.79797</td>
<td>142</td>
<td>1.994757</td>
<td>-7.45045</td>
<td>-4.25485</td>
</tr>
<tr>
<td>115</td>
<td>1.961836</td>
<td>-7.40714</td>
<td>-5.80444</td>
<td>143</td>
<td>1.735048</td>
<td>-6.99552</td>
<td>-4.21597</td>
</tr>
<tr>
<td>116</td>
<td>1.758835</td>
<td>-6.6976</td>
<td>-3.87695</td>
<td>144</td>
<td>2.349725</td>
<td>-8.50174</td>
<td>-4.22748</td>
</tr>
<tr>
<td>117</td>
<td>2.337755</td>
<td>-8.72234</td>
<td>-4.84362</td>
<td>145</td>
<td>1.845756</td>
<td>-6.99665</td>
<td>-4.07457</td>
</tr>
<tr>
<td>118</td>
<td>1.403963</td>
<td>-5.53812</td>
<td>-3.28897</td>
<td>146</td>
<td>0.365129</td>
<td>1.214061</td>
<td>0.70221</td>
</tr>
<tr>
<td>119</td>
<td>2.208551</td>
<td>-8.19052</td>
<td>-4.65735</td>
<td>120</td>
<td>1.981772</td>
<td>-7.43898</td>
<td>-4.26416</td>
</tr>
<tr>
<td>121</td>
<td>1.981772</td>
<td>-7.43898</td>
<td>-4.26416</td>
<td>122</td>
<td>1.645804</td>
<td>-6.34225</td>
<td>-3.70568</td>
</tr>
<tr>
<td>123</td>
<td>2.289029</td>
<td>-8.3731</td>
<td>-4.75414</td>
<td>124</td>
<td>1.22662</td>
<td>-4.96587</td>
<td>-2.78900</td>
</tr>
<tr>
<td>125</td>
<td>1.867377</td>
<td>-7.0906</td>
<td>-4.10452</td>
<td>126</td>
<td>2.7753</td>
<td>-7.359</td>
<td>-2.91345</td>
</tr>
<tr>
<td>129</td>
<td>1.150759</td>
<td>-4.6236</td>
<td>-2.77048</td>
<td>129</td>
<td>4.461</td>
<td>-10.724</td>
<td>-3.36364</td>
</tr>
<tr>
<td>130</td>
<td>1.961672</td>
<td>-7.344</td>
<td>-4.20992</td>
<td>130</td>
<td>3.6438</td>
<td>-0.101</td>
<td>-3.26043</td>
</tr>
<tr>
<td>131</td>
<td>1.551135</td>
<td>-6.02706</td>
<td>-3.54124</td>
<td>131</td>
<td>0.786049</td>
<td>1.557153</td>
<td>0.29832</td>
</tr>
</tbody>
</table>
The data of C_2 vs. $\log C_1$, are plotted for the two materials, MM and MX, in Fig. 1 and indicate the validity of linear relationships with correlation coefficients of $\rho = -0.99836$ and -0.99994, respectively.

![Graph a](image1)

![Graph b](image2)

Fig. 1. Log C_1 vs. C_2 for a) MM and b) MX

It is seen that the range of values are quite different. For MM, C_2 varies between 1.16 and 2.52 with corresponding $\log C_1$ values of -4.6 and -9.2. For MX, C_2 varies from 2.8 to 4.46 with $\log C_1$ from -7.55 to -10.72.

The differences are attributable to the two different materials rather than to the changed cross-head speeds. Though the cross-head speed for MX is double that for MM, the mode of cracking is similar. It is expected that only at much greater cross-head speeds would cracking change to a brittle fracture.

Utilizing Eqs. 3 and 4, $\log \dot{a}$ has been calculated for each datum for a stress-intensity factor of $K_I = 40$ psi\sqrt{in} (Table 1).

The data were plotted on normal probability paper in Fig. 2. Though all datum points fit the normal distribution reasonably well, all MX values are higher than $\log \dot{a}$ for MM.

In order to eliminate the influence of the material differences, the $\log \dot{a}$ values were standardized using the appropriate means and standard deviations for each material (Table 1). The data were then arranged in increasing order and were plotted on normal probability paper (Fig. 3).

It is apparent that, in this standardized form, both sets are essentially normally distributed and that they belong to the same population, the MX data are interspersed with MM values.

