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Abstract � Prediction of bodily motion due to respiration was 
investigated preparatory to implementation of active compensation 
for respiration in a robot-assisted system for percutaneous kidney 
surgery.  Data for preliminary testing were recorded from the chest 
wall of a subject using an optical displacement sensor.  The 
weighted-frequency Fourier linear combiner algorithm, an adaptive 
modeling algorithm, was used to model and predict respiratory 
movement.  Preliminary results are presented, in which the 
algorithm is shown to track a 0.86 mm rms respiration signal with 
0.11 mm rms error.  The general robotic system and compensation 
scheme are also described.     
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I. INTRODUCTION 
 

The traditional approach to nephrolithotomy and numerous 
other procedures requiring renal access is open surgery, with its 
well-known risks and relatively high morbidity and recovery 
time.  Percutaneous approaches were developed as an alternative, 
allowing morbidity and recovery time to be reduced 
significantly, and have now become standard.  However, 
percutaneous needle access can be difficult and requires 
extensive experience due to factors including the lack of three-
dimensional information provided to the surgeon by the imaging 
device.  Percutaneous renal access, for example, typically 
requires needle placement that is accurate to less than 5 mm in 
order to position the needle in the specified calyx of the kidney 
[1].  When such procedures are done by hand, error rates are 
relatively high, and re-puncture is often necessary. 

This problem has led to efforts to develop robotic systems to 
assist in percutaneous needle placement.  Potamianos et al. [2] 
used a stereo pair of two x-ray views registered to a common 
fiducial system with a five-degree-of-freedom (5-dof) 
instrumented passive linkage to position a passive needle guide.  
Bzostek et al. [1] proposed an active robot for similar purposes.  
Such systems successfully addressed issues of image-to-robot 
registration and provided convenient means for defining target 
anatomy, but frequently the radiological profiles of the tools 
themselves obstructed the view of the kidney.   In response to 
this need, Stoianovici et al. [3] developed the PAKY 
(Percutaneous Access to the Kidney) radiolucent needle driver.  
The Mini-RCM (Remote Center of Motion) robot was developed 
to simplify the orientation of the needle prior to puncture, 
increase accuracy, and reduce exposure of the surgeon to 
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radiation [4].  The PAKY-RCM combination provides a highly 
accurate and readjustable percutaneous access platform that is 
compatible with advanced radiologic imaging devices, keeps the 
surgeon�s hands away from the radiation field, and helps to 
ensure rapid needle target acquisition, thus minimizing operation 
time and reducing patient radiation exposure. 

One problem that has not been dealt with to date is that of 
the respiration of the patient, which can cause bodily movement 
of 1 cm or more in the area of interest, greatly hampering 
accuracy.  Thus far it has been necessary to stop the breathing of 
the patient so that needle insertion can be performed.  
Respiration can only be halted for 20-25 seconds at a time [1].  
Breaking up the process of needle positioning into such segments 
makes the operation inefficient and increasing the time needed to 
complete the procedure, resulting in increased costs.  In addition, 
for the sake of accuracy, when respiration is stopped repeatedly, 
it is important to ensure that it is always stopped at the same 
point in the cycle.  This is problematic, particularly when the 
timing of the action is controlled manually by the 
anesthesiologist [1].  The need to halt respiration also typically 
means that general anesthesia must be used.  If it were possible 
to achieve accurate needle placement without interrupting 
respiration, it may also allow the use of regional anesthesia 
instead of general anesthesia in certain cases, which may 
decrease patient morbidity [5]. 

The authors have undertaken to implement active canceling 
of respiratory motion using the PAKY-RCM system.  Adaptive 
modeling methods will be used to predict the quasi-periodic 
respiratory motion of the entry point on the skin surface, and of 
the target point inside the kidney.  Immediately before and 
during needle insertion, the respiratory motion will be predicted 
and the robot arm will move the needle accordingly, keeping it 
on target. 

Prediction will be accomplished using the weighted-
frequency Fourier linear combiner (WFLC), an adaptive 
algorithm developed specifically for modeling of quasi-periodic 
signals [6].  The WFLC constructs a dynamic truncated Fourier 
series model of the disturbance, continually updating its 
fundamental frequency and harmonic component amplitudes 
(Fourier coefficients).  It is ideal for modeling quasi-periodic 
biological signals in which neither frequency nor amplitude is 
fixed.  The algorithm has been used in canceling of signals such 
as hand tremor and heart motion, for applications in 
microsurgery and rehabilitation [6-8].  

