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Abstract- Approximately 20% of people diagnosed with
epilepsy cannot be treated effectively. Consequently, there
exists a significant need for alternative types of treatment. To
aid in the effort of solving this problem, we developed a
prototype system to detect changesin neural activity prior to the
onset of a seizure. This system can be used as warning device or
as part of a large system to terminate seizures in their initial
stages via drug administration or nerve stimulation. The
detection algorithm used data collected from intracranial
electrodes. The waveforms were filtered and amplified to
identify single neuron action potentials. The time of occurrence
of each action potential for each neuron was then passed to a
preprocessor algorithm that summed the data into 50ms time
bins. Sliding windows consisting of 128 bins for each neuron
were cross-correlated. The results were summed and the
variance of the cross-correlation was used as a measur e of global
neuron correlation. The algorithm was implemented in a PC
board and tested in rats treated with pentylenetetrazol (PTZ) a
known seizureinducing drug. The system was 100% effective at
detecting seizures approximately 4.6 seconds before seizure
onset and had a false positive rate of 0.3%.
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l. INTRODUCTION

Approximately 20% of patients with epilepsy do not
respond to traditional treatment methods.  Since the
occurrence of seizures is spontaneous, often with no warning,
amethod for reliably anticipating the onset of a seizure would
provide an opportunity for therapeutic intervention. Many
investigations have attempted to use EEG data from surface
or intracranial electrodes to capture dynamic changes in the
neural signals that predict the onset of a seizure [1-2].
However, the EEG signals reflect global changes in neural
activity and are often recorded far from the focal source of
the seizure. Attempts to use these signals to anticipate the
onset of a seizure have been mixed with generaly low
detection rate and high false positive rates [3].

Recent studies using multiple EEG recording sites suggest
that there are unique characteristics of the epileptogenic
network that can be detected prior to the onset of a seizure [4-
5]. The EEG data just prior to the onset of a seizure show
changes in the dynamic structure of the neural activity and
these changes are sufficient to predict the onset of a seizure
[6]. While these results are promising, additional study is

necessary to create a reliable and accurate system for
therapeutic use.

The underlying theory behind these detection algorithms is
that the complexity of the neural signals decreases prior to the
onset of aseizure [7]. By calculating complexity measures of
the EEG waveform, dynamic changes can be detected.
However, the reason for a decrease in complexity of the EEG
signa is that neura activity becomes synchronous as the
seizure develops. The EEG signals are measures of global
neural activity and as such are only a reflection of this
increased synchrony. Therefore, we propose to use signals
recorded from single neurons to detect this synchrony. The
advantages of using single neuron activity are threefold.

First, the single neuron behavior at the seizure focal point
represents the source of the EEG signal of interest for seizure
detection. Second, measuring the synchrony of single neuron
activity is computational more efficient than calculating
complexity measures of the EEG waveform.  Third,
theoretically, the neural synchrony can be detected in the
single neuron data long before the dynamic changes in the
EEG are detectable.

We have developed a method for detecting pre-seizure
activity in rats by monitoring single neuron activity. It iswell
known that the EEG signal is a reflection of the underlying
single-neuron activity. By recording neural activity from
multiple, single-neurons, our results suggest that local
changes in neural firing patterns can be detected and used to
predict the onset of a seizure

. METHODS

A. Chronic implantation of electrodes

Two adult female Long-Evans rats were implanted with an
eight channel electrode array to record single-neuron activity.
All  procedures and experiments were conducted in
compliance with Drexel University animal use policies and
were approved by the Drexel University Institutional Animal
Care and Use Committee. The electrodes were implanted
bilaterally into the temporal lobe of each rat. The rats were
anesthetized with nebutal (50mg/kg). Small craniotomies
were made in the skull over the implant site and the
electrodes were dowly lowered into the neural tissue to a
depth of 25 mm. Recordings were made throughout the
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implantation process to access electrode function. Small
screws in the skull were used to anchor the electrodes, which
were then cemented into place creating an electrode cap.
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Figure 1 Binary data from the MNAP system that represented the time
of occurence of action potentials for each single neuron were stored in
registers. Then the number of action potentials during a 50 msinterval
were summed to create asingle bin. 128 bins representing 6.4 seconds
of data were collected and represented a single window for cross
correlation analysis.

B. Data Collection

After two weeks, the rats were placed in a recording
chamber and a headstage was connected to the electrode cap
(Plexon, Inc., Dallas TX). The headstage transmitted neural
signals from the rat to a Multi-Neuron data Acquisition
Program (MNAP) that filtered and amplified the signal and
discriminated single neuron action potentials from the analog
signal. The times of occurrence of action potentials for each
neuron were stored.

During a recording session, five minutes of baseline data
were collected and then the rats were given an injection of
PTZ (40mg/kg). This dose of PTZ induced generalized
seizure activity for up to 3 hours [8-9]. Continuous
recording were made during the 3 hours post-injection.

C. Behavioral Analysis

During data acquisition, the animals were videotaped to
monitor their behavior and to evaluate the onset of seizures.
The videotapes were scored for each 30 msec frame as
seizure or no-seizure as evaluated by the clonic jerking of the
body and forelimbs. Half of this data was used to generate
detection algorithm and the other half was used to test the
algorithm.

