<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>Technical Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. AUTHOR(S)</td>
<td>Please see attached</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048</td>
</tr>
<tr>
<td>12. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td>Unclassified Unclassified Unclassified</td>
</tr>
<tr>
<td>20.30129 131</td>
<td></td>
</tr>
</tbody>
</table>
MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO) 16 Mar 2001

Miller, T.C., “Crack Growth Data Collection and Reduction Methodology Survey”

JANNAF Critical Defect Assessment Panel
(Cocoa Beach, FL, 26-30 Mar 01) (Deadline: 26 Mar 2001) (Statement A)
CRACK GROWTH DATA COLLECTION AND REDUCTION METHODOLOGY SURVEY

30 Jan 01

Tim Miller
Engineer
Propulsion Directorate
Air Force Research Laboratory
Complications in the Measurement Process

- Inhomogeneity of microstructure, large deformations, and material nonuniformity complicate the analysis of cracks in propellant

- Microstructure - void nucleation, growth, and coalescence at the crack tip causes sporadic crack growth

- Large deformations - blunting at crack tip and large dimensional changes make measuring crack size somewhat subjective

- Variation of specimen properties due to trouble maintaining uniformity during processing of large rocket grains also a problem
Purpose of This Survey

• These complications give the crack growth rates scatter. Some of the scatter reflects real instantaneous changes in crack speed, while some are related to the measurement techniques used.

• Researchers have used different geometries, measurement procedures, and analysis techniques to try to obtain the most accurate results.

• This study surveys these procedures to determine state-of-the-art for crack growth measurements.
Crack Size Measurement Methods

- Specimen Geometries and Test Procedures
- Measurement of Crack Size
- Time Increments
| Common Factors | Constant Strain Rate Tests | Thin Specimens | Variations - Specimen Geometry Choices | Biaxial Specimens | Advantages: Biaxial stress, no end rotations | Disadvantages: Two crack tips, asymmetric growth | Edge notched specimens | Advantages: Single crack tip | Disadvantages: Rotation about "hinge point" | Subscale motor specimens | Advantages: Relates to motor well | Disadvantage: Difficult to make, also may not apply to other motors |

Introduction

Crack Size Measurement Methods

Method of Determining Crack Speed

Potential Sources of Error

Summary
Measurement of Crack Size

- Videotape measurements were the most common
 - Advantages: simple, no specialized equipment
 - Disadvantages: tedious, high strain rate tests require expensive high speed video equipment
 - Both measuring off of monitor with ruler and digitizing of videotape were used for actual measures; no difference in accuracy was noted
- Transparent plastic sheet with grid lines also used
- Contact methods
 - Colored dyes
 - Card inserted into mouth of crack
 - Advantages: colored dyes give crack profile, neither method requires surface observation
 - Disadvantages: limited number of measurements, must be measured during test manually, requires contact with propellant
Researchers did not report any typical time increments, there were no standard guidelines used, and the choice of time increment was left to the discretion of the investigator.
Methods of Determining Crack Speed

Secant methods: most popular methods, advantages are simplicity and ease of use, disadvantages are scatter in data

\[
\frac{da}{dt}_{t=t_i} = \frac{a_{i+1} - a_i}{t_{i+1} - t_i}
\]

Modified secant method

\[
\frac{da}{dt}_{t=t_i} = \frac{1}{2} \left[\frac{a_i - a_{i-1}}{t_i - t_{i-1}} + \frac{a_{i+1} - a_i}{t_{i+1} - t_i} \right]
\]

Polynomial methods: somewhat less popular, advantages are the “smoothing” of the data, somewhat more difficult to use

Incremental polynomial method or spline fitting method

Total polynomial method
Relation of Crack Speed to Loading

General Consensus: Power law relationship for crack speed and K

$$\frac{da}{dt} = CK^m$$

However, in one case crack size vs. time was used to determine the crack length at any particular time in the motor, and crack speed was never an issue.
Potential Sources of Error

- Presence of two crack tips in biaxial specimen
- Accurate measurement of boundary conditions and loads
- Lack of well defined crack tip makes length measurement difficult
- Surface measurements may not represent crack size
- Possibility of parallax in measurements made through sight ports in pressure chambers
Summary

Experimental procedures usually employ constant strain rates with thin specimens and crack sizes measured from the surface of the specimens.

The biaxial specimen was popular but had problems because of the dual crack tips. Other specimens have been used that have single crack tips, and analog or subscale tests have also been used.

Crack speed was determined from the crack size vs. time data using derivative approximations, the most common of which was the secant method, although researchers also used polynomial methods.

No guidelines other than engineer's judgement for time intervals.

Potential errors can be grouped in three categories:

- Presence of two crack tips in biaxial specimens
- Use of idealized boundary conditions in fracture calculations
- Difficulties measuring the crack size accurately given that the crack tip is sometimes poorly defined and the interior of the crack front is not visible