The WFLC is an extension of the Fourier linear combiner 
(FLC) into the realm of variable frequency.  The FLC has been 
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successfully used to model or cancel fixed-frequency quasi-
periodic signals such as evoked potentials [9] and 60-Hz noise in 
electrocardiograms [10].   

The motion of the target within the body due to respiration 
as seen in the radiographic images will be recorded 
preoperatively and registered to the motion of markers on the 
skin surface, tracked by video camera.  Based on the motion of 
the markers, the robot will dynamically position itself according 
to the prediction of respiratory motion provided by the WFLC 
algorithm, in order to keep itself on target.  This technique will 
allow the robotic system to attain accuracy comparable to its 
present performance, but without requiring the suppression of 
breathing.  The result will be more efficient surgery, less time 
spent in the operating room, further reduction in exposure of the 
surgeon and patient to radiation, and possible applicability to a 
variety of safer and less expensive anesthetic techniques. 

 
II. ROBOT-ASSISTED SURGICAL SYSTEM 

 
The robotic percutaneous renal surgery system that will be 

used to implement active compensation of respiration includes 
the PAKY needle driver and the mini-RCM robot arm.  The 
radiolucency of PAKY allows unobstructed visualization of the 
anatomical target and radiological guidance of the needle [3] (see 
Figure 1).  The mini-RCM robot arm implements a fulcrum point 
located distal to the mechanism [4] (see Figure 2).  The arm can 
precisely orient a surgical instrument while maintaining the 
position of one point (e.g., needle entry point), making it ideal 
for percutaneous procedures.  A stable base for the robot arm is 
needed in order to preserve positioning accuracy.  For this 
purpose, the PAKY-RCM combination is mounted on the GREY 
Arm, shown in Figure 3.  This is a passive arm which can be 
easily manipulated as desired, and then firmly locked in place 
using a braking mechanism that locks all joints with a single 
motor [11].   

Respiratory motion compensation will require five degrees 
of freedom:  three to compensate entry point displacement, and 
two to compensate for the rotation of the axis defined by the 
instantaneous positions of the entry point and target point.  The 
PAKY-RCM-GREY-Arm system will be mounted on a high-
precision XYZ translation table to provide the necessary degrees 
of freedom. 

Both the internal target point in the kidney and the specified 
entry point on the skin surface undergo movement due to 
respiration.  The general approach to tracking the respiratory 
motion will be to record image data over several respiratory 
cycles for both of these points just before needle insertion begins, 
and then compute a mapping from the instantaneous entry point 
location to the instantaneous target point location.  
Intraoperatively, the system will track only the surface entry 
point, and will then use the mapping to estimate instantaneous 
target point position.  Entry point tracking will be performed via 
video tracking of a set of markers on the skin surface near the 
entry point, and target point tracking via pattern matching 
techniques applied to C-arm fluoroscope images. 

 
(a)   (b) 

Figure 1.  The PAKY needle driver.  (a) Close-up.  (b) Used surgically for image-
guided percutaneous renal access. 

 

 
Figure 2.  RCM & PAKY performing x-ray guided percutaneous renal access. 

 
Figure 3.  The GREY Arm.  (1) GREY Arm.  (2) PAKY.  (3) Trocar needle.  (4) 

Fluoroscope.  (5) Clamp.  (6) Rigid custom side rail for mounting.  

Using the intraoperative video tracking data, respiratory 
motion prediction will be performed by the WFLC algorithm so 
as to minimize needle position error by counteracting delay in 
tracking and actuation.  The translation in 3D of the skin entry 
point, as tracked via video at 30 Hz, will serve as input to a set of 
three parallel WFLC algorithm implementations, one for each 
Cartesian coordinate.  At each time step the WFLC will output an 
estimate of the next position of the entry point, which will serve 
as the driving command to the XYZ table to compensate entry 
point position.  Two additional WFLC implementations are used 
to predict respiratory displacement for the rotations controlled by 
the mini-RCM. 

The three degrees of freedom of the XYZ table are used to 
compensate the three-dimensional translation of the entry point.  
The two rotations provided by the RCM robot are then used to 
rotate the needle so as to keep it aligned with the moving axis 
defined by the instantaneous position of the chosen entry point 
on the skin and the instantaneous position of the target point 
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within the body.  This approach preserves the axial control of the 
needle so that it can be used for puncture in the normal method 
of PAKY operation.  The surgeon retains the smooth control of 
needle insertion that is needed for successful surgery. 
 

