
Abstract -In this paper we introduce a tomography platform
consisting of a new set of programs written in ANSI C++ to help
researchers to develop and to evaluate tomography
simulation/reconstruction based on the Direct Fourier Method.
We applied these tools in the evaluation of tomographic
techniques. We describe and compare two techniques to
overcome the inferior image quality due to the inherent artifacts
of the Direct Fourier Method: the increase of the zero-padding
factor and the resampling grid density factor.
 Keywords -  Tomography, fan-beam, sinogram, reconstruction,
Direct Fourier Method

I. INTRODUCTION

Tomographic techniques are used in radiology and in
many branches of science and technology for imaging 2D
cross sections of 3D objects [1]. There are many methods to
perform data acquisition.

The Direct Fourier Method (DF Method) and the Filtered
Backprojection Method (FB Method) are two of the most
well-known heuristics for tomographic reconstruction. The
time complexity of these two methods are O(N2.logN) and
O(N3) respectively. The disadvantage in speed presented by
the Filtered Backprojection Method is compensated by an
alleged superiority in picture quality (less artifacts) [1].

We designed and implemented a tomography platform
consisting of a new set of tools for tomographic image
simulation and reconstruction based on the Direct Fourier
Method.

This paper presents these tools and applies them in the
proposal of two tomographic techniques to improve the
inferior image quality of the DF Method as compared to the
FB Method. To overcome the inherent artifacts of the DF
Method we propose and evaluate: (1) the increase of the zero-
padding factor and (2) the resampling grid density factor.

II. METHODOLOGY

The simulation tool

This tool was developed using the third-generation
scanner.  The system involves rotation-only of a fan beam,
where both the source and the detector are rotated around a
common center within the object.

As shown in Fig. 1, a set of projections (density function)
g(θi,ρ) is obtained from each object slice for all rotation
angles θi. A projection consists of a collection of line
integrals of the object attenuation coefficients µ(x, y)
corresponding to the various rays coming from the source[5].

Fig 1. Components of a projection

Thus, the equation of the intensity at the detector is given
by[2]:

(1)

Where:
Id(Xd, Yd) is the beam intensity at the detector;
Ii(xd, yd) is the incident x-ray beam intensity in the absence of
any attenuating object;
µ(x, y) is the attenuation coefficient of the object in the
position x, y;
dr is the elementary object under study.

The simulation software provides tools for calculating
projection data in a Personal Computer. We can see in
Equation (1) that the intensity at a point in the detector is
proportional to the number of photons per unit area. This
intensity is attenuated by every element of the imaged object
with attenuation coefficient µ(x, y). Intensity is energy per
unit area. The DF Method explains that it is possible to
reconstruct an object using “energy ratios” [1]. We can
rewrite Equation (1) as an energy ratio:

(2)

This is a well-know equation which describes how x-rays
are attenuated when traveling through an object [1]. In fact, in
a simulation, we need only three different variables: (1) the
distance between the source and the detector, (2) the
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attenuation coefficient of the object, (3) and the depth of the
object in the direction of the ray.

The Fourier Method assumes that all projections need to
be parallel. In practice, a real tomograph utilizes fan-beam
projections, where, for high speed data acquisition, a single
ray source is placed at a fixed position relative to the detector
array (Fig. 2). To correct this geometry problem, we need to
reassemble the projection data from various fan-beam
projections to get parallel data: the rebinning phase.

Fig 2. The Rebinning.

The simulation of the human body, in projection
radiology, is called a phantom. In our simulation tool the
phantom is described in two dimensions as a collection of
ellipses with different density functions. The use of ellipses to
describe tissues is very convenient because we can express
them as analytical functions. In our experiments we have used
the “Shepp-Logan Head Phantom”, one standard phantom in
the literature (Fig. 3) [2].

Fig. 3. The “Shepp-Logan Head Phantom”.

The output data of the simulation tool is piled up in a
sinogram file. A sinogram is the collection of parallel
projections of the object taken at equidistant angles, and
forming a map of the projection data.

In the simulation phase, the user is capable of choosing
the phantom, the geometry, the number of sensors, the width
of the collimators, the number of projections and the relative

position of all system components (object, source, start
angles, etc.).

The Reconstruction tool

The Direct Fourier Method is a direct application of the
Fourier Slice Theorem. This theorem is illustrated in Fig. 4
and is stated as follows:

“The Fourier transform G(θi,ρ) of a parallel projection of
an image f(x,y) taken at angle θi is found in the two-
dimensional transform F(u,v) on a line subtending the angle
θi with the u-axis.” (Fig. 4) [2].

Fig 4. The Fourier Slice Theorem.