I1l. RESULTS

A Preprocessing

The raw data from the MNAP system consisted of M
channels where M is the number of single neurons recorded
per session. Data were represented at one millisecond (1 ms)
time intervals and the occurrence of an action potential
during that millisecond was represented as a 1 otherwise it

was a zero. The seizure detection unit summed the binary
data over a 50 msec interval to create a single bin whose
value represented the number of times the cell fired an action
potential during that 50 ms interval (Fig. 1). A window was
created that collected 128 bins, representing 6.4 seconds of
data for each channel.
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Figure 2 Schematic representation of the cross correlation method

used to analyze the single neuron data and evaluate a seizure. This
figureillustrates the pair-wise cross correlation for three neurons.

B. Signal Processing Solution

The M windows, one for each neuron recorded, were
pairwise cross correlated (Fig. 2) to create M choose 2 cross-
correlation vectors. The cross correlation vectors were
created by holding the window for the reference neuron
stationary while dliding each of the 128 bins of the window of
the correlating neuron past the reference window one bin at a
time. For each t, -127<t<128, the value of each bin in the
reference window is multiplied by the adjacent window of the
correlating neuron window. Then t was incremented and the
correlating neuron window shifted one bin over the reference
neuron window. The process was repeated until the
correlated window had moved completely past the reference
neuron window. For each bin of the reference window, the
product of the reference bins and the correlation bin are
added to the result from previous calculation resulting in a
correlation vector with length 2t, t=128. The correlation
vector for al pair wise correlation were averaged and the
standard deviation a t=0 was used as a measure of
synchrony. This synchrony measure was used to determine if
a seizure was about to occur (Fig. 3).

When the value of the standard deviation for each bin
was plotted, there was a clear separation between synchrony
measures during seizure and nonseizure activity. A critical
value for the synchrony measure was selected so that 100%
of the seizures had a standard deviation less than this critical
value and only 0.3% of the non-seizure bins had a standard
deviation less than this critical value (Fig. 4). When the
standard deviation reached the critical value (72 in Fig. 4),
100% of the bins that occurred during the seizure had a



standard deviation below this value while 99.7% of the bins
recording during the baseline period were above this value
(Fig. 4B). Therefore, using this critical value as a cut-off for
evaluating the state of the animal, 100% of the seizures were
detected and only 0.3% of the non-seizure bins were
incorrectly labeled as seizures.

I
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Figure 3 Diagram showing changes in the shape of the correlation
function during non-seizure events and during seizure events. The dotted
line is the peak of the correlation (representing time 0) while the dotted
line represents one standard deviation away from the mean. The value of
the correlation function one standard deviation away from the mean was
used to determine whether seizure activity was present.

Next, we used this synchrony measure to predict seizures.
The second half of the data, set aside for testing our method,
was used. The continuous data recorded during sessions
when the animal had been injected with PZT was streamed
into our detection algorithm. The cross-correlation was
recomputed for each new 50 msec bin acquired. Under these
conditions, not only was the system able to detect 100% of
the seizure episodes, but the system also registered a period
of synchrony just prior to the seizure onset. This synchrony
created a standard deviation of the cross-correlation below
the critical value, suggesting a seizure was taking place.
However, the standard deviation of the cross-correlation was
actually below the critical value approxiametely 4.6 seconds
before the onset of the seizure. These results suggest that this
synchrony measure could be used to predict the onset of a
seizure.

I11. DISCUSSION

Cross-correlation analysis of multiple-channel, single-
neuron data was used to detect neural activity associated with
the onset of a seizure. Pair-wise correlations between each
neuron during 6.4 second time window were averaged and
the standard deviation of this measure was used to detect
neural activity associated with the onset of the seizure. This
method was able to detect 100% of the seizures and had a
false positive rate of 0.3%. On average, this method was able

to detect seizures 4.6 seconds before the onset of behavior
manifestation.

The procedure outlined here represents a viable method for
detecting neural activity associated with the onset of a seizure
so that subsequent neural stimulation or drug delivery can be
implemented to prevent the seizure onset. We have begun
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Figure 4 A. Histograms showing the number of bins in the correlation
matrix with a given standard deviation value (as percent of the mean).
Solid bars indicate bins during a seizure and open bars represent non-
seizures bins. B. Cumulative sum of the number of bins with a given
standard deviation. The open sguares curve represents the cumulative
sum of the number of seizure bins with standard deviations smaller than
the current value. The solid squares curve represents the number of non-
seizure bins with a standard deviation less than the current value. A
critical value can be selected that represents the value of the standard
deviation for which the value of all seizure bins are smaller and 99.7% of
the non-seizure bins are greater.

trials in our lab to test the rea-time implementation of this
device with neural stimulation to prevent seizures. We
expect results from these analyses before publication.

Of course, since this method requires implanting
intracranial electrodes, the method is only appropriate for
those patients for which other methods do not work and who



have already been recommended for intracranial electrodes to
evaluate seizures.

The advantage of this method is that the critical value for
synchrony can be adjusted on a per-patient basis such that no
seizures are missed. The trade-off will then be the number of
false positives allowed. Generally, there is very little adverse
effect of false positives. However, the ability to detect 100%
of the seizures may be critical for the patient. Thiswill allow
the patient to rely on the warning and, at the least, get to a
safe place before the onset of the seizure. A device for which
the patients knows will miss seizures, will afford the patient
little relief from the constant concern of a spontaneous
seizure occurring while the patient is engaged in an important
activity such asdriving a car.

In addition, this detection algorithm can be computed in
real-time and, on average, detects the seizure 4.6 seconds
before onset of physical manifestations. This could alow
enough advanced warning for the patient to retreat to a safe
environment or for a device to be activated to suppress the
seizure [10]. For example, commercial devices have been
developed that use nerve stimulation to prevent seizures.
These devices use chronic, intermittent stimulation to prevent
the onset of a seizure.
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