Please replace this with a semicolon or a (cm) dash.
Fig. 2. Normal probability plot of $\log \hat{a}$ for the two materials

Fig. 3. Normal probability plot of standardized $\log \hat{a}$ for the two materials
Confidence Limits

Confidence limits may be established for the normally distributed data. The meaning of such limits is that the true population mean will lie between these limits with a given probability \((1 - \alpha)\). The width of the confidence interval is a function of the number of observations, \(n\). The greater the value of \(n\), the narrower the confidence band.

For small numbers of observations, confidence intervals are based on Student's \(t\) distribution [1]. For a variable \(X\), with sample mean, \(\bar{X}\), and standard deviation, \(S\), the population mean \(\mu_{1-\alpha}\) will lie between the following confidence limits

\[
[(\bar{X} - t_{\alpha/2}, n - 1 S/\sqrt{n}) < \mu_{1-\alpha} < (\bar{X} + t_{\alpha/2}, n - 1 S/\sqrt{n})]
\]

where \(n\) is the sample size and \(t_{\alpha/2,n-1}\) is the tabulated value of the \(t\) distribution with \(\alpha/2\) and number of degrees of freedom \(f = n - 1\).

In the case of \(\log \alpha\), for \(MM\), with a confidence \(1 - \alpha\) of .99 \(\log \alpha = 4.07457\), \(S_{\log \alpha} = .702212\) and \(n = 38\), \(\alpha = .01\), \(\alpha/2 = .005\), \(f = 37\), \(p = 1 - \alpha/2 = .995\).

\[
t_{.995,37} = 2.72 \text{ (by interpolation)}
\]

\[
\left[-4.07457 - 2.72 \left(\frac{.702212}{\sqrt{38}}\right)\right] < \mu_{\log \alpha(1-\alpha)} < \left[-4.07457 + 2.72 \left(\frac{.702212}{\sqrt{38}}\right)\right]
\]

Therefore

\[-4.38442 < \mu_{\log \alpha(1-\alpha)} < -3.76472\]

(12)

a difference of 0.62.

The true mean lies between -4.38442 and -3.76472 with a confidence of 0.99.

In contrast, for \(MX\), with \(\log \alpha = -3.26042\), \(S_{\log \alpha} = .298318\), \(n = 5\), for a confidence of \(1 - \alpha\) = .99, \(f = n - 1 = 4\), \(t_{\alpha/2,n-1} = t_{.995,4} = 4.604\)

\[
\left(-3.26043 - 4.604 \frac{.298318}{\sqrt{5}}\right) < \mu_{\log \alpha(1-\alpha)} < \left(-3.26043 + 4.604 \frac{.298318}{\sqrt{5}}\right)
\]

(13)

\[-3.87466 < \mu_{\log \alpha(1-\alpha)} < -2.64620\]

(14)

with a difference of 1.228.

The confidence interval for \(MX\) is much greater than for \(MM\), because the former set has a small sample size.

To improve on the confidence interval for the smaller sample, the standardized normal distribution, Fig. 4, may be used. With a mean of zero and standard deviation of unity, Eq. 11 is modified as

\[
[(0 - t_{\alpha/2,n-1}/\sqrt{n}) < \mu_{1-\alpha} < (0 + t_{\alpha/2,n-1}/\sqrt{n})]
\]

(15)
Again for $1 - \alpha = .99$, with $n = 43$, $t_{.995,42} = 2.6948$.

For the standardized variables
\[
\left[(0 - 2.6948 \frac{1}{\sqrt{44}}) < \mu_{.99} < (0 + 2.6948 \frac{1}{\sqrt{44}}) \right]
\]
(16)
or
\[-0.4063 < \mu_{.99} < .4063\]

$X_L < \mu_{.99} < X_U$

Performing the standardization backwards
\[
\frac{(x_L - \bar{x})}{S} = X_L, \quad \frac{(x_U - \bar{x})}{S} = X_U
\]

Where L and U indicate the lower and upper confidence levels, \bar{x} and S are the mean and standard deviation of $\log \dot{a}$ for MX

\[
X_L = \log \dot{a}_L = -2.9832 \times .4063 - 3.26043 = -3.3816
\]

\[
X_U = \log \dot{a}_U = .29832 \times .4063 - 3.26043 = -3.1392
\]

Therefore the mean $\log \dot{a}$ for MX with a confidence of .99 lies between

$3.3816 < \mu_{.99} < -3.1392$

with an interval width of .242 instead of 1.228 based on the original data.

The validity of the suggested calculation hinges on the assumption of normality for both sets of data and that crack propagation is not significantly different in the two materials.

Reference