The Fourier Slice Theorem indicates that by taking the
projections of an object function at angles θ1, θ2, ..., θn and
Fourier transforming each of these projections, we can
determine the values of F(u, v) radially. If an infinite number
of projections is taken, then F(u, v) will be known at all
points in the uv-plane, and the object function f(x, y) can be
recovered by using the inverse 2D Fourier transform.

In practice only a finite number of projections of an object
can be acquired, each projection consisting of a finite number
of points. Therefore primarily, F(u, v) is only known at
discrete points along the radial lines. (fig. 5a)[4].

Fig. 5. Interpolation in frequency domain.

To compute the inverse Fourier transform (using a FFT
algorithm) we must determine the values on a square grid
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(Fig. 5b) using an interpolation method. A summary of Direct
Fourier Method is shown in Fig. 6.

Fig 6. Overview of Direct Fourier Method.

In spite of the potential speed advantage of the DF
Method as compared to the FB Method, it has not been used
in practice because of its inferior image quality. There are
two main sources of artifacts: the interpolation procedure and
the circular convolution (inherent ramp filtering)[5].

To reduce the imperfect interpolation artifacts we can
either use a more sophisticated interpolation procedure or we
can append zeros in the Fourier domain (zero padding). We
chose the zero-padding procedure which improves the space
resolution. This was implemented by padding ((nz-1) N) zeros
in the Fourier domain. The zero-padding factor (nz) increases
the number of data points per projection from N to nzN[4].

One remedy for circular convolution in the signal domain
is oversampling the F(u,v) function. The resampled grid
density factor (ng) increases the number of data points in the
Cartesian Fourier Domain from N2 to (ngN)2 [7].

In all our experiments we used the same sinogram with
256 sensors and 300 projections. Only two parameters have
been varied during the reconstruction: the zero-padding factor
(nz) and the resampled grid density factor (ng).

The measurements of how accurately the reconstruction
has been performed are point-wise comparisons between the
digitized picture of the object (the phantom) and the
reconstructed image. To measure output image quality we
used the error figures Relative Error and Absolute Error,
defined as follows:
1) The Relative Error:

(3)

2) The Absolute Error:

(4)

Where:
frec = reconstructed image.
Fobj = digitized picture of “phantom”.
N = size of square image.

III. RESULTS

Fig 7 shows the Relative Error variation versus the zero-
padding factor (nz) and the grid density factor (ng).

Observe in Fig. 7 that the Relative Error decreases with
the increase of the zero-padding factor, with best value for nz
= 8. For greater zero-padding factors there is no significant
improvement.

Concerning the grid density factor, notice in Fig 7 that the
Relative Error decreases with the increase of the grid density
factor (ng). For ng > 4, however, the reconstruction time
becomes too slow.

Fig. 7. The Relative Error on reconstruction.

Figure 8 shows a sequence of pictures reconstructed with
the Direct Fourier Method using Nearest Neighborhood
interpolation.
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nz=1, ng=1 nz=2, ng=1 nz=8, ng=1

nz=1, ng=2 nz=1, ng=4 nz=8, ng=4

Fig. 8. Reconstruction pictures.

The most important experiment is shown in Fig. 9 which
compare the DF Method and FB Method, respectively:

a  b
Fig. 9. Reconstruction with DF (a) and FB (b) Methods.

For the same sinogram, our result tend to show that the
DF Method is approximately as good as the FB Method.
Admittedly, the extra filtering and interpolation increases the
time complexity for the DF Method. Fig 10 shows the
Relative Error plotted against the time to reconstruct an
image. The upper graph in Fig 10 corresponds to the DF
Method improved by the grid density factor. The lower graph
in Fig. 10 corresponds to the DF Method improved by the
zero padding factor. The reconstruction time using FB
Method is 52s. Observe that for the same input reconstruction
data (same sinogram) the DF Method improved by the zero
padding factor 8 reconstructs the image in 2 seconds, while
the FB Method reconstructs it in 52 s, for the same output
image quality (about the same relative error of 0.1). The  DF
Method improved by the grid density factor reaches the same
output image quality in 50 s, about the same time of the FB
Method.

Fig. 10. Time to reconstruct a same image

IV. CONCLUSION
We have successfully designed and implemented a

tomography platform, consisting of a set of (1) tools to
simulate the data generation in a tomograph and (2) a set of
tools to reconstruct a  3D object based on its 2D projections.
These tools, written in C++, should help investigators to
develop and to evaluate tomographic techniques and
parameters.

The tools were validated and used to study variations on
reconstruction techniques. We proposed two variations of the
DF Method: (1) by improvement of the grid density factor
and (2) by improving the zero padding factor. We compared
these two techniques and concluded that the zero padding
factor technique is the best compromise in terms of
processing time and output reconstructed image quality. We
showed that the DF Method improved by the zero-padding
factor could achieve the same reconstructed image quality of
the FB Method in 1/26th of the time.
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