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Binding and segmentation of visual images

by means of oscillatory neurons

M. Ursino, G.E. La Cara, and A. Sarti
Department of Electronics, Computer Science and Systems, University of Bologna, Bologna, Italy

Abstract— A neural network based on Wilson—Cowan oscilla-
tors is used to perform object recognition in a two—dimensional
visual scene. The temporal correlation among groups of oscil-
lating neurons is used as the main criterion to solve the classic
binding and segmentation problem. The network uses an orig-
inal pattern of short—range lateral excitations among adjacent
neurons to achieve the binding problem, and an external in-
hibitory global neuron to provide segmentation of multiple ob-
jects in the same visual scene. The latter may represent an ” at-
tention mechanism” from neurons at a higher hierarchical level.
Simulations performed by using multiple idealized figures (up
to 4-5) in the presence of noise suggest that the network can
satisfactorily recognize objects in most cases. However, the
threshold and time constant of the attention mechanism de-
pend on the complexity (number of objects and level of noise)
of the scene under examination. The present results may be
useful to improve our understanding of how distributed activ-
ities are integrated in the neural system to form single object
perceptions. In perspective, the proposed model may find ap-
plications in practical algorithms for object recognition.
Keywords — Image segmentation, oscillatory neurons, object
recognition.

I. INTRODUCTION

A fundamental task that the brain ordinarily solves in daily
life is the segmentation of the visual scene into a set of dis-
tinct objects. This task requires the simultaneous solution
of two complementary problems: a ” binding” problem, which
consists in assembling the common attributes of a single ob-
ject into a unique figure, and the ”segmentation” problem,
which requires the visual scene to be decomposed in distinct
figures, avoiding attributes of different objects to be grouped
together. It is generally assumed that binding and segmenta-
tion of the visual scene is based on the principles of Gestalt
psychology, such as proximity, similarity, common fate, con-
nectedness, good continuation, etc.. [1], [2], [3], [4].

Despite the fact that the brain easily solves the binding and
segmentation problem, its theoretical solution is still arduous
using artificial neural networks. A traditional hypothesis is
that information carrying different attributes of a same object
converges to neurons at a higher hierarchical level. These
neurons, in turn, respond selectively only to those groups of
features which characterize a single object (grandmother cell
representation). This assumption, however, involves many
theoretical and neurophysiological problems, and it is usually
rejected today.

A second, recent theory assumes that binding and segmen-
tation are accomplished by the brain on the basis of tempo-
ral correlation between neural activities. Accordingly, neu-
rons that fire in phase would signal common attributes of the
same object. This hypothesis is supported by experiments
in anesthetized cats and monkeys [1], [2]. In these studies
stimuli which, according to the Gestalt theory, would belong
ized activity in groups of

to thergaane figkreta it nbE pEpR

neurons. Conversely, stimuli that belong to different figures

fail to induce synchronized responses.

In order to explore the previous aspects theoretically, a
few models of oscillating neurons have been used in recent
years [3], [4], [5], [6], [7]. These models suggest that binding
and segmentation can be achieved using lateral connections
between groups of oscillating neurons. However, many prob-
lems, especially concerning segmentation of multiple objects
in the same scene, are still existent.

Aim of this work is to use an original neural network, based
on Wilson—Cowan oscillators, to analyze the binding and seg-
mentation problem in a two—dimensional visual scene in pres-
ence of noise. Original lateral connections are used to impose
synchronism between neurons, while an attention mechanism
is proposed to achieve segmentation. A few examples are
presented and discussed.

II. SYSTEM DESCRIPTION

The model of a single oscillator consists of a feedback loop
between an excitatory unit x;; and an inhibitory unit y;;.
The time derivatives are defined as:

Lai(t) = —zy(t) + Hzy(t) — B yi(t)
+Sii + Lij + 0 — ¢z — 2(1))
(1)
Lyi(t) = —v () + H(a - 25(t) — @)

+Sij

where ¢ and j represent the position of the oscillator within a
two—dimensional network (1 <i < N;1<j < M), and:

Hy)= ——. 2)

Equations (1), (2) describe essentially a simplified Wilson—
Cowan oscillator. This oscillator model can be biologically
interpreted as a mean field approximation of a network of
excitatory and inhibitory neurons. The parameters have the
following meaning: « and [ are positive parameters describ-
ing the coupling between two units, particularly « influences
the amplitude of oscillations; I represents external stimula-
tion; o denotes a noise term. H(v) is a sigmoid activation
function with thresholds ¢, and ¢,, for excitatory and in-
hibitory unit respectively. T affects the central slope of the
sigmoidal relationship, and « is inversely proportional to the
time constant of the inhibitory units, hence it controls the fre-
quency of oscillations. z(t) represents the activity of a Global
Separator GS which will be specified later on. S;; represents
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Fig. 1. (a) A diagram showing the interactions between the excitatory
and the inhibitory units in a chain of oscillators. (A) represent excita-
tory connections; (o) represent inhibitory connections. Each excitatory
unit is connected to the excitatory unit (solid line) and to the inhibitory
unit (dashed line) of each nearest-neighbor oscillator. (b) Schematic
representation: the neural oscillators in black circles are connected only
to neural oscillators in grey circles. GS represents the Global Separator.

