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Extraction of the Hemodynamic Response in Randomized Event-Related
Functional MRI

Narter Ari and Yi-Fen Yen
Department of Medical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Abstract— Signal detection in noisy data set is a common
problem in signal processing. Detection of the hemody-
namic response function (HRF) embedded in randomized
event-related fMRI (rER-fMRI) time series is an example
of this problem. So far, most studies that set out to obtain
unbiased HRF use some forms of time-window (TW) av-
eraging method to extract HRF from the rER-fMRI data.
In this paper we applied two methods, Cepstral Analysis
and Conjugate Gradients (CG) for Deconvolution to extract
HRF. These methods depend only on the knowledge of when
events occured and do not require any apriori information
about the HRF. These methods and the popular TW av-
eraging method are tested on simulated data, as well as in
vivo data obtained from rER-fMRI experiments. All three
methods identified timing of HRF accurately, but only CG
for Deconvolution method was robust in reproducing the
shape under varying experimental conditions.

Keywords—fMRI; Event-related; Hemodynamic response;
MRI; Conjugate Gradients; Cepstrum; ISI.

I. Introduction

The randomized event-related fMRI (rER-fMRI) experi-
mental designs have become increasingly popular in recent
years as the designs have drastically improved efficiency
[1] over the fixed inter-stimulus interval (ISI) designs. The
rER-fMRI designs allow different stimuli to be presented
in random sequences and timing, and thus, eliminating po-
tential confounds caused by anticipation, habituation, or
other strategy effects [2].

The fMRI signal is caused by changes in blood oxygena-
tion and blood volume that result from the neural activity
induced by the stimuli. The timing characteristics of this
vascular response, or the hemodynamic response function
(HRF), can be extracted from the rER-fMRI data assum-
ing linearity between the fMRI signal and the underlying
neuronal activity. The linearity has been demonstrated by
various studies [3]-[5] in the intermediate ISI range (2-15s),
but not always true for short ISI [6].

So far, most studies that set out to obtain unbiased HRF
use some forms of time-window (TW) averaging method to
extract the HRF from the rER-fMRI data. We found that
the TW averaging method could be unreliable, depending
on the mean ISI (mISI) and randomness. The goal of this
study was to develop robust algorithms to extract HRF
with better accuracy than the TW averaging method.

II. Materials and Methods

A. Theories

By assuming a linear time-invariant model for the ob-
served fMRI response, rER-fMRI signal y(t) can be mod-
eled as the convolution y(t) = s(t) ? h(t) of the HRF h(t)
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and event onset time series s(t), which is represented as a
series of impulses, s(t) = [10010..].

A.1 Time Window Averaging

TW averaging is a common method used to extract the
HRF [7]. HRF is estimated by using a fixed time window
starting with each stimulus and then averaging the signals
measured within each of these time windows. The idea is
to increase low signal to noise ratio of rER-fMRI signals by
averaging.

A.2 Cepstral Analysis

Cepstral analysis, a nonlinear signal processing tech-
nique, is commonly applied to signals that have been com-
bined by convolution, such as in speech processing and ho-
momorphic filtering [8]. Complex cepstrum (CCeps) of x(t)
can be calculated by taking logarithm of the FFT of x(t)
and applying inverse FFT to the result. The transforma-
tion of a signal into its CCeps enables us to use an operation
that has the same algebraic properties as addition, instead
of using multiplication in the frequency domain.

We were able to extract h(t) via cepstral analysis by
subtracting the CCeps of s(t) from the CCeps of y(t) and
taking the inverse CCeps of the result. Then a low-pass
filtering was applied to obtain a smooth HRF.

y(t) = s(t) ? h(t) TimeDomain
Y (f) = S(f).H(f) FrequencyDomain

log
(

Y (f)
)

= log
(

S(f)
)

+ log
(

H(f)
)

F−1{log
(

H(f)
)

} = F−1{log
(

Y (f)
)

} − F−1{log
(

S(f)
)

}
CCeps[h(t)] = CCeps[y(t)]− CCeps[s(t)]

h(t) = CCeps−1{CCeps[y(t)]− CCeps[s(t)]}

A.3 Conjugate Gradients (CG) for Deconvolution

The CG method is an iterative method for solving a lin-
ear system of equations Ax = b, with symmetric positive
definite (SPD) coefficient matrix A. However, with simple
modifications this method can be applied to nonsymmetric
and overdetermined least-squares problems [9].

