Abstract- One of the most important mechanisms for maintaining the life of human beings is the human circulatory system. This research focuses on a non-invasive technique that maintains high resolution and high precision of measuring photon in the blood stream. We hope to obtain important biomedical parameters valuable for pathological diagnosis.

In phase I, a non-invasive optical flow velocimetry is implemented for detecting the human circulatory system under the skin surface. The source of the incidence photon is He-Ne laser. The signal is transmitted and detected via a Y-type optical fiber. Optical heterodyning is used to measure the frequency difference between the reflection wave and the original incidence laser wave. Then numerical simulation using Monte Carlo was used in the analysis to verify the result.

In phase II, after a velocimetry specification was decided, it was modeled, tested and verified using Monte Carlo simulation. Then the apparatus were set up as directed in the model. The performance of this velocimetry is satisfactory and acceptable. This method of implementing a velocimetry is simple, convenience and fast. Thus, no prior clinical experiment is need. Moreover, the best reading for the reflected wave is $45^\circ \pm 2.35^\circ$. This is a real-time and continuous detecting blood flow velocimetry. We find that this is a reliable tool for doctors when doing clinical diagnosis.

Key words: clinical detection, circulatory system, He-Ne laser, optical heterodyning.

I. INTRODUCTION

Noninvasive optical electrical detection techniques [1,2] with high resolution and high precision have become the important aim of many research institutes. However researchers are especially interest in minimizing the dimension of clinical detection devices. To attain this goal, at present the use of optical fiber has become one of the most important and indispensable methods. For example, we can use non-invasive optical oximetry [3] and fiber-optic fluorometer [4] to analyze the human organizations.

Blood flow velocity is one of the important parameters of human circulatory system [5]. In recent year there have been many indirect methods proposed by many specialists to detect this parameter via skin surface. However, all these methods do not provide continuous detection. This will result in some restriction for their usage in some special applications. In recent research, coherent monochromatic laser light is used to incident the skin surface directly. This provides clinic research on blood flow velocity via the Doppler effect. This method can serve as a continuous non-invasive direct detection technique.


However, there is little or highly any research on continuous detection. Moreover setting up the optical velocimetry is difficult and usually need bioexperiment prior to set up.

To realize this aim, In phase I, we implement the blood flow velocimetry with fiber, laser fiber driver, and signal amplifier. Laser Doppler effect is used as a guideline. Besides this, numerical simulation using Monte Carlo is used in the analysis and processing. In phase II, we model a velocimetry specification using a Monte Carlo model. The model is tested and verified. Then we set up the hardware as directed in the model. By doing so, we hope to learn more about the associate mechanism on circulatory system of heart and body surface. Besides constructing a real-time and continuous detection tool, our main research aim is to find a more effective and reliable tool to help doctors to do clinical diagnosis.

II. METHODOLOGY

When we use coherent laser light to focus on some moving object, the light wave of reflection will change its frequency when the relative location and the velocity of this moving object changes. This relation is as follows:

$$F = \left( \frac{1}{2 \pi} \right) \times (K_r-K_i) \times V$$  (1)

$K_r$ and $K_i$ are the propagation vectors of the scatter beam and incident laser beam respectively [11]. $V$ is the velocity of the moving object and $f$ is the frequency change of the reflective wave. Fig. 1 shows the optical setup for the two-fiber laser Doppler anemomter. The polarized He-Ne laser beam is divided into incident and reference beams by the 50/50 polarized beam splitter (BS). The reference light is coupled into photodiode though another beam splitter. The incident light is passed into the transmission fiber via the fiber-optic coupler toward the catheter and through the skin surface into the red blood cell(RBC). Based on Doppler effect, the scatter light frequency shifts by $df$ ($f$=df) and is transmitted via the receiving fiber into the spectrum analyzer. Optical heterodyning method is used to obtain the blood flow velocity.
<table>
<thead>
<tr>
<th><strong>Title and Subtitle</strong></th>
<th>Implementation of Noninvasive Flow Velocimetry Through Monte Carlo Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Performing Organization Name(s) and Address(es)</strong></td>
<td>Institute of Electrical Engineering National Taiwan University Taiwan R.O.C.</td>
</tr>
<tr>
<td><strong>Sponsoring/Monitoring Agency Name(s) and Address(es)</strong></td>
<td>US Army Research, Development &amp; Standardization Group (UK) PSC 802 Box 15 FPO AE 09499-1500</td>
</tr>
<tr>
<td><strong>Distribution/Availability Statement</strong></td>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td><strong>Supplementary Notes</strong></td>
<td>Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October 25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document contains color images.</td>
</tr>
<tr>
<td><strong>Abstract</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Subject Terms</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Report Classification</strong></td>
<td>unclassified</td>
</tr>
<tr>
<td><strong>Classification of Abstract</strong></td>
<td>unclassified</td>
</tr>
<tr>
<td><strong>Number of Pages</strong></td>
<td>3</td>
</tr>
</tbody>
</table>

Report Date: 25 Oct 2001

Report Type: N/A

Dates Covered (from... to): -
Fig. 1 Schematic diagram of the two-fiber Laser Doppler Anemometer

Fig. 2 Sectioned view of the fiber catheter

Fig. 3 Schematic model of skin with plane parallel epidermal and dermal layers. Each layer is homogeneous and has isotropic physical properties.