a term of coupling that we define as:

1 1
Yo D Funk TamGr)

Sij:&W'h:—lk:l—l : 3)
> D P
h=—1k=—1
where:
0 if h=k=0
or i+h>N or i+h<1
Fijpr = or j+k>M or j+k<1 (4)

1 otherwise

Fijnk is a normalization factor for the connection weight W:
in (3) the connections weights are opportunely normalized
in relation to the oscillator position, which determines the
number of neurons involved in coupling. In this way, the
model respects an isotropy property (fig.1, fig.2). The terms
S;j in H(v) implement the coupling between the excitatory
unit of an oscillator and the excitatory units of its nearest—
neighbors. The same terms S;; in the equation of inhibitory
unit implement the coupling between the excitatory unit and
the inhibitory units of its nearest—neighbors: both coupling
are excitatory. The second type of coupling, which was not
used in previous models, is essential to improve synchroniza-
tion of neurons within a same object.

The local excitatory connections assumed in our model con-
form with various lateral connections in the brain, in partic-
ular they could be interpreted as the horizontal connections
in the visual cortex. Our simulations have revealed that,
although the lateral excitatory couplings allow fast synchro-
nization of all oscillators excited by a same stimulus, they do
not permit satisfactory desynchronization of oscillators ex-
cited by different objects. For this reason we introduced a
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Fig. 2. Architecture of a two—dimensional network with eight nearest-
neighbor excitatory coupling. An oscillator is indicated by a circle. The
circle labeled GS represents the Global Separator. Three situations of
connection are shown: each black circle is connected only to adjacent
grey circles.

Global Separator GS through which we want to simulate a
mechanism of attention. GS is an inhibitory interneuron de-
fined as:

d

20 = (o —=2(t) —6-2(t). (5)
where:
N M
1 if Z Z Lij >
o= i=1 j=1 (6)
0 otherwise

o is a binary value and ¢ controls the level of activity of the
entire network. The positive parameters § and ¢ control the
rate of growth and decay of z(t), therefore the segmentation
capacity of GS. We can speculate that o, § and ¢ fix the
degree of attention of GS. GS receives excitatory input from
the entire network and sends inhibition to all oscillators: this
long—connections give rise to desynchronization (fig.1, fig.2).
The inhibitory input is generated whenever in the neural grid
there are some fairly active regions: only the neurons with
enough activity will survive to inhibition continuing to oscil-
late.

Psychologically we know that the thalamic reticular com-
plex may be involved in the global control of selective atten-
tion: it receives input from and sends projection to almost
the entire cortex. The activity of GS should be interpreted
as the collective behavior of the neural group in the thalamic
reticular complex.

III. SIMULATION RESULTS

To illustrate how our network is used for image segmenta-
tion we have simulated a 15x15 and a 15x20 grid of neural
oscillators with a Global Separator. In the first simulation
we map two objects (designed as the sun and a car): for
all stimulated oscillators I=0.8, for the others /I=0. The im-
age has been corrupted by means of an uniformly—distributed
random noise. For the background the uniformly—distribution
has mean equal to 0.1, while for the stimulated oscillators has
mean equal to 0. The variance is equal to 0.003. The set of
ordinary differential equations has been numerically solved on
PENTIUM—based personal computers, using the fourth—order
Runge-Kutta integration method with random initial condi-
tions.
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Fig. 3. The first picture represents the noisy input, on a noisy background, used for the network. The image is mapped to a 15X15 network and
each red square denotes a single oscillator that receives input. Each following picture represents network activity at a time step in the numerical
simulation. We name the objects as follows: a small car, a sun. The parameters are: a = 0.25, 8 = 2.5, ¢ = 0.7, ¢, = 0.15, v = 1, W=1,
I;; = 0.8, T=0.025 and for GS: ¥ = 1.8, ¢ = 2, § = 4.5. The simulation took 2000 integration step.
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Fig. 4. A noisy image, on a noisy background, composed of four patterns mapped to a 15X20 network. The objects composing the image represent
a small car, a garage, a sun and a cloud. The first picture represents the noisy input and each following picture represents network activity at a
time step in the numerical simulation. The parameters for GS are: ¥ = 2, ¢ = 2, § = 8. The other parameters are as specified in the captions of

fig.3 except v = 0.5. The simulation took 2000 integration step.

Fig.3 shows the instantaneous activity (snapshot) of each
neuron of the network at various stages of dynamic evolu-
tion. A short time after the input is applied, we can observe
the clear effect of synchronization and desynchronization: the
noisy sun is segmented from the noisy car and from noisy
background; then each object ”fires” in a periodic way, sepa-
rately from the others. Most parameters in (1), (2), (5), (6)
are intrinsic to neural network and need not to be changed
after they have been appropriately chosen. Only the param-
eters concerning GS and the oscillation frequency () need to

be tuned for applications. In fact, with a fixed set of param-
eters, the dynamical system can segment only a limited num-
ber of patterns. This number depends on the ratio between
the time that a single oscillator spends in the silent phases
and the time that it spends in the active phases (segmentation
capacity). Furthermore GS requires different degrees of at-
tention. More particularly, in order to separate correctly the
entire image, during each oscillation period of the network GS
must be able to generate as many inhibitory impulses as the
number of objects to be separated. To illustrate this point,
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Fig. 5. Temporal evolution of every stimulated oscillator in the sim-
ulation of fig.4. The upper four traces show the combined z activities
of four oscillators blocks representing the four corresponding objects in-
dicated by their respective labels. The fifth trace shows the activity of
the Global Separator.

we stimulated a 15x20 network with an arbitrary image con-
taining four objects designed as a car, a garage, a cloud and
the sun (fig.4). In this case for the correct segmentation we
had to use a greater degree of attention for GS just because
the image is more complex: the parameters in simulations
of fig.3 and fig.4 are the same except for v and GS'. The
necessity to modify the parameters of the GS was also ob-
served by Wang and Terman [3], although these authors used
a different mechanism for global inhibition. Fig.5 shows the
temporal evolution of the oscillators stimulated by each noisy
object. The four upper traces represent the activities of four
oscillators blocks and the bottom trace represents the activ-
ity of GS. The synchrony within each block and desynchrony
between different blocks are achieved after a few cycles.

IV. DiIsSCUSSION

The present study introduces some new aspects compared
with previous models: i) we used an original pattern of lateral
connections among groups of oscillating neurons. In partic-
ular, the presence of a short-range excitatory connection be-
tween the excitatory neurons, x;;, and the adjacent inhibitory
neurons, ¥;;, allowed the attainment of robust synchroniza-
tion in a large variety of visual scenes, even in the presence
of noise. Without this connection, synchronization can be
achieved only with difficulty in many cases. ii) Segmentation,
in the presence of multiple objects, cannot be achieved with
the use of short—range lateral connections only, but it requires
the presence of an external inhibitory neuron. The same con-
clusion was reached by Wang et al too [3] through the use
of a different mechanism of global inhibition. The external
inhibitory neuron sends an inhibitory signal to all neurons

IFor the parameter values see the captions of fig.3 and fig.4
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in the network, as soon as their global activity overcomes a
given threshold. This global inhibition, in turn, allows only
neurons belonging to a single object (i.e., the object with
present maximal excitation) to fire, thus realizing segmenta-
tion in the same scene. It is interesting to observe that the
global inhibition proposed in this work can simulate an ” at-
tention mechanism”, originating from neurons in the cerebral
cortex at a higher hierarchical level. Accordingly, we observed
that segmentation of a different number of objects, and/or
the use of a different noise level requires a modification in
the threshold and time constant of the attention mechanism.
This result agrees with the idea that a complex, noised visual
scene asks for more attention to be correctly perceived, while
lower attention is requested in the perception of a few objects
in a noise—free ambient. At any given level of attention, just
a limited number of distinct objects can be separately identi-
fied. This important property of the system agrees with the
well-known psychological principle that there are fundamen-
tal limits on the number of simultaneously perceived objects.
iii) An important feature of the present system is the capac-
ity to recognize objects even in the presence of a strong noise
superimposed on the visual scene. In particular, we observed
that noise superimposed on the background causes only a
mild deterioration in the system performance. When noise
is superimposed directly on the object, the system can still
solve the binding and segmentation problem in most cases,
even when 4 or 5 objects are simultaneously present.

V. CONCLUSIONS

In conclusion, the present work suggests that the binding
and segmentation problem can be performed by using tempo-
ral correlation among neuron activities. The solution of the
problem benefits from short-range lateral connections among
groups of oscillating neurons, and from the presence of an ex-
ternal attention mechanism. The mathematical form of both
mechanisms is original compared with previous studies. The
present results may be useful to improve our understanding of
how distributed activities are integrated in the neural system
to form single object perceptions. Moreover, the proposed
model may find applications in practical algorithms for ob-
ject recognition.
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