Following the previous notation, convolution can be ex-
pressed as Y (f) = S(f).H(f) in the Fourier domain. In or-
der to solve the deconvolution problem of extracting HRF,
we applied the CG algorithm [9], [10] to compute a least-
squares solution, (see the detailed algorithm in the Ap-
pendix)

min
H(f)

‖ Y (f)− S(f).H(f) ‖2
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Fig. 1. Simulated rER-fMRI signal with 5s mISI, generated by con-
volving the ideal HRF with the event onset time series and sam-
pling at 2s interval.

B. Simulations

An ideal HRF [11] was used as the impulse response func-
tion of the model. The stimulus onset time series were gen-
erated with randomized ISI for a given mISI. Then the ideal
rER-fMRI signal was simulated by convolving the ideal
HRF and the stimulus onset time series (Fig .1). Finally
the ideal rER-fMRI signal was sampled at an interval of
2s, the same as the repetition time (TR) used in the fMRI
experiments. All simulation data were kept within a total
time series of 240s.

Two types of simulations were performed to compare the
three HRF extraction algorithms. First, simulated data
with different mISI values: 2s, 5s and 10s, were used to
test the sensitivity of the HRF extraction algorithms to a
range of mISI. Secondly, simulated data with 5s mISI but
different randomness were used to test the stability of the
three methods.

C. rER-fMRI experiments

The five stimulus onset time series (2s, 5s, and 20s mISI,
and the additional two 5s mISI series with different ran-
domness) implemented for the simulation data were used to
construct visual stimulation paradigms for the rER-fMRI
experiments. Each stimulus consists of a black-and-white
checkerboard displayed for 250ms at every event onset time.
The experiments were performed on a clinical 1.5T MRI
scanner by using a T2* gradient-echo 2D spiral sequence
with TR of 2s. Twenty slices were acquired per TR to
cover the whole brain. The spatial resolution was 3.75mm
X 3.75mm X 7mm.

The fMRI data were processed and analyzed by using
Statistical Parametric Mapping [11]. The image volumes
were adjusted for slice-timing, realignment, normalization,
and smoothing prior to statistical analysis for the signifi-
cance of activation. In order to obtain meaningful fMRI
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Fig. 2. (Simulation) The effect of decreasing mISI on HRF extraction
algorithms. Simulated signal time courses are shown on the left
column. Results of the HRF extraction algorithms are plotted on
the right column. The ideal HRF (dot-dashed) is reproduced very
well by the Cepstral Analysis (dashed) and the CG for Deconvo-
lution (solid) methods, but not very well by the TW Averaging
(dotted) method.

response for the comparison of the algorithms, three adja-
cent voxels with significant activation (t-score > 4) were
identified at the same location in the primary visual cortex
from all data sets. The raw time course was temporally
smoothed by a zero-mean Gaussian with 2s standard devi-
ation. The average time course of the three voxels for each
data set was used to extract HRF with the three proposed
methods. Note that these methods were also robust for a
single voxel time-course analysis.

III. Results

A. Simulations

Cepstral Analysis and CG for Deconvolution methods
worked almost perfectly for the zero-noise, simulated rER-
fMRI signals for mISI of 2s, 5s, and 10s (Fig. 2). Maximum
mean-square errors (MSE) were calculated as 0.15 and 0.09
for the Cepstral Analysis and CG for Deconvolution meth-
ods, respectively. On the other hand, results of TW Aver-
aging method were unstable. MSE was calculated as high
as 20.51 for 5s mISI. Also undershooting or overshooting
of the peak was observed for all cases.

Cepstral Analysis and CG for Deconvolution methods
were very robust for 5s mISI of various randomness (Fig.
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Fig. 3. (Simulation) The effect of changing randomness on HRF
extraction algorithms. Simulated signal time courses for 5s mISI
are shown on the left column. Results of the HRF extraction
algorithms are plotted on the right column with the same line
style notations as those in Fig.2. The TW Averaging method
produces the least accurate results among the three methods.

3) with maximum MSE values 0.15 and 0.09, respectively.
But the performance of the TW Averaging method was un-
stable even for the same mISI. From simulations, we found
that TW Averaging performs well in estimating time-to-
peak (TTP) of HRF, but the method is not reliable in re-
producing the shape, such as maximum percentage change
(MPC) and full-width at half maximum (FWHM).

B. In Vivo

The MPC, TTP, and FWHM values extracted from the
in vivo data, are listed in Table 1 for all methods. The
methods were consistent (Fig. 4) in estimating the TTP,
but their results differed in estimating the shape of HRF
as in simulations. For 2s mISI, the MPC of TW Averaging
was greater than the MPC of the other two methods, which
is consistent with the overshooting of the peak observed in
simulations. For 5s and 10s mISI, the MPC of TW Av-
eraging was less than the MPC of the other two methods,
which is also consistent with the undershooting of the peak
observed in simulations.