III.  RESPIRATORY MOTION PREDICTION 
A. Methods 

A preliminary test of respiratory motion prediction using the 
WFLC was conducted.  Displacement due to respiration was 
recorded from the center of the chest wall of a human subject 
using a D169 fiber optic displacement sensor Philtec, Inc.; 
Annapolis, Md.), sampled at 100 Hz.  This provided a signal, sk, 
which was then used as input to the WFLC algorithm [6]: 
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where [ ]TMk kk

xx 21 �=x is the vector of Fourier harmonic 
components, w0k is the adaptive weight for fundamental 
frequency of the model, wk is the vector of adaptive amplitude 
weights or Fourier coefficients, εk is the modeling error, M is the 
order of the model, and µ0 and µ are the gain parameters 
governing adaptation of frequency and amplitude, respectively.  
For these tests, gain parameter values were µ0 = 2 x 10-7 and µ = 
0.05.  Tests were conducted for M =1, M = 2, and M = 3.  The 
frequency weight, w0k, was initialized at 0.04, all other weights 
(wk) were initialized at zero. 
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Figure 4.  Respiratory motion prediction performance as the WFLC algorithm 
converges.  The thin solid line represents the input signal, the dashed line the 

prediction by the WFLC, and the thick solid line the prediction error, which can 
be seen to attenuate with time. 
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Figure 5.  Convergence of the fundamental frequency (w0k) of the WFLC model 

for the test shown in Fig. 3. 
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Figure 6.  Convergence of adaptive amplitude weights, or Fourier coefficients 

(wk), of the WFLC for the test shown in Fig. 3. 

 
B. Results 

 
Figure 4 and Figure 5 display the performance of the filter 

when two harmonics (M = 2) were included in the WFLC Fourier 
series model.  The frequency of the model tracked the signal 
frequency using what is essentially a nonlinear phase-lock 
process.  As shown in Figure 5, the model frequency was 
arbitrarily initialized to ω=0.04 (or 0.64 Hz), and can be seen to 
converge during the first half of the test to the actual respiratory 
signal frequency of approximately ω =0.0377 (0.6 Hz).  The 
behavior of the filter weights for the amplitudes of the harmonics 
(i.e., the Fourier coefficients) can be seen in Figure 6.  During 
frequency convergence, the amplitude weights can be seen to 
oscillate at frequencies proportional to the model frequency error 
[12].  After the frequency has approximately converged, the 
amplitude weights �settle down� to track variations in the signal, 
as seen in the final seconds of Figure 6.  In the final 5 s of the 
example shown in Figure 4, the amplitude of the respiratory 
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motion itself was 0.856 mm rms, while the prediction error (i.e., 
the motion that would remain uncompensated by the system) had 
an amplitude of 0.105 mm rms.  As shown in Table 1, this 
second-order model yields the best results for this particular data 
set. 

 
Table 1.  Comparison of model order (M) for data of Figure 4 

RMS error during last 5 s of test. 

Model order 1 2 3 
RMSE (mm) 0.132 0.105 0.110 

 
 

IV. DISCUSSION 
  

Active compensation of the respiratory motion of the patient 
will allow the PAKY-RCM robotic percutaneous surgical system 
to attain a level of needle positioning accuracy comparable to the 
present state of the art, but without stopping the respiration of the 
patient.  This will allow the surgeon to work continuously on the 
patient, without the interruptions caused by the need to ventilate 
the patient. 

Prediction of the respiratory motion will allow an active 
compensation system to accommodate delay in tracking or 
actuation.  In addition, considering the possibility in the future of 
compensating for more than just respiratory motion (e.g., overall 
shifts in body position), this prediction guards against erroneous 
compensatory movements by distinguishing between respiratory 
motion and any other motion, in which the mapping between 
entry point and target point motion would not be the same as for 
respiration. 

The preliminary results demonstrate the general feasibility of 
predicting respiratory motion using the WFLC.  The test data 
suggest initial choices for parameter values; final parameter 
selection for the application awaits further testing. 

The applicability of this technology is not limited to urological 
procedures.  Any percutaneous procedure in which respiratory 
motion is a factor represents a potential application.  Examples 
include percutaneous biopsies of lesions in the liver and lungs.  
The technology is also straightforwardly applicable to 
compensation of heart motion, allowing precise surgery on the 
freely beating heart.  Preliminary studies using the WFLC have 
already been conducted in this area [8]. 

 
V. CONCLUSION 

 
Prediction of respiratory motion using the weighted-

frequency Fourier linear combiner has been demonstrated as a 
prelude to implementation of active compensation in a system for 
robot-assisted percutaneous surgery.  Preliminary results and a 
description of the system have been presented. 
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