Monte Carlo method is also called random process method. This operation shows that the recursive formula

\[ r_{i+1} = (\alpha r_i + \beta) \mod N \]  

generates uniformly distributed random number between zero and \( N-1 \), with \( N = 2^{20} = 1,048,576 \), \( \alpha = 1,909 \), and \( \beta = 221,571 \).\(^{[13]}\) the MOD operation is defined as the integer remainder of \( (\alpha r_i + \beta) / N \). the period of the pseudorandom sequence is \( N = 2^{20} = 1,048,576 \), and the limits on the seed are \( 1 \leq r_0 < N \).

If the results of the simulation and our experiment are near identical, we can use the result of the simulation to build the system without performance prior bioexperiment. We use one way analysis of variance (one way ANOVA) and F test\(^{[14]}\) to analyze and verify our results.

III. RESULTS

These are three main parameters namely \( \Delta f \), \( \theta \) and \( d \) in the optical system. In the measurement we discovered that \( \Delta f \) is nearly unchanged. The transducer must adhere to the skin surface to obtain good result. Thus \( d \) must be keep to a minimum. Then we focus on changes in \( \theta \) angle. We took reading from 30° to 60° at a step increment of 5°. For each step 25 values were taken at 5 seconds interval. Thus a total of 125 seconds duration was used in each step. This undertaking is to ensure an unbiased in average reading. The measured value of each data is from peak to valley and the flux speed is shown in mV. The whole experiment was repeated with 4 different healthy subjects. Thus a total of 100 values were recorded for each degree. The result was shown in fig. 4. The result showed that there is maximum value at 45°.

Table I shows the mean values of these four experiments. Statistics package, SAS was used in numerical analysis (in Table II) ANOVA shows that there is significant difference between angles. This is because the F value reaches the statistic threshold.

<table>
<thead>
<tr>
<th>Angle (degree)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st experiment</td>
<td>707.46</td>
<td>390.5</td>
<td>569.58</td>
<td>446.63</td>
<td>516.88</td>
<td>622.13</td>
<td>519.92</td>
</tr>
<tr>
<td>2nd experiment</td>
<td>286.08</td>
<td>495.67</td>
<td>377.46</td>
<td>318.58</td>
<td>316.63</td>
<td>409.58</td>
<td>538.5</td>
</tr>
<tr>
<td>3rd experiment</td>
<td>498.41</td>
<td>283.93</td>
<td>640.52</td>
<td>475.52</td>
<td>475.52</td>
<td>467.85</td>
<td>462.52</td>
</tr>
<tr>
<td>4th experiment</td>
<td>337</td>
<td>413.08</td>
<td>263.76</td>
<td>632.84</td>
<td>354.2</td>
<td>224.52</td>
<td>399.76</td>
</tr>
</tbody>
</table>

Table I shows the mean values of four experiments.
In Monte Carlo simulation, we took reading from 30° to 60° at a step increment of 5°. As above, this experiment was repeated with 4 healthy subjects. Thus, a total of 100 values were recorded for each degree. This situation was the same as clinical experiment. The result was shown in fig. 5. The result showed that there is a maximum value at 45°.

The result of the computer simulation ANOVA shows that there is significant difference for certain angles. This is because the F value does not reach the statistic (see Table III). Therefore, the designer can decide any angle within 45° ± 2.35°. This result is the same as the result with prior clinical experiment.

IV. DISCUSSION

A paper in the Flow Meas. Instrum. [11] suggested that θ at 45° is used to set up their optical system. From our experiment, we notice that if the flow is greater, the amplitude is greater. To support this view, we covered our wrist with ice for two minutes before recording. We observed that the flux value decreases substantially.

V. CONCLUSION

The performance in implementing flow velocimetry using Monte Carlo method or usual practice is near identical. We can use the result of the simulation to build the system without conducting prior bioexperiment. Moreover, the best reading for θ is 45° ± 2.35°. This is a real-time and continuous detecting blood flow velocimetry. We find that this is a reliable tool for doctors when doing clinical diagnosis.

ACKNOWLEDGMENT

The authors would like to thank National Science Council for our experiments. This work is supported by NSC 89-2213-E-002-057.

REFERENCES