For the 5s mISI data sets of various randomness, ex-
tracted TTP was in agreement (Fig. 5) among the
three methods (mean±SD = 5.93±0.14, 5.93±0.16, and
5.94±0.18). But they differed in estimating the shape of
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Fig. 4. (In vivo data) The effect of decreasing mISI on HRF extrac-
tion algorithms. The in vivo time courses are shown on the left
column. Results of the HRF extraction algorithms are plotted on
the right column with the same notations as those in Fig.2. Note
that the result of Cepstral Analysis for 10s mISI was cut at -0.7,
although it has a minimum value of -1.1

the HRF. Undershooting or overshooting behaviour of the
peak from the TW Averaging method was similar to the
simulation results. Note that the Cepstral Analysis did not
converge to zero for type-C randomness. The CG for De-
convolution method maybe more robust than other meth-
ods in that the standard deviations of MPC (0.09) and
FWHM (0.38) from the three randomness data sets were
the smallest among the three methods.

IV. Conclusions

Our main finding is that all methods accurately identified
the TTP of the HRF, but only the CG for Deconvolution
method was reliable in estimating the shape under vary-
ing experimental conditions. The TW Averaging was the
least robust in estimating the shape of the HRF in both the
simulation and in vivo data. Cepstral Analysis worked well
for the zero-noise, simulated rER-fMRI signals, however it
was unstable in the presence of noise. The CG for Decon-
volution method performed the best both in simulations
and in vivo applications. Since it is an iterative method, it
handled noise better than the Cepstral Analysis. We con-
cluded that the CG for Deconvolution method is a reliable
and robust method, and it is a strong alternative to the
commonly used TW Averaging method.
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TABLE I
MPC, TTP, and FWHM of Extracted HRF from In Vivo Data for different mean-ISI values

mean-ISI Cepstral Analysis TW Averaging CG for Deconvolution
(sec) MPC (% ) TTP (sec) FWHM (sec) MPC (% ) TTP (sec) FWHM (sec) MPC (% ) TTP (sec) FWHM (sec)
10 1.23 6.49 7.10 0.88 6.61 6.15 1.22 7.08 6.90
5 0.83 6.19 7.10 0.77 6.01 6.57 0.79 6.08 6.61
2 0.44 6.19 6.12 0.49 6.04 7.66 0.43 5.82 7.42

5 type-A 0.78 6.00 7.08 0.72 5.90 6.66 0.75 5.96 6.76
5 type-B 0.62 6.03 6.15 0.49 5.79 5.91 0.68 5.75 6.06
5 type-C 0.51 5.77 6.93 0.69 6.10 6.64 0.58 6.11 6.66
mean±SD 0.64±0.14 5.93±0.14 6.72±0.50 0.63±0.13 5.93±0.16 6.40±0.43 0.67±0.09 5.94±0.18 6.49±0.38

MPC = maximum percentage change; TTP = time-to-peak; FWHM = full width at half maximum.
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Fig. 5. (In vivo data) The effect of changing randomness on HRF
extraction algorithms. The in vivo time courses for 5s mISI are
shown on the left column. Results of the HRF extraction algo-
rithms are plotted on the right column with the same notations
as those in Fig.2.

Appendix

A. CG for Deconvolution Algorithm

Inputs y: n x 1 signal vector, s: k x 1 impulse train vector.
Output h: m x 1 least squares solution to y = s ? h.

h = ones(m, 1) → initialize h
h = [h; zeros(n−m, 1)], s = [s; zeros(n− k, 1)]
yf = fft(y, n), hf = fft(h, n) , sf = fft(s, n)
Sf = sc

f
⊙

sf + ν
rf = sc

f
⊙

yf − Sf
⊙

hf
r = ifft(rf ), r = r(1 : m), p = −r

while ‖ r ‖ / ‖ y ‖> ε
p = [p; zeros(n−m, 1)], p

f
= fft(p, n)

wf = Sf
⊙

p
f
, w = ifft(wf ), w = w(1 : m)

α = rT r/pT w
h = h− αp
rold = r, r = rold + αw
β = rT r/rT

oldrold
p = −r + βp

end(while)

B. Implementation Details

In CG for Deconvolution algorithm, we used the follow-
ing MATLAB notation. yf = fft(y, n) is n-point FFT of
vector y. h = [h; zeros(n − m, 1)] means to pad zeros at
the bottom of vector h.

⊙

denotes component-wise mul-
tiplication. hc denotes component-wise complex conjugate
of vector h. ν represents the regularization